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Abstract: In this paper, we propose a novel sectorial fuzzy controller plus feedforward for the
trajectory tracking control of robot manipulators. An outline of the stability proof via Lyapunov
criterion of the proposed controller is given. Experimental results are presented in comparison
to its classical counterpart: The Proportional-Derivative (PD) plus feedforward controller, from
which this new proposal is based. The results obtained using the proposed controller indicate a
better performance in terms of joint position error and tolerance to parametric variations.
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1. INTRODUCTION

Given the large number of industrial robots currently in
use, applied to increasingly more exact and precise tasks
(recode.net, 2017), it is necessary to find a controller ca-
pable of controlling the position of a robotic manipulator,
such that it meets the task quality specifications. The
control approaches still in use in many industrial applica-
tions are the Proportional + Integrator + Derivative (PID)
control and its derivatives. A robot is highly nonlinear,
with variations in its parameters almost at each point
of execution. Within the various existing controller ap-
proaches to the motion control of robots, the Proportional
+ Derivative (PD) controller plus feedforward has great
advantages on the elimination of disturbances, with an
excellent tracking performance, comparable with that of
the computed-torque controller (Kelly et al., 2005). Fuzzy
controllers can be a robust and efficient alternative in cases
where it is difficult to have an exact model of the plant to
be controlled, or there are many disturbances and changes
in some of its key parameters. Also, fuzzy control allows
combining heuristic elements with analytical models. Once
guidelines to design fuzzy controllers with sectorial prop-
erties, named Sectorial Fuzzy Controllers (SFC), which
enable their stability analysis were given in Calcev (1998),
many works on the motion control of robot manipulators
emerged: In Santibanez et al. (2004), a computed torque
control where its PD controller was exchanged by a SFC,
showed excellent results in the tracking motion control of
a 2-DOF Robot. A SFC with gravity compensation was
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applied to a robotic manipulator in order to regulate its
joint positions in Santibanez et al. (2005), having excellent
results. Our paper retakes the main idea of these previous
works, as it presents the application of a PD controller
plus feedforward for trajectory tracking control, where the
PD part of the control law is replaced by a SFC, thus
forming a novel SFC plus feedforward control, which has
the properties and advantages of a SFC in relation to its
tolerance to parameter deviation.

2. PRELIMINARIES

2.1 Dynamics of Robot Manipulators with rigid links

The dynamics of a serial n-link robot can be summarised
by the Euler-Lagrange equations (Lewis et al., 2004),
(Merabet and Gu, 2010) as:

M (q) q̈ +C (q, q̇) q̇ + g (q) + f (q̇) = τ + η (1)

where q is the n × 1 vector of angular positions at every
joint in generalized coordinates and available for measure-
ment, q̇ is the n× 1 vector of joint angular velocities, q̈ is
the n×1 vector of joint angular accelerations, τ is the n×1
vector of applied torques, M(q) is the n × n symmetric
positive definite inertia matrix,C(q, q̇)q̇ is the n×1 vector
of centrifugal and Coriolis torques, g(q) is the vector of
gravitational torques, η is the n-vector of uncertainties,
which includes external disturbances, and all uncertainties
in the parameters and dynamics not modelled in the robot;
and f(q̇) is the n×1 vector of friction torques. In the static
models, friction is modelled by a vector f(q̇) ∈ Rn that
depends only on the joint velocity q̇ (Kelly et al., 2005). A
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static friction model combines both viscous and Coulomb
friction phenomena. This model states that the vector f(q̇)
is composed as

f(q̇) = Fvq̇ + FC sgn(q̇). (2)

The diagonal elements of Fv are the viscous friction
parameters, and the elements of FC are the Coulomb
friction parameters; both of them are n × n diagonal
positive definite matrices. Where sgn(q̇) denotes the vector
sign function.

The dynamics of the n-link robot manipulator modelled
by (1) has the following properties, which hold for manip-
ulators having all rigid-link revolute joints (Slotine and Li,
1987), (Kelly et al., 2005),

Property A. The inertia matrix M (q) is symmetric and
positive definite; that is,

λmin{M}‖x‖2 ≤ xTM(q)x ≤ λmax{M}‖x‖2 (3)

where λmin{M} = inf
q
λmin{M(q)}, and λmax{M} de-

notes the sup
q
λmin{M(q)}.

Property B. The vector C(q,x)y satisfies the bound

‖C(q,x)y‖ ≤ kC1‖x‖‖y‖, ∀ q,x,y ∈ Rn; kC1 > 0. (4)

Property C. Assuming that the centrifugal and Coriolis
torque matrix C(q, q̇)q̇ is computed by means of Christof-
fel symbols of the first kind. Then,

xT
[
Ṁ − 2C(q, q̇)

]
x = 0 ∀ x, q, q̇ (5)

and,
Ṁ = C(q, q̇) +C(q, q̇)T . (6)

Property D. The residual dynamics, h(q̃, ˙̃q), (Arimoto,
1995a),(Arimoto, 1995b), is defined as,

h(q̃, ˙̃q) = [M(qd)−M(q)] q̈d + g(qd)− g(q)

+ [C(qd, q̇d)−C(q, q̇)] q̇d (7)

where qd is the desired angular joint position, assumed to
be three times differentiable with bounded derivatives for
all time t ≥ 0.

q̃ = qd − q (8)
is the angular joint position error.

The residual dynamics (7) has the property defined in (9)
and satisfies the inequality in (10) (Kelly et al., 2005):

h(0,0) = 0 (9)

‖h(q̃, ˙̃q)‖ ≤ kh1‖ ˙̃q‖+ kh2‖tanh (q̃)‖ (10)

where kh1 and kh2 are sufficiently large strictly positive
constants that depend on the robot model parameters.

3. SECTORIAL FUZZY CONTROL PLUS
FEEDFORWARD

The proposed Sectorial Fuzzy Control plus feedforward
has a very similar configuration as a PD control plus
feedforward, as described in (Kelly et al., 2005), except
that the PD control is replaced by a Sectorial Fuzzy
Control, as shown in Fig.1.

The control law for this controller is,

τ =Φ(q̃, ˙̃q) +M(qd)q̈d
+C(qd, q̇d)q̇d + g(qd) + Fvq̇d (11)

Fig. 1. Proposed Sectorial Fuzzy Control plus feedforward

where Φ
(
q̃, ˙̃q

)
is a n×1 vector whose elements φi

(
q̃i, ˙̃qi

)
,

with i = 1, 2, 3, . . . , n, are the real input-output mappings
of the Sectorial Fuzzy Control (SFC),

Φ
(
q̃, ˙̃q

)
=


φ1
(
q̃1, ˙̃q1

)
φ2
(
q̃2, ˙̃q2

)
...

φn
(
q̃n, ˙̃qn

)
 . (12)

A SFC has one output related to two inputs, which from
an input-output point of view forms a nonlinear static
mapping with useful sectorial properties that enable the
analysis of its stability. These sectorial properties have
been well established and proven in Calcev (1998) and
Santibanez et al. (2005), which are listed below:

• Property 1, φ(0, 0) = 0;

• Property 2, φi
(
q̃i, ˙̃qi

)
= −φi

(
−q̃i,− ˙̃qi

)
• Property 3, There exist ζi, ρi > 0, such that

0 < q̃i
[
φi
(
q̃i, ˙̃qi

)
− φi

(
0, ˙̃qi

)]
≤ ρiq̃2i

0 < ˙̃qi
[
φi
(
q̃i, ˙̃qi

)
− φi (q̃i, 0)

]
≤ ζi ˙̃q2i

• Property 4, φi (q̃i, 0) = 0⇒ q̃i = 0;

• Property 5,
∣∣φi (q̃i, ˙̃qi

)∣∣ ≤ δ := maxl1 l2 y
l1 l2;

• Property 6, yk 0 ≤ |φi (q̃i, 0)| ≤ yk+1 0;

for i = 1, 2, 3, . . . , n, where yl1 l2, yk 0, yk+1 0 represent the
centres of the corresponding output membership functions
(MF) that are defined during the design stage.

A SFC will have the properties listed before, if it is defined
as follows: One output as a fuzzy mapping of two inputs.
All MFs have to be symmetric with respect to zero, with
an odd number of input and output fuzzy sets. The MF
of adjacent input fuzzy sets must be defined so that they
have complementary membership grades for every input
value, as shown in figures 3 and 4 . The definition of fuzzy
sets for the input MF must be convex in the sense given by
(Calcev, 1998), and around zero no trapezoidal or similar
MFs can be used. The consequents of the fuzzy rules table
increase from left to right, and from top to bottom, with
a null output for null inputs, as exemplified in table 1.
The output is computed by the center average fuzzifier,
applying the minimum or product inference method.

Also, from the properties stated before for a SFC, the
following relationships can be expressed:

Recalling Property 3 of a SFC, evaluating q̃i = 0, we have
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∣∣φi (0, ˙̃qi
)∣∣≤ ζi ∣∣ ˙̃qi∣∣ (13)

extrapolating (13) to the vector-matrix case, it leads to

‖Φ
(
0, ˙̃q

)
‖ ≤ λMax{Z}‖ ˙̃q‖ (14)

where Z = diag{ζi} for i = 1, 2, . . . n.

Letting x1 = q̃i and x2 = ˙̃qi, such that φ(q̃i, ˙̃qi) =
φ(x1, x2), applying the guidelines for the definition of fuzzy
rules given by Calcev (1998) and Santibanez et al. (2005),
only four fuzzy rules will fire at a time, with related
adjacent fuzzy sets k and k + 1 for the input x1 = q̃i,
and m, m + 1 for x2 = ˙̃qi, then the output of the fuzzy
block is computed, once simplified, as:

φ(x1, x2)− φ(0, x2) =
[
ȳk,m − ȳ0,m

]
+ µk+1

A1
’(x1)

[
ȳk+1,m − ȳk,m

]︸ ︷︷ ︸
monotonic slope

(x1 − P1,k) (15)

where µk+1
A1

(xm) represents the k + 1 MF, which assigns
a value to the membership grade of x1 in the fuzzy set
A1; P1,k denotes the support values of the MFs, for the
fuzzy set corresponding to q̃, as depicted in Fig. 3, that
for triangular or trapezoidal MFs, which we are using in
this paper, it is possible to prove that

|φi(x1, x2)− φi(0, x2)| ≥ αi |tanh(x1)| (16)

where (Santibanez et al., 2004),

αi ≤ min
j 6=0

∣∣ȳk,j − ȳ0,j∣∣ (17)

which leads to the following general expression

‖Φ(q̃, ˙̃q)−Φ(0, ˙̃q)‖ ≥ min
i
{αi}‖tanh (q̃)‖ (18)

and from Property 3, sign
(
Φ(q̃i, ˙̃qi)− Φ(0, ˙̃qi)

)
= sign(q̃i),

therefore, in vectorial notation, we have

tanh (q̃)T
[
Φ(q̃, ˙̃q)−Φ(0, ˙̃q)

]
≥

tanh (q̃)TA tanh (q̃) ≥
λmin{A}‖tanh (q̃)‖2 > 0 ∀q̃ 6= 0 ∈ Rn (19)

with A = diag(αi)

Also from (16), we have

|φi(q̃i, 0)| ≥ αi |tanh(q̃i)| (20)

which in a general expression can be written as

‖Φ(q̃,0)‖ ≥ λmin{A}‖tanh (q̃)‖. (21)

4. STABILITY ANALYSIS OF THE SFC PLUS
FEEDFORWARD CONTROLLER

The closed-loop equation of the system represented in the
diagram shown in Fig. 1 is obtained by neglecting the
Coulomb friction term, and combining (1) and (2) with
the control law defined in (11), as

M(q)q̈ +C(q, q̇)q̇ + g(q) + Fvq̇ = Φ
(
q̃, ˙̃q

)
+ τd (22)

with,

τd = M(qd)q̈d +C(qd, q̇d)q̇d + g(qd) + Fvq̇d (23)

ans simplifying, in matrix form, the closed-loop system is
given by

d

dt

[
q̃
˙̃q

]
=

 ˙̃q

M(q)−1[−Φ
(
q̃, ˙̃q

)
−C(q, q̇) ˙̃q

−Fv
˙̃q − h(q̃, ˙̃q)]

 . (24)

Theorem 1. The origin of the state space,
[
q̃, ˙̃q

]
, is a

globally uniformly asymptotically stable equilibrium of
the closed loop system defined by (24), if the following
conditions are met:

λmin{A} > kh2 (25)

λmin{Fv} > γ
(√
nkC1 + λmax{M}

)
+ kh1 (26)

0 < γ <

√
λmin{M}λmin{AB}

λmax{M}
. (27)

Proof:
The equilibrium points of (24) are defined by

{q̃ ∈ Rn : 0 = Φ(q̃,0) + h(q̃,0), and ˙̃q = 0 ∈ Rn} (28)

Where the origin is one equilibrium point. In order to
carry out the stability analysis, we propose the following
Lyapunov function candidate (LFC)

V (q̃, ˙̃q, t) =
1

2
˙̃q
T
M(q) ˙̃q +

n∑
i=1

∫ q̃i

0

φ(ξi, 0)dξi

+ γ tanh (q̃)TM(q) ˙̃q. (29)

Now, applying (16), we have

n∑
i=1

∫ q̃i

0

φ(ξi, 0)dξi ≥
n∑
i=1

αi

∫ q̃i

0

tanh(ξi)dξi (30)

=

n∑
i=1

αi|ln (cosh(q̃i))| ≥
n∑
i=1

αiβi|tanh(q̃i)|2 (31)

≥ λmin{AB}‖tanh (q̃)‖2. (32)

In (31) we have used ln{cosh(q̃i)} ≥ βi tanh(q̃i)
2, with

0 ≤ βi ≤ 1
2 , and B = diag{βi}, for i = 1, 2, . . . n. Using

this result on (29), we have

V (q̃, ˙̃q, t) ≥ 1

2

(
λmin{M}‖ ˙̃q‖2 + λmin{AB}‖tanh (q̃)‖2

)
+

1

2

n∑
i=1

αi|ln (cosh(q̃i))| − γλmax{M}‖tanh (q̃)‖‖ ˙̃q‖.

In quadratic form,

V (q̃, ˙̃q, t) ≥ 1

2

(
g(q̃i) +

[
‖tanh (q̃)‖
‖ ˙̃q‖

]T
Q

[
‖tanh (q̃)‖
‖ ˙̃q‖

])
with g(q̃i) =

∑n
i=1 αi|ln (cosh(q̃i))|, and

Q =

[
λmin{AB} −γλmax{M}
−γλmax{M} λmin{M}

]
(33)

where Q is positive-definite if λmin{AB} > 0, which is
already fulfilled since A,B > 0 in their definitions, and if

det (Q) = λmin{M}λmin{AB} − γ2λmax{M}2 > 0 (34)

holds. Obtaining γ from (34),

0 < γ <

√
λmin{M}λmin{AB}

λmax{M}
(35)
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this value of γ ensures global positive definiteness of (29).

Following similar steps is possible to prove that V (q̃, ˙̃q, t)
is a decrescent function. Therefore, (29) is a globally
positive definite radially unbounded decrescent function
which qualifies as a Lyapunov function candidate.

The time derivative of the LFC in (24) is

V̇ (q̃, ˙̃q, t) = − ˙̃q
T
[
Φ(q̃, ˙̃q)−Φ(q̃,0)

]
− ˙̃q

T
h(q̃, ˙̃q)

− γ tanh (q̃)T Φ(q̃, ˙̃q)− ˙̃q
T
Fv

˙̃q

− γ tanh (q̃)TFv
˙̃q − γ tanh (q̃)Th(q̃, ˙̃q)

+ γ tanh (q̃)TCT (q̃, ˙̃q) ˙̃q

+ γ ˙̃q
T

sech2(q̃)M(q) ˙̃q.

(36)

Where we have used the Leibniz rule for differentiation of
integrals. Applying the bounds defined in (4), (10) and
the properties defined in (14) and (19) to simplify the
expression, we have,

V̇ (q̃, ˙̃q, t) ≤ − ˙̃q
T
[
Φ(q̃, ˙̃q)−Φ(q̃,0)

]
− γ (λmin{A} − kh2) ‖tanh (q̃)2‖

+ γ

(
λMax{Z}+ λmax{Fv}+

kh2
γ

+ kh1

+ kC1‖q̇M‖
)
‖tanh (q̃)T ‖‖ ˙̃q‖

− γ
(
λmin{Fv} − kh1

γ
−
√
nkC1 − λmax{M}

)
‖ ˙̃q‖2.

(37)

Defining the following constants,

a= λmin{A} − kh2, b = kh2 (38)

c= λMax{Z}+ λmax{Fv}+ kh1 + kC1‖q̇M‖ (39)

d= λmin{Fv} − kh1, e =
√
nkC1 + λmax{M} (40)

and substituting them in (37), we have

V̇ (q̃, ˙̃q, t) ≤ − ˙̃q
T
[
Φ(q̃, ˙̃q)−Φ(q̃,0)

]

− γ
[
‖tanh (q̃)‖
‖ ˙̃q‖

]T  a −
b
γ + c

2

−
b
γ + c

2

d

γ
− e


︸ ︷︷ ︸

P2

[
‖tanh (q̃)‖
‖ ˙̃q‖

]

Since Property 3 of SFCs holds for the first term of V̇ ,
then P2 > 0 =⇒ V̇ (q̃, ˙̃q, t) < 0. Therefore, we have the
following relationships

λmin{A}> kh2 =⇒ a > 0

λmin{Fv}> γ(
√
nkC1 + λmax{M}) + kh1 =⇒

d

γ
− e > 0

det (P2)> 0

where,

det (P2) = a

(
d

γ
− e
)
−

(
b
γ + c

)2
4

> 0. (41)

Obtaining λmin{A} from (38) and (41), we get:

λmin{A} > kh2

+
(b+ γc)

2

4γ (λmin{Fv} − γ [
√
nkC1 − λmax{M}]− kh1)

. (42)

If λmin{A} complies with (42), then V̇ < 0 which proves
Therorem 1.

5. CONTROLLER DESIGN AND COMPARATIVE
EXPERIMENTAL EVALUATION

5.1 2-DOF Robot Manipulator Description

A 2-DOF robot manipulator moving in the vertical plane,
built in CICESE, México, and located at Instituto Tec-
nológico de La Laguna, México, shown in Fig. 2, was used
to evaluate the performance of our controller. It consists
of two rigid links, high-torque brushless direct-drive servos
with no gear reduction, little backlash and very small joint
friction. The maximum torque that can be applied to joint
1 is 150 [N–m], and 15 [N–m] for joint 2, according to the
manufacturer (Reyes and Kelly, 2001).

The parameter values for this robot are, l1 = 0.450 m,
l2 = 0.450 m, lc1 = 0.091 m, lc2 = 0.091 m, m1 = 23.902
Kg, m2 = 3.880 Kg, I1 = 1.266 Kg m2, I2 = 0.093 Kg m2,
fv1 = 2.288 N-m s, fv2 = 0.175 N-m s, g = 9.81 m/s2.

g

1
Y

2
Y

1
q

2
q

2c
l

2
l

1
l

1c
l

1
I

1
m

2 2
,m I

Fig. 2. Diagram of the 2-DOF robot manipulator used in
the experiments

The dynamical model of the robot shown in Fig. 2 can be
expressed as in (1), with

M11(q) = m1l
2
c1 +m2[l21 + l2c2 + 2l1lc2 cos(q2)] + I1 + I2,

M12(q) = m2[l2c2 + l1lc2 cos(q2)] + I2,

M21(q) = m2[l2c2 + l1lc2 cos(q2)] + I2,

M22(q) = m2l
2
c2 + I2,

C11(q, q̇) = −m2l1lc2sin(q2)q̇2,

C12(q, q̇) = −m2l1lc2sin(q2)[q̇1 + q̇2],

C21(q, q̇) = −m2l1lc2sin(q2)q̇1,

C22(q, q̇) = 0,

g1(q) = [m1lc1 +m2l1]g sin(q1) +m2lc2 g sin(q1 + q2),

g2(q) = m2lc2g sin(q1 + q2).
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In our controller definition and implementation, only the
viscous friction, Fv, is considered. The Coulomb friction,
FC , was only taken into account within the robot model
for simulation purposes, and beyond that, it will be further
taken as a disturbance, as was discussed in previous
sections.

5.2 SFC plus Feedforward Controller Design

Fuzzy MFs for each input of each joint were defined as
it is shown in figures 3 and 4. Also, the definition of the
torque output fuzzy MF for each joint is shown in Fig. 5.
We used singletons to define the output fuzzy MF in order
to expedite its computation when implemented in real-
time. In our definition of fuzzy sets, the acronyms used in
each MF for both the two inputs and the output, are: NB
= Negative Big, NS = Negative Small, Z = Zero, PS =
Positive Small, and PB = Positive Big.

Fig. 3. Definition of fuzzy sets for x1 = q̃i

Fig. 4. Definition of fuzzy sets for x2 = ˙̃qi

Fig. 5. Definition of fuzzy sets for the output τ

Table 1 shows the fuzzy rules. They were defined following
the guidelines in Calcev (1998) so that our fuzzy controller
has the sectorial properties described in section 3.

The values that define the fuzzy sets for both joints were
found applying Genetic Algorithms (GA), as in Pizarro
et al. (2018). The 2-DOF robot manipulator from Fig. 2
was used as our plant, where both viscous and Coulomb
friction were included within its model, used in the ensuing
simulations required for the optimisation process. The

Table 1. Fuzzy rules look-up table

˙̃q/q̃ NB NS Z PS PB

NB NB NB NS Z Z

NS NB NB NS Z Z

Z NS NS Z PS PS

PS Z Z PS PB PB

PB Z Z PS PB PB

support values for the fuzzy sets obtained via GA are:
P1,0 = 0, P1,1 = 6.518, P1,2 = 53.77, P1,3 = 125.5,
P2,0 = 0, P2,1 = 122.2, P2,2 = 138.5 P2,3 = 871.8,
Y0 = 0, Y1 = 82.29, Y2 = 204.5, for joint 1; and P1,0 = 0,
P1,1 = 5.982, P1,2 = 36.67 P1,3 = 163.5, P2,0 = 0,
P2,1 = 153.8, P2,2 = 318.7 P2,3 = 1016, Y0 = 0, Y1 = 15,
Y2 = 180, for joint 2.

5.3 Comparative Experimental Evaluation

The desired joint position vector, qd(t), is given by the
next equations, according to the values and functions
recommended in Kelly et al. (2005) for this type of tests:

q1d(t) = d1 + k1(1− e−2t
3

) + k3(1− e−2t
3

)sen(ω1t) [rad]

q2d(t) = d2 + k2(1− e−1.8t
3

) + k4(1− e−1.8t
3

)sen(ω2t) [rad]

where d1 = π/2 [rad], k1 = π/4 [rad], k3 = π/18
[rad], ω1 = 15 [rad/s], d2 = π/2 [rad], k2 = π/3 [rad],
k4 = 25π/36 [rad] and ω2 = 3.5 [rad/s].

From the desired joint positions vector, qd(t), desired joint
velocities and accelerations vectors, q̇d(t) and q̈d(t), were
analytically computed by calculating their derivatives.

We also designed a PD plus feedforward controller to
comparatively test its performance versus the SFC plus
feedforward. The elements of the gain matrices Kp,Kv ∈
R2×2 were obtained using the same optimising method of
GA, as in the case of the SFC, but adapted to a PD case.
This optimisation yielded the values:

Kp = diag{70.7137, 41.7283} Kv = diag{11.1162, 4.377}
Both controllers previously designed and simulated were
executed on WinMechLab, a real–time platform running
on Windows 7 (Campa et al., 2004), with a 2.5 ms
sampling period, and using a MultiQ-PCI data acquisition
board from Quanser Consulting Inc. The angular position
error responses were obtained for each joint, as well as the
applied torques as shown in figures 6–9.

Fig. 6. Position error for joint 1

In table 2, a comparison of the RMS position error in each
joint is shown for every controller, where ”ss” stands for
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Fig. 7. Position error for joint 2

Fig. 8. Applied torque to joint 1

Fig. 9. Applied torque to joint 2

steady-state values, computed from 5 seconds to the end
of the experiment.

Table 2. RMS Position Error Comparative

Controller q̃1 q̃1,ss q̃2 q̃2,ss
PD+ff 17.1754 1.4021 17.1683 5.3036

Sectorial 15.218 1.1867 15.9701 0.6256

For all joints, position errors have smaller values for
the SFC plus feedforward, labeled as ’Sectorial’ in both
the comparative table and figures, than for the PD plus
feedforward controller, labeled PD+ff. Applied torques in
both joints have similar values (as in joint 2), or are
generally smaller (joint 1 case) for our proposed SFC plus
feedforward.

6. CONCLUSION

A novel SFC plus feedforward, applied to the trajectory
tracking control of a robot manipulator, including an
outline of its stability prof, has been presented for the first

time. We have successfully evaluated it experimentally,
without the need for any parameter tuning, that was not
the case with its PD counterpart, which indeed needed to
be tuned several times before achieving a similar response
to the one obtained in simulations.
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