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Abstract: Energy consumption in a manufacturing facility comprises direct energy used
in the manufacturing operations and indirect energy consumed by activities to maintain
proper equipment conditions (e.g., heating and cooling). Reducing the energy consumption
in a manufacturing facility requires sensors to monitor the energy usage patterns (“energy
profiles”) and a concomitant data analytics process for correlating them with the activities
being performed. This work explores the design and integration of optimal sensor networks
for measuring and identifying the context of energy usage in manufacturing processes. This
information is useful in production planning and scheduling to optimize energy usage and reduce
energy cost. We explore a system-level representation of precision machining for optimal sensor
locations and types that allow the monitoring of energy consumption. This is accomplished
through maximization of a measure of the information matrix, subject to constraints on the
cost of sensors. First, a system-level model is presented for predicting energy consumption
in precision machining. A formulation is then presented for the selection of sensors and the
operating mode for maintenance tests in manufacturing. The sensor network design is cast as
a mixed-integer non-linear program that selects possible sensors based on their contribution to
information gain with respect to energy consumption and their impact on equipment cost. For
this purpose, we explore the sensitivity of the machining process with respect to admissible
inputs at different system fault scenarios.

Keywords: Energy control, energy management systems, manufacturing systems, optimization,
sensor network.

1 Introduction

Subtractive manufacturing involves removal of material to
produce a finished work piece through milling, drilling per-
formed by Computer Numerical Control (CNC) machines.
Machining processes in general are highly energy intensive.
A large fraction of the electrical energy consumed in the
manufacturing industry is due to machining operations.

? This material is based upon work supported by the U.S. Depart-
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sponsored by an agency of the United States Government. Neither
the United States Government nor any agency thereof, nor any of
their employees, makes any warranty, express or implied, or assumes
any legal liability or responsibility for the accuracy, completeness,
or usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or
any agency thereof. The views and opinions of authors expressed
herein do not necessarily state or reflect those of the United States
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According to the U.S. Energy Information Administration
(US Energy Information Administration, 2011), 75 % of
the total electricity consumed in industry is due to ma-
chining operations, as shown in Fig. 1.Electricity consumption in the United States in 2012
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Fig. 1. Energy consumption by machining process

Gutowski et al. (2006) categorized the energy consumed
in 3-axis milling into three categories: start-up, constant
run time, and variable with respect to load. According
to their study, 65.8 % of the total energy consumed in
machining is attributed to the milling operation. Modeling
of machining can provide insights into energy consumption
and enable model-based control architectures for these
systems. Moradnazhad and Unver (2017) presented a com-
prehensive review on modeling of the energy consumption
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in machining. The focus of this work is to present a frame-
work that utilizes these physics-based models in order to
find maintenance test settings and sensor networks for
improved sensing of machine state and malfunctions in
precision machining. The first step in designing these tests
is to explore the impact of faults and malfunctions on the
machining power consumption using a validated model. To
accomplish this goal, a model of the power consumption
in a face milling machine is formulated on the basis of the
work of Shao et al. (2004). Model inputs, parameters and
outputs are identified and a fault detection and isolation
methodology is proposed based on Awasthi et al. (2020).

2 Machining Model

The energy model for precision machining developed by
Shao et al. (2004) is used to compute power consumption
and explore the sensitivity of power consumption with
respect to system parameters and admissible inputs. The
model was augmented with the cutting fluid utilization
and scrap generation models of Munoz and Sheng (1995).
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Fig. 2. Sketch of machining process for the calculation of
power consumption.

2.1 Power consumption

Fig. 2 shows a sketch of the machining process. The power
consumption is determined by the tangential component
of the cutting force. Then, computation of the milling force
is used to calculate power consumption.

2.1.1 Force of milling: Consider a tool of diameter D
with number of teeth Z, that chips the work piece with a
width of cut ae. The immersion angle ψ is determined by
the portion of the work piece that the tool is acting on,
ae. This immersion angle is divided horizontally into two
components ψ1 and ψ2 (ψ = ψ1 + ψ2), computed by Eqs.
(1–2), where δ is the offset distance between the cutter
center and the work piece.

ψ1 = arcsin [(ae + 2δ)/D], (1)

ψ2 = arcsin [(ae − 2δ)/D], (2)

The tangential force for cutting is calculated by using the
force equation, Eq. (3), proposed by Altintas (1988). The
instantaneous angle of a tooth with the normal to the
direction of tool motion is represented by φ:

Ft(φ) = ap[Kh̄
−cfz sinφ], (3)

φin = π/2− ψ1, φout = π/2 + ψ2 (4)

where φin is the the angle made by the cutting zone with
the normal to the direction of motion of the tool and φout
is the exit angle of the tool from the work piece. The mean
chip thickness h̄ is computed by Eq. (5), where fz is the
feed per tooth:

h̄ =
fz
ψ

(sinψ1 + sinψ2), fz =
f

nZ
. (5)

Tool wear takes place during the cutting process. The force
from flank wear was presented in Waldorf et al. (1992), in
terms of two force components: (i) force normal to the wear
land; and (ii) force because of friction. The net tangential
component of the force takes into account the total force
needed to cut the work piece and the force from tool wear:

Ft(φ) = ap[Kh̄
−cfz sinφ+ µHV B], (6)

where K is the cutting force constant, c is the chip thick-
ness constant computed experimentally, µ is the friction
coefficient, H is the material hardness, and V B is the
average flank wear land width.

2.1.2 Power consumption: Using Eq. (6), the cutting
power for the i-th tooth can be computed as:

pi(φ) = πDnFt(φ) ∀ φ ∈ [φin, φout], (7)

where n is the spindle speed calculated form the cutting
speed ν and diameter of spindle D, and i is the number of
teeth (i = 1, ...,m, ..., Z):

n =
ν1000

πD
(8)

In the milling operation usually multiple teeth are involved
simultaneously in cutting. Let m teeth be simultaneously
involved in the milling process. The maximum value of m
can be Z/2 when the tool is in full immersion. The power
of cutting can then be divided into two phases (Shao et al.
(2004)): (i) phase A, where m teeth are involved in cutting;
(ii) phase B, where m−1 teeth are involved in the cutting
process. Thus, the power of cutting for the j-th cutting
cycle can be computed by Eq. (9):

Pj(φ) =



m∑
i=1

pi(φ)

m−1∑
i=1

pi(φ)

(9)

Pm in Eq. (9) can be further expanded and the expression
for power is given by Eq. (10):

Pj(φ) =



Pm(φ),

(φin + (j − 1)Φ)

≤ φ < (ψ + φin + (j −m)Φ)

Pm−1(φ),

(ψ + φin + (j −m)Φ)

≤ φ < (φin + jΦ)

, (10)

where j = 1, 2, 3, ..., N , and Pm is computed by Eq. (11),
with K and c constants computed experimentally and m
the number of teeth involved in cutting simultaneously:

Pm(φ) = πDnap

[
Kh̄−cfz

sin(φ+ (m− 1)Φ/2) sin(mΦ/2)

sin(Φ/2)
+ µHmV B

]
(11)
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Eq. (12) is then obtained by integrating Eq. (7) from φin
to φout to calculate the mean cutting power consumption
for the face milling operation:

P = ZnDap[Kh̄
−cfz(cos(φin)− cos(φin + ψ))+

µHV Bψ]/2 (12)

Eq. (12) is used to compute the mean power as a function
of cutting speed ν and feed rate f , which are admissible
inputs in the machining process. The parameters in this
power consumption model are the number of teeth of the
cutter Z, cutter diameter D, cutting force constant K,
chip thickness constant c, number of teeth simultaneously
involved in cutting m, width of cut ae, depth of cut ap
and material hardness H. For calculating the mean cutting
power at any one instance of machining, V B, can be
considered constant, while µ was also assumed constant
in Shao et al. (2004), when cutting fluid is not used. For
simplicity we consider µ to be constant, but its value
depends on the forces acting between the tool and the
work piece. Both instantaneous power, Eq. (10), and mean
cutting power, Eq. (12), can thus be computed as functions
of machining parameters and input variables.

2.2 Scrap generation

In the milling process, scrap generation results in loss
of material. Scrap generation is a separate problem al-
together with models aiming to reduce the amount of
scrap and rework. Eq. (13) gives the formulation for scrap
generation in a cut with width ae and depth ap:

Vscrap = aeapf (13)

The total scarp generation is the difference of volumes of
the initial work piece, Vi, and finished work piece, Vf :

V scarp = Vf − Vi, (14)

2.3 Cutting fluid loss

Cutting fluid is often utilized in machining to provide
lubrication, and control overheating of the work piece.
High-speed machining results in temperature increase of
the work piece and tool which can distort the work piece or
tool piece. This might cause an increase in scarp generation
or tool breakage. The total amount of cutting fluid needed
for the machining process is the sum of the loss of cutting
fluid because of sticking of fluid to the chips, fluid loss due
evaporation of cutting fluid, amount of cutting fluid that
is recirculated, and the amount of cutting fluid because
of coating on the work piece (Munoz and Sheng, 1995).
Cutting fluid loss and the associated energy penalty is not
considered in detail here and is the subject of current work.

3 Manufacturing Conditions and Sensor Selection

The machining power consumption model is first written
as the set of differential algebraic equations of Eq. (15),
where f is the system governing equations, x(t) is the
vector of state variables, u(t) is the vector of admissible
inputs, θ is the vector of model parameters, and t is the
time. Eq. (15) is valid for a timespan, τ , during which all
model parameters remain invariant:

f(ẋ(t),x(t),u(t),θ, t) = 0. (15)

The formulation of dynamic test designs is presented in
Palmer and Bollas (2019b). In the application presented
here, the system is considered at steady-state. Therefore,
the terms ẋ and t are removed. The measurable output
vector, ŷ, is a function of states, inputs and parameters as
shown in Eq. (16):

ŷ = h(x,u,θ). (16)

Each variable that corresponds to a potential sensor avail-
able in the manufacturing system is listed as an output.
Thus, ŷ is considered to have Ny elements. A subset of
sensors is to be selected from the potential Ny sensors.
This set is desired to contain maximum information with
respect to the state of the manufacturing system. This
results in a combinatorial problem with respect to sensor
selection, where the Ny available or potential sensors are
split into ny selected sensors (ny ∈ 1, . . . , Ny) and Ny−ny
dormant sensors. These decisions are formulated mathe-
matically by introducing a binary vector, a. Each element
in a activates or deactivates a specific measured element
in ŷ; it assigns a value of 0 for when a sensor is not used,
or 1 for when it is active.

The input trajectories are divided into two subvectors that
represent controllable process inputs, up, and uncertainty
upstream to the system, uu:

u = [up,uu]. (17)

up is the matrix of Nu inputs for Ntest operating modes,
hence up ∈ RNu×Ntest . The operating envelop (design vec-
tor) for up may be continuous (uLp ≤ up ≤ uUp ) or discrete.
In the discrete case, a finite number, Nd, of operating
modes (steady state or transient operating conditions that
are the result of a set of settings for the inputs or input
trajectories) are available for manufacturing state diagno-
sis. Thus, in the case of finite discrete test settings Nd, if
Ntest test designs are to be selected for the optimization
then up ∈ RNu×Ntest needs to be selected from the set
Up ∈ RNu×Nd , Ntest ≤ Nd. For the machining process,
the inputs are the cutting speed, ν, and the feed rate, f ,
which is defined by the depth of cut, ae.

The system parameters are divided into three subvectors:
parameters that represent faults, θf , parameters that
represent system uncertainty, θu, and parameters that
represent system design and are known and invariant, θp:

θ = [θf ,θu,θp]. (18)

Table 1 provides the list of parameters in the machining
process, as identified in the previous section. The uncertain
parameters can be the metal hardness, H, of the work
piece on which the tool is working. Thermal deformation
and deformation under cutting forces result in uncertainty
in the depth of cut, ap and width of cut, ae. The parameter
that represents fault is the amount of tool that has worn
out represented by average flank wear width V B.

The faults and uncertain parameters and inputs of Table
1 are compiled into a vector that can be optimized for
sensor and manufacturing mode selection for machine state
identification:

ξ = [θf ,θu,uu]. (19)
The system faults are selected as targets for identification
and diagnosis, therefore the elements of ξ are separated
into faults and system uncertainty. The vector ξ is parti-
tioned to ξ = [ξ1, ..., ξNf , ξNf+1

, , ..., ξNξ ] = [ξf , ξu], where
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Table 1. System inputs, outputs and parameters

Inputs, up

n Spindle speed
f Feed rate

Outputs, y

P̄ Mean Cutting Power
Vscrap Scrap generation

Parameters, θp

Z Number of teeth
D Diameter of milling cutter
δ Offset distance between work piece and tool
Vi Initial volume of work piece
Vf Final volume of the work piece
Tamb Ambient temperature
Tvap Vaporization temperature of cutting fluid
L Latent heat of vaporization
cp Specific heat of cutting fluid
l Chip contact length
lm Major length scale of the work piece
pi Idle-running power of a spindle motor
µ Friction coefficient

Uncertainty, ξu
ap Depth of cut
ae Width of cut
H Material hardness

Faults, ξf
V B Average flank land wear width

ξf is the vector of Nf parameters representing faults, ξu is
the vector of remaining elements of ξ that represent system
uncertainty. The anticipated faults and uncertainty vector
(mean values) at fault f are represented by ξ̃f ∈ Ξ, where

f = 1, ..., Nf and Ξ ∈ RNf×Nξ , with rows containing the
fault parameter values for each fault scenario, cf , f =
1, ..., Nf . Thus, Ξ represents the matrix of all anticipated
values of uncertainty and faults that are predefined for
the system. By representing faults as system parameters
the method deals with abrupt or incipient faults that are
persistent, known and anticipated in the test timespan.

The problem of sensor and manufacturing mode selection
for state identification is cast as an optimization that
maximizes some measure of the Fisher Information Matrix
(FIM) (Palmer and Bollas, 2019a). If we consider system
uncertainty that does not correspond to faults as nuisance
model parameters, the objective of the test design then
becomes a maximization of the sensitivity of outputs with
respect to faults and a minimization of the correlation be-
tween these faults and the impact of system uncertainty in
fault diagnosis. Here, Fisher information is used as a metric
of the identifiability of faults for a certain operating mode
and with a certain set of sensors. These faults are treated
as a subset of uncertain parameters of a high-fidelity model
of the system of interest. The task of manufacturing state
identification test design and sensor selection then be-
comes an exercise of determining tests that simultaneously
maximize the evidence of faults on outputs, minimizes the
correlation between multiple faults and uncertainty and
minimizes the effect of uncertainty on outputs, for a given
model structure. This is accomplished using the model of
the previous section and calculating its so-called Fisher
Information Matrix, FIM. The FIM is cast as a function
of sensitivities, calculated as partial derivatives of outputs
with respect to faults and uncertainty. For steady-state

FDI, these sensitivities are compiled into a matrix, Q
[k]
if ,

for each output i and test design k and fault f . The size

of Q
[k]
i,f (ϕ, ξ̃f ) is Nξ as shown in Eq. (20):

Q
[k]
i,f =

[
∂ŷi(u

[k]
p )

∂ξ1

∣∣∣∣
ξ̃f

. . .
∂ŷi(u

[k]
p )

∂ξNξ

∣∣∣∣
ξ̃f

]
. (20)

In Eq. (20), ξ̃ is the matrix of the anticipated fault and
uncertainty values for which the test is designed. This
matrix (Nf × Nξ dimension) populates all the possible

fault scenarios for which Q
[k]
i,f needs to be calculated. These

scenarios are summed in Eq. (21), where the sensitivity
matrices are used to compute the FIM, Hξ:

Hξ(ϕ, ξ̃) =

Nf∑
f=1

Ntest∑
k=1

Ny∑
i=1

Ny∑
j=1

aiajσ
−2
ij Q

[k]
i,f

T
Q

[k]
j,f , (21)

where σ2
ij is the measurement variance of the i-th and j-th

outputs. Each element of a in Eq. (21) corresponds to the
i-th and j-th outputs. Eq. (21) can be normalized for the
number of sensors of each design to weigh the benefit of
additional test information with the expense of sensing
infrastructure (Palmer and Bollas, 2019; Palmer et al.,
2019). The normalized FIM is shown in Eq. (22):

H̄ξ(ϕ, ξ̃) =

Nf∑
f=1

Nd∑
k=1

Ny∑
i=1

Ny∑
j=1

aiajσ
−2
ij Q

[k]
i,f

T
Q

[k]
j,f

Ny∑
i=1

ai

, (22)

where
Ny∑
i=1

ai is the normalization factor, expressed as the

summation of the sensors that contribute to a particular
sensor network design. The manufacturing test design
vector, ϕ, is compiled from continuous and/or discrete
variables and is adjusted to improve the quality of a
manufacturing health test. The vector consists of the
binary vector a and the input test settings up. The design
vector must be within the test design space Φ, defined by
the machine limits. The design vector is then expressed as
ϕ = [up,a] ∈ Φ. The Ds-optimality criterion (Atkinson
and Bogacka, 1997) was selected for its ability to reduce
the joint confidence region for a target set of parameters
in the presence of other uncertain parameters. In Ds-
optimal design, the FIM is partitioned into submatrices,
corresponding to the faults, ξf , and the uncertainty, ξu.
The submatrices are classified as Hff , Hfu and Huu

to represent the covariance between faults, between faults
and system uncertainty and between system uncertainty,
respectively. The criterion is then calculated as:

ΨDs (Hξ) =
∣∣(Hff −HfuH

−1
uuH

T
fu)
∣∣, (23)

The optimization problem for the steady-state test design
out of a continuous set of machining operating modes is:

ϕ∗ ∈ arg max
ϕ∈Φ

ln

(
ΨDs

(
Hξ(ξ̃,ϕ) ∨ H̄ξ(ξ̃,ϕ)

))
s.t.

f(x,up,θp, ξ̃) = 0,

ŷ = h(x,up,θp, ξ̃)

uLp ≤ up ≤ uUp ,

xL ≤ x ≤ xU .

(24)
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Table 2. Experimental conditions (Shao et al., 2004)

Work piece
Material: Cast Iron

H = 1689 N/m
Size = 500 x 70 x 500

Cutter
Material: Carbide

Number of teeth= 1 and 5
Diameter = 100 mm

Cutting condition

Depth of cut: 2 - 6 mm
Feed: 0.065-2 mm/rev

Cutting speed: 18-236 m/min
Width of cut: 70 mm

Offset distance: 0
Cut type: Up and down milling

The optimization problem formulated above determines
the optimal design (sensors and test settings), when the
machining modes comprise a continuous set. This is not
very common, so the problem was reformulated to deter-
mine optimal test settings out of a discrete set of operating
modes. The corresponding formulation is identical to that
of Eq. (24), but with up ⊂ Up, where Up ∈ RNu×Nd . The
solution of Eq. (24) gives the Ds-optimal test design that
consists of Ntest test settings and ny sensors that maxi-
mize the sensitivity of outputs with respect to faults and
minimizes joint confidence between faults and uncertainty.

4 Results and Discussion

4.1 Model Validation

The power consumption for precision machining described
earlier was validated against data from Shao et al. (2004)
for a face milling process involving one tooth or five
teeth. The reference data used are listed in Table 2 with
cutting conditions listed in detail in Table 3. The data
and results of the model by Shao et al. (2004) were
reproduced using the power consumption model for single
tooth milling, Z = 1, and multiple teeth milling, Z =
5, and compared to the experimental measurements of
power consumption. The mean power consumption was
calculated for a work piece with initial volume Vi and final
volume of Vf . Figs. 3–4 present the model predictions for
the cases studied. In the study by Shao et al. (2004) cutting
fluid was not considered; thus, µ was considered to be
constant at its reference value (Shao et al., 2004). Overall,
the power consumption model was validated with the
literature data and was found to be in excellent agreement.
We then proceeded to exploring the dependency of the
power consumption on system admissible inputs as a
function of tool wear, which in the presented framework
was considered a fault.

4.2 Sensitivity Analysis

The correlation between power consumption with cutting
speed, depth of cut and feed rate was computed for the
machining process for two tool wear, V B, cases. The two
tool wear criteria used in the sensitivity analysis is V B = 0
mm for a new tool and V B = 3 mm for a worn out tool.
The significance of each of the manufacturing decision
variables on power consumption at these different tool
wear values was first assessed using sensitivity analysis.
Table 4 shows the values of the inputs used to define the
design vector of the manufacturing maintenance test. In
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Fig. 3. Power consumption for single tooth milling opera-
tion for new and worn tool. (a) data from Shao et al.
(2004); (b) model predictions.
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Fig. 4. Power consumption for multiple tooth milling
operation for new and worn tool. (a) data from Shao
et al. (2004); (b) model predictions.

the sensitivity analysis, each process was varied with mean
values for all other machining parameters and the other
two inputs set at their mean values. The sensitivities are
presented as plots of ∂P/∂ν for the sensitivity of power
consumption with respect to cutting speed ν, ∂P/∂ap
for the sensitivity of power consumption with respect
to depth of cut ap and ∂P/∂f for the sensitivity of
power consumption with respect to feed rate f . These
sensitivities along with the value of power consumption
are plotted against the three inputs for the two tool
wear values in Fig. 5. As shown, power consumption
increases with cutting speed, depth of cut and feed rate.
It can be concluded that power consumption is dependent
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Table 3. Cutting conditions (Shao et al., 2004)

Groups Number of teeth Cutting of speed(m/min) Depth of cut (mm) Feed rate (mm/rev) offset distance (mm)

1 1 18 4 0.8 0
2 5 94 4 0.8 0
3 5 94 5 0.78 0
4 5 149 2 1 0
5 5 149 3 1 0

on feed rate, f , cutting speed, ν, and depth of cut,
ap, in a descending order of correlation. Machine power
consumption is most sensitive to feed rate for the system
studied (and in the range of inputs studied). The impact
of feed rate on power consumption is not affected by the
tool wear. This sensitivity analysis helps us understand the
relative impact of the parameters on power consumption.

Table 4. Data of cutting speed, depth of cut and feed
rate form the work of Shao et al. (2004)

SerialNo. Cutting speed Depth of cut Feed rate
(ν,m/min) (ap,mm) (f,mm/rev)

1 18 4 0.8
2 94 4 0.8
3 94 5 0.78
4 149 2 1
5 149 3 1

Mean 100.8 3.6 0.876

5 Conclusions and Future work

A system model for milling processes was developed with
the purpose of inferring power consumption from process
parameters and system controlled variables. The model
results are in good agreement with literature-reported
experimental data. Sensitivity analysis was performed to
explore the relationship of power consumption with system
admissible inputs as a function of machining tool wear.
Feed rate was shown to have the highest impact on the
power consumption. Tool wear has a significant impact
on machining power consumption, which is not constant
across the operating envelop of the machine. On the other
hand, the sensitivity of power consumption with respect to
any of the considered system admissible inputs is similar
in profile, regardless of tool wear. These insights will be
drive decisions and interpretation of the sensor network
design method described.
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