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Abstract: This paper presents an initial effort of integrating a smart sampling-based probabilis-
tic look-ahead contingency analysis algorithm with a commercial energy management system
(EMS) tool as a proof-of-concept for a seamless research tool integration using real world large-
scale grid data. With the increasing impact of random forces such as variable generation and
load, their stochastic behaviors cannot be ignored. However, the current practices are still
dominated by deterministic tools. They are becoming increasingly inadequate for the future
grid. The developed look-ahead contingency analysis algorithm incorporates forecast errors of
variable energy and load to address the challenges brought by the increasing uncertainty of power
system. The algorithm can reveal the potential violations caused by the variance of variable
energy and load that are not normally detected by traditional deterministic approaches. To test
its performance under practical environments (practical data with commercial tool), significant
efforts have been made to prepare test cases, modify the commercial tool to interface with
the probabilistic algorithm, and adapt an extreme value distribution algorithm to analyze the
commercial tool’s violation-only outputs. The test results clearly demonstrate the effectiveness
of the developed algorithm as new transformer violations that were not previously detected
have been identified. This performance provides better situational awareness to engineers for
their decision-making process under uncertainty. Moreover, with the discussion of computational
performance and future work, this paper has shown a clear path for integrating the probabilistic
algorithm with commercial tools to make us better equipped for the changing power system.

Keywords: Modeling and simulation of power systems, constraint and security monitoring and
control, look-ahead contingency analysis, energy management system.

1. INTRODUCTION

Contingency analysis (CA) is a critical energy manage-
ment system (EMS) function that is widely used to eval-
uate the electric grid’s status if various combinations of
component failures occur in the grid. The outputs of CA
provide information to assess grid health to ensure that
there are no operating limit violations in the system. In
North America, power companies are required to perform
CA for grid operations and planning studies to meet the
North American Electric Reliability Corporation (NERC)
operation standards. Today’s CA functions in the con-
trol centers are dominated by deterministic methods. It
uses state estimation outputs to perform power flow and
contingency analysis study. When there are violations,
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operators are required to take actions to maintain a sys-
tem’s reliability according to NERC standards. With the
fast growth of power grids, power companies are under
pressure to take more contingencies into consideration as
the demand of power supply pushes boundary constraints
of the grid. Therefore, parallel processing and/or multi-
threading techniques are utilized to perform CA to reduce
the simulation time. For instance, multi-threading technol-
ogy has been used in General Electric (GE) Grid Solutions’
EMS tools.

In addition to examining the current operational cy-
cle, some companies also conduct look-ahead contingency
analysis functions to foresee the system’s health condition
in next operational intervals; e.g., in next 1 hour with a
15-minute interval. Commercial vendors, such as GE Grid
Solutions’ Multiple-timepoint study (SMTNET) tool, have
the look-ahead contingency analysis capability developed.
However, exact forecast values, as well as generation sched-
ules, load forecast, and outage plans, are used as the inputs
to perform study. Therefore, it is still a deterministic
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approach. The simulation results might not be accurate
because they do not consider the stochastic nature of
the forecast in the simulation. Some critical violations
caused by variance of variance energy could be missed if
traditional deterministic approach is used.

With increasing impacts of variable generation and load
uncertainties, the traditional contingency analysis needs to
be extended to cover the difference between forecast value
and actual value. Thus, these impacts should be studied to
maintain system reliability, which requires the function of
probabilistic look-ahead contingency analysis to provide
a more complete picture to operators. The methodology
of the probabilistic approach to contingency analysis has
been studied by other researchers, such as Brønmo et al.
(2015) and Yue and Wang (2016). However, to the authors’
best knowledge, there are not other papers that explore the
path forward for integrating a probabilistic algorithm with
a commercial EMS tool like this one.

This paper is based on the authors’ previous effort in
Chen et al. (2016). It presents a probabilistic look-ahead
contingency analysis algorithm using smart sampling and
probabilistic analysis approaches, and shows the initial
effort on integrating the developed algorithm with com-
mercial SMTNET. A practical prototype tool has been
developed to validate the performance of this algorithm
on the Bonneville Power Administration (BPA) system.
With the finding of new violations that are missed by
deterministic methods, the advantages of the algorithm
are also demonstrated.

The remainder of this paper is organized as follows: Section
2 introduces the architecture of the probabilistic look-
ahead contingency analysis algorithm. Section 3 presents
how the study cases were prepared with real-world utility
data and fed into the SMTNET tool. Section 4 presents the
case study results to show the advantage of the proposed
algorithm. Section 5 concludes the paper with a discussion
of future work.

2. PROBABILISTIC LOOK-AHEAD CONTINGENCY
ANALYSIS FRAMEWORK

The framework of the probabilistic look-ahead contingency
analysis is shown in Fig. 1. This framework is developed
based on an early version (Chen et al. (2016)) that
was implemented with an in-house massive contingency
analysis (MCA) tool (Huang et al. (2009)), (Chen et al.
(2012)). In this paper, the algorithm has been enhanced
to integrate with the GE Grid Solutions’ SMTNET tool.

The core function in this framework is a smart sampling
approach, which factors forecast errors into look-ahead
contingency analysis applications. The inputs for smart
sampling techniques are historical forecast information
and historical actual information. The outputs of smart
sampling techniques are a reduced and representative set
of realizations (scenarios) that consider the forecast errors
efficiently, which leads to a reduced computational burden.

In addition to help address forecast uncertainties, the
smart sampling algorithm can also be used on contingency
lists, (i.e., a reduced set of contingencies, instead of full
list, is assigned to each realization). These reduced and
representative sets of realizations are then written in GE

Fig. 1. Look ahead contingency analysis framework

SMTNET format. SMTNET then reads this information
in, and can perform multi-thread contingency analysis
computations. Because the SMTNET only outputs contin-
gency violations, instead of the full solutions, the extreme
value distribution (EVD) algorithm is adapted and applied
to this framework for branch overflow violations.

2.1 Smart Sampling Algorithm

The purpose of the smart sampling algorithm is to address
slow convergence of the traditional Monte Carlo methods
with good coverage and less redundancy. This helps to
generate a reduced and representative dataset that covers
the forecast errors for look-ahead type of analysis.

Traditional Monte-Carlo-based sampling, such as general
random sampling (GRS) (Davis (1987)), generates pseudo-
random sequences as needed for the trials. It is often com-
putationally expensive with slow convergence rate. There-
fore, efficient sampling is needed to minimize the number
of required Monte Carlo runs but can fully explore the sys-
tem characteristics. Quasi-Monte Carlo (QMC) (Niederre-
iter (1978)) sampling utilizes sequences of quasi-random
numbers that can be deterministically-chosen based on
equally distributed sequences to help minimize sampling
errors. One main difference between the QMC method and
GRS method is that pre-designed deterministic points are
used in QMC, instead of random points. The advantage of
QMC is that the elements are well dispersed and spatially
covered which would enable a more rapid convergence
for either Monte-Carlo integration or for ensemble system
representation. The QMC method is the smart sampling
algorithm that has been integrated in the look-ahead con-
tingency analysis framework.

The comparison of samples generated by GRS (left) and
QMC (right) is shown in Fig. 2. The red points are sam-
pling points obtained for two input variables, and the blue
ones are the projections of these sampling points onto the
two dimensions. An even distribution of blue dots along
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Fig. 2. Comparison of GRS (a) and QMC (b)

the variable axis (space-filling) is expected for a good
sampling approach. Moreover, without prior information
on the relative weights of the different parameters (or
dimensions), it is vital that no two design points coincide
when projected onto a lower number of dimensions (i.e.,
non-collapsing). The “space-filling” and “non-collapsing”
properties are important criteria to evaluate the perfor-
mance of sampling algorithm. Fig. 2 clearly shows the
QMC outperforms the GRS method.

2.2 Parallelization Setup

The smart sampling outputs are a set of realizations (sce-
narios) and a list of contingencies. The implementation
of the original algorithm uses a dynamic load-balancing-
scheme-based to execute each contingency at different re-
alizations in parallel (Chen et al. (2012)). However, the
SMTNET’s built-in multi-thread option can only be ap-
plied to contingency level at each time step and the com-
putation of each time point is still sequential. Therefore, a
series of SMTNET runs need to be setup to mimic the
original implementation because the number of realiza-
tions is greater than the optimal number of time points
in one SMTNET run. To achieve scalability comparable
to the original implementation in Huang et al. (2009),
further modifications on SMTNET are required to allow
parallelization at the time point level.

2.3 Extreme value distribution

A probability density function (PDF)-based algorithm was
used to post-process the look-ahead CA outputs in Chen
et al. (2016) because it uses an in-house massive contin-
gency analysis tool that can provide full solutions to all
contingencies at all scenarios. However, GE SMTNET only
outputs violation information, the PDF-based approach
would not work.

The violations can be considered as extreme values that
occur when a risk takes values from the tail of its possi-
bility distribution. Extreme value theory studies extreme
deviations from the median of probability distributions in
statistics. It has been widely applied in a variety of areas of
risk analysis. In this paper, the extreme value distribution
(EVD) algorithm has been innovatively adapted to case
studies.

Let’s introduce the basis of EVD algorithm. Suppose
X1, X2, X3 are independent random variables with the
common cumulative distribution function, F , and a new
dataset, Mn = max(X1, X2, X3... Xn), can be created by
including only the first n maximum values. This dataset
can only be represented by EVD models. In statistics, the

Fisher-Tippett-Gnedenko theorem is a general result in
extreme value theory for the behavior of the maxima of
independent, identically distributed sequences. The con-
tinuous probability distribution based on this theory is a
generalized extreme value (GEV) distribution, shown in
(1). This continuous version is developed by combining
Gumbel Gumbel (2012), Fréchet and Weibull distribution
families (Coles et al. (2001)):

F(x;µ, ξ, ϕ) = exp

{
−(1 + ξ

x− µ
ϕ

)−1/ξ

}
(1)

where µ is a location parameter, ϕ is a scale parameter
and ξ is the shape parameter. The single GEV distri-
bution can be represented using these three parameters.
When shape parameter ξ=0, the GEV corresponds to
the Gumbel distribution, also called type I extreme value
distribution. The ranges of interest for the three extreme
value distributions are different; Gumbel distribution is
unlimited, while Fréchet distribution has a lower limit.

In this study, the parameter ξ was estimated in GEV for
differnt scenarios, most of them are close to zero. So the
Gumbel distribution is used to analyze the distribution
of the overflow violation. Each power flow containing
contingencies is considered as an extreme event. Because
the probability distribution of violation is estimated with
uncertainties, a 95% confident interval is used in the GEV
distribution fitting to represent the model uncertainties.

3. CASE PREPARATION FOR SMTNET
INTEGRATION WITH REAL-WORLD DATA

This section discusses what has been done to test the
developed look-ahead CA on GE SMTNET with real-
world data provided by BPA.

3.1 Real-world Data Pre-processing

The real-world data used in this study include:

(1) The BPA operational node-break models in a 15-
minute interval for the year of 2014. It is used to
extract historical actual load and wind generation
information.

(2) BPA historical forecast data (wind/load) in 2014
(BPA (2014)). The wind data is hourly and the load
data is at 5-minute interval.

(3) A BPA planning model in PSS/E PTI format in 2014.
(4) Location of BPA wind farms.
(5) BPA-solved STNET (steady state network study) and

RTCA (real-time contingency analysis) save cases on
the selected days in 2014, including all key modules,
outage files, and resource plans.

There are two issues associated with the actual and fore-
cast wind/load data: (1) inconsistent sampling rate in
actual data and forecast data; and (2) incomplete data due
to unsolved state estimation cases. To tackle these issues,
down-sampling techniques with gap filling were performed.
Extensive effort has been expanded to prepare a mapping
table between the operational models and the planning
model to identify the actual values at each wind unit. The
initial study with the planning model in Chen et al. (2016)
has shown very promising results and provided meaningful
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Fig. 3. The range of all wind unit generations in 144 smart
sampling realizations

value to the users. Therefore, further requests were sent
to BPA to have BPA-solved operational case in GE Grid
Solutions’ EMP 2.6 format to test the algorithm with real
data on GE EMS tools. Because SMTNET is only available
at EMP 3.1 and above versions, the database definition
and size of all records were also requested to help transition
BPA’s database to the SMTNET function-capable EMP.

3.2 Realization creation

After matching and pre-processing all of the BPA wind
and load data, 32 variables, including 31 wind farms and
the total BPA load, are included in the smart sampling
realization generation. These realizations are converted to
the format that is suitable for the GE SMTNET model.
A sensitivity study based on the number of realizations
and the efficiency of the QMC was conducted to find
a reasonable number of realizations generated by the
QMC that can represent forecast errors. Based on the
sensitivity study results, 144 realizations were generated
and divided into three SMTNET runs (48 realizations
each) to facilitate task-parallel computing and optimally
use the computing resources. To have a better idea of the
wind generation range, all 4,608 (144*32) wind generations
(MW) are shown in Fig. 3.

3.3 Commercial Tool Modifications

The GE SMTNET is a platform to perform a look-ahead
security analysis for future time points given a set of
inputs. It can run multiple time points with multiple
network models and summarize violations for each time
step. In this study, the 144 realizations created by smart
sampling algorithms can be considered as a new network
model with different sizes of renewable generation and
load.

To utilize SMTNET, the BPA operational cases were
converted from EMP 2.6 to EMP 3.1. A resizing process
was conducted to let GE’s SMTNET/STNET application
run with the provided BPA real-time cases.

To integrate with the PNNL probabilistic look-ahead con-
tingency analysis function, the SMTNET application has
been modified to read a data set of BPA wind, load,
contingency combination and allow user to perform the
SMTNET run with each data set. The SMTNET outputs
format were also modified to output branch flow violations
for each contingency at each scenario for the EVD analysis.

Fig. 4. The screenshot of SMTNET results with 48 time
points

4. PERFORMANCE EVALUATION

The performance evaluation was conducted on the GE
Grid Solutions Habitat virtual machine (VM). The VM
was installed on Windows Server 2012 R2 standard with a
processor of Intel Xeon X7550 @ 2.0 GHz(four cores) and
24 GB memory. Each realization was set up to run with a
range of contingencies from 20 to 1,241 active contingency.
A comparison between the original STNET CA results and
the proposed look-ahead CA algorithm results is the focus
of this evaluation.

4.1 STNET base case contingency results

STNET is the GE EMS tool function to study network
analysis in steady state. To have a fair comparison, the
BPA base case with the original contingency setup was
performed in GE Grid Solutions’ STNET application. This
study has focused on the contingency analysis results,
instead of base case results because the same base case is
used to both STNET and SMTNET, except the changes
of wind units and BPA load introduced by the smart sam-
pling algorithm. In our case study, there are 26 violations
total, including 18 branch violations. These 18 violations
happened with 8 contingencies. For data protection reason,
the detailed violation information is not provided.

4.2 Commercial Tool Results

SMTNET is a GE EMS tool function to perform a multiple
time point study given a set of inputs. This function was
leveraged for the probabilistic look-ahead CA algorithm
by assigning different wind units and load realizations to
different time points, and performing probabilistic analysis
(EVD) on the violation only outputs of SMTNET. A
screenshot of SMTNET graphical user interface is shown
in Fig. 4.
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Fig. 5. EVD Distribution for the Line ID 1061

Fig. 6. EVD Distribution for the Line ID 2475

In our study, one SMTNET simulation runs 48 realizations
with 1,241 contingencies for each time point. There are a
total of 59,568 simulations for one SMTNET run. As a
result, the probabilistic look-ahead contingency analysis
function produces more contingency violations, such as
branch flow violations and low voltage violations. For
example, for the scenario at the time point of 08:00:00,
the number of total contingency violations is 29, including
20 branch flow violations, while the base case contains
26 violations, including 18 branch flow violations. This
difference is caused by the variance of wind unit capacity
and load as a result of forecast errors.

Every SMTNET run creates an output file that contains
branch violations for each realization and contingency. An
R script has been developed to read this file and perform
EVD analysis to present the probabilistic contingency vi-
olations to users. Two examples of EVD curves for the
line ID 1061 and 2475 are shown in Fig. 5 and Fig. 6,
respectively, where the x-axis is the branch overflow viola-
tion in percentage and y-axis is the cumulative probability.
The blue solid line is the Gumbel fitting curve and the
red dash lines are the uncertainty bounds associated with
the Gumbel model. These figures provide users additional
information on the distribution of the branch violations.

The R script also extracted the frequency and worst
violations for the branches that contain violations. Table
1 summarizes the frequency of branch overflow violations,

as well as the worst branch violations happened in all
contingency simulations.

Table 1. The frequency and worst violations
for the branches that contain violations

Line ID Frequency Worst Violation (%)

1061 72 127.1
455 144 120.0
1815 288 135.8
1817 288 132.7
3101 144 105.9
3017 287 119.2
3099 267 117.0
1445 144 129.0
1485 144 115.4
1488 144 120.5
2474 144 124.3
2475 144 129.0
3602 144 154.4
3019 91 105.6
581 80 105.0

Some new transformer violations that belong to the line
ID 1061 in Table 1) were identified by the probabilistic
look-ahead CA function. These violations. The violations
were caused for two contingencies, with a worst violation
percentage of 113% and 112.5%, respectively. The num-
ber of the transformer violation occurrences is 72 total.
Therefore, this type of violations cannot be overlooked
considering the frequency and the severity level. This
finding demonstrates the advantages of probabilistic CA
algorithm as it can capture the potential violations caused
by variations of renewable energy forecast that are ignored
by the deterministic method. The application of this de-
veloped algorithm can help utilities to better prepare for
more complex and dynamic grids.

4.3 Computational performance

Computational performance is another critical factor to
meet the challenges of more complex and dynamic grid.
The original development with in-house massive contin-
gency analysis function was able to achieve near-linear
speedup with more than 10,000 cores on a super cluster
(Chen et al. (2012)). However, such a capability and com-
putation platform was not readily available to the GE Grid
Solutions EMS tool as it requires a significant effort the
revise the GE’s legacy code. Therefore, only the SMTNET
built-in multi-thread feature is available for scalability
testing. As mentioned earlier, this multi-threading capa-
bility only affects contingency-level analysis. This means
that the simulation with 48 time points (realizations) is
still sequential.

To determine the optimal number of threads for the
case study, a scalability test was conducted with different
numbers of threads for 1,241 BPA contingencies. The test
results are shown in Table 2.

Table 2 shows no additional gain by using more than six
threads. Therefore, six threads were selected for SMTNET
runs. The improvement in time over a single thread is
about 40%. Compared against the near-linear scalability
with the in-house massive contingency analysis tool, the
scalability with multiple-thread techniques in the Win-
dows environment has room for improvement.
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Table 2. The scalability testing with different
numbers of threads for 1,241 contingencies

# of threads Computational time (second)

1 550
2 435
4 388
6 321
8 323

Table 3 summarizes the contingency analysis performance
study based on the number of contingency cases at one
time point using six threads.

Table 3. Computational time vs. number of
contingencies using six threads

# of contingency Computational time (second)

20 29
65 40
188 96
322 143
391 174
508 220
849 228
1027 329
1171 370
1232 385
1443 461
1837 587

Based on Table 3, the estimated computational time for
48 time points would be around 5 hours, which would be
too long for look-ahead CA function. This emphasizes the
need of applying more efficient parallelization mechanism
to both levels of contingency tasks and time points like
what has been done in Chen et al. (2016).

5. CONCLUSION AND FUTURE WORK

This paper has shown a clear path for integrating the prob-
abilistic look-ahead contingency analysis algorithm with
GE Grid Solutions’ SMTNET tool. The work reported
here represents a preliminary study with the real model
data. The advantages of the developed algorithm have
been demonstrated through case studies: it can help reveal
violations not previously detectable by traditional deter-
ministic approaches, providing better situational aware-
ness for grid operation for enhanced reliability and secu-
rity.

The original plan was to deploy the entire package, includ-
ing GE Habitat EMS tool, on a cluster machine to accel-
erate the time intensive look-ahead contingency analysis
computation. This was expected to lead to parallelizing
the contingencies and time point through message passing
interface (MPI)-based mechanisms, which are much more
efficient than the Windows built-in multi-thread based
mechanism. Therefore, the potential next step is to work
with GE to identify the path forward to implement MPI-
based approach for parallelizing both contingencies and
time points to meet the real-time operation requirements.

Visualizing the probabilistic contingency output is also a
key item for future work. Recently, with GE Grid Solu-
tions’ help, PNNL linked GE Habitat data base to PI data
base. As a result, when SMTNET creates new outputs,
the outputs will be stored in PI data base automatically.

Therefore, another future work is to develop a web-based
visualization tool that can manage multiple dimension
data from PI and other data resources and visualize look-
ahead contingency analysis results in a probabilistic man-
ner intuitively.
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