
Synchronized mobile manipulators for kinematic
cooperative tasks: control design and analysis

Jonathan Obregón ∗ América Morales ∗

∗ Robotics and Advanced Manufacturing Program CINVESTAV-Saltillo,
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Abstract: In this paper we present a synchronization feedback control scheme for kinematic cooperative
mobile manipulator robots performing a global task of manipulation and transportation, where an object
is taken to a desired 6D pose. We define the motion of the object which is translated to each end-effector
as desired coordinates, that trajectory is generated on-line and is a function of every robot in the scene.
The group of robots follow the object’s motion where the control of each robot is also a function of every
other robot, meanwhile they are constrained to a common object. This leads to a complicated interaction
scheme, so we thoroughly analyze the effects of the interactions that alter the behavior of each robot, and
determine under what conditions those effects help to increase the performance of the proposed control
scheme, such that the motions are coordinated to minimize the total energy and stabilize themselves as
the common object reaches its objective. For this we performed a stability analysis and tested our control
scheme through simulations.

Keywords: Synchronization control, cooperative robots, hierarchical tasks, constrained motion, stability
analysis.

1. INTRODUCTION

Among the robotic tasks that require coordination of robots,
cooperative manipulation/transportation of objects are within
the most challenging ones. Such tasks requires the robot to
come into contact with a common linkage, which occurs when
the robots grasp the object, thus everything merges into a single
complex robot, where the task becomes a regulation or trajec-
tory tracking one for the object. This is undoubtedly a challenge
that involves complex motion, which has been addressed by
motion generation algorithms based on the inverse kinemat-
ics of the robots, such as Escande et al. (2014), Pek et al.
(2016), also based on motion planning Alonso et al. (2015).
Moreover, the dynamics of the robots are usually considered
in motion planning algorithms Bouyarmane et al. (2019), Saab
et al. (2013). Closed-loop controllers have also been proposed
with inverse kinematics and dynamics resolution for tasks ex-
ecution Erhart and Hirche (2015), also within a scheme of
synchronization as recently in Sieber and Hirche (2019). Other
works that dealt with synchronization are Sira-Ramirez and
Castro-Linares (2010) and Sun et al. (2009) but for mobile
robots with no manipulation. The inclusion of the dynamics
in the closed-loop analysis and motion generation algorithms
is of great interest, because of the interaction forces that occur
during the cooperation once the robots are in contact. Those
forces can be observed and controlled through the analysis
of physical contacts Khatib (1995) and grasping modeling
Williams and Khatib (1993). Intuitively, undesired interaction
forces arise and become greater as errors in motion tasks ap-
pear, due to model uncertainties and disturbances (a common
issue in dynamic-model-based torque-controls), hence closed-
loop robust/adaptive controllers are best suited for this Liu
and Arimoto (1998), Sanchez-Sanchez et al. (2017). However,
several assumptions, which limit the functionality of those con-
? CONACyT support acknowledgment.

trollers, are considered, such as quasi-static motion, manipula-
tion tasks with inertial robots and with limited motion, such as
controlling only end-effector’s position through point-to-point
trajectories of short distances, whereas special care is given to
the orientation control because of the attitude’s representation
singularities. As a result, some of the works related to complex
motion control, rely on kinematic-based solutions, which so far,
are enough for certain applications, such as swarms of mobile
robots Arechavaleta et al. (2017). From works such as with An-
tonelli et al. (2008), where the inverse hierarchical kinematics
problem is addressed and an stability analysis was provided,
and in Jarquin et al. (2013) where inequality tasks are treated as
tasks with priority transitions, it can be acknowledged that kine-
matic approaches are enough to achieve complex coordinated
whole-body motion with hierarchal tasks. Moreover, the inter-
action forces can also be treated with kinematics based controls,
provided that the force input can be measured, see Gracia et al.
(2018), where the hierarchical-inverse-kinematics (HIK) was
solved with quadratic programming using force sensors at the
contacts.

It can be seen how for cooperative tasks in mobile manipula-
tors, synchronization schemes for feedback control are not as
commonly used as path-planning algorithms and optimization-
based controls. Therefore advantages, such as on-line feedback
control and faster computation times are lost. In this work the
whole-motion of omnidirectional-mobile-manipulators holding
an object is controlled by a HIK solver based on Jacobians
and null-space projectors, with a linear synchronization control
scheme. In other words, we consider the end-effectors as rigid
bodies with 6D pose coordinates, constrained by their robots
kinematics and by the common object, then we synchronize
their motion. To achieve this, we impose the object a motion
behavior which is translated to the end-effectors as desired tra-
jectories. To track those trajectories the controller was designed
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by considering how the coupled systems affect each other, for
this we performed a stability analysis that acquaints all inter-
connections. We simulated two mobile manipulators perform-
ing a manipulation and transportation task using the proposed
controller, and observed how end-effectors’ pose errors are
minimal when the object performs complicated maneuvers.

2. SYNCHRONIZATION CONTROL DESIGN

2.1 Hierarchical task space control

The forward kinematics defines the end-effector pose x(q) =
f(q) ∈ Rm, which is composed by position and orientation
coordinates x(q) = (p(q), o(q)), where the position p ∈ R3,
and the orientation is parametrized with unit quaternions o ∈
S3. Thus x ∈ R3 × S3 for a fully constrictive task, or x(q) ∈
Rm, wherem is the dimension of the constraint, f(q) represents
the direct-kinematics of the robot, which is a function of its joint
position q ∈ Rn, where n defines the degrees-of-freedom of the
robot.
The first order differential kinematics defines the behavior of
the end-effector pose over time:

ẋ = Jq̇ (1)
where J = ∂x

∂q ∈ Rm×n is the analytic Jacobian of the
end-effector, and q̇ ∈ Rn is the generalized velocity or joint
velocity. A task i is defined by the desired end-effector pose
xd ∈ Rm. The task error becomes:

ei = xi(q)− xdi (2)
The error behavior is imposed by:

ėi = −λiei + ẋdi (3)
where λ > 0 ∈ Rm×m, ė is the operational velocity control
input, which is mapped to the joint-space through:

q̇i = J+
i (ėi + ẋd) (4)

where q̇ , u is the control in generalized coordinates and J+

is the generalized inverse of the Jacobian matrix. If the robot is
redundant i.e.,m < n, secondary tasks can be included through
the use of a null-space projector of the Jacobian of the main
task:

Ni = I − J+
i Ji (5)

Therefore the control input of secondary tasks are projected on
the null-space projectors of higher priority tasks:

ui = (JiNi−1)
+(ėi − Jiui−1) (6)

Assuming that Ji ∈ Rm×n is no singular, design ėi such that:
ei = 0, q̇i = 0, as t → ∞. It is assumed that there are r
redundant robots to perform any of the p tasks, such thatm < n
holds for all robots.

2.2 Virtual constraint and tasks design

The virtual constraint is the envelop of the object to be manip-
ulated and transported, in case of geometrically simple objects,
a sphere can represent this constraint:

ϕj = (xj − xc)2 + (yj − yc)2 + (zj − zc)2 − r2 = 0 (7)

where ϕj ∈ R, pj = (xj , yj , zj) are position coordinates of
the robot j, pc = (xc, yc, zc) are position coordinates of the
sphere’s center and r is its radius. Let us define the constraint
Jacobian as Jcj =

∂ϕj
∂xj

∂xj
∂qj

= JϕjJj , where Jϕj ∈ Rm is the
operational constraint Jacobian, and Jj is the analytic Jacobian

of the end-effector j. The orientation of the sphere is given by
the unit quaternion εc = [ε0c εvc ], with the scalar real part ε0c
and the vectorial imaginary part εvc . Also the orientation of the
end-effector j is the quaternion εj = [ε0j εvj ]. Since the goal is
to bring the object to a desired pose, we can define the global
task in function of the sphere’s center desired and current pose:
ec = f (xc(q), xcd). Partitioning ec into position error epc and
orientation error eεc , we compute each as:

epc = pc − pcd , eεc = εc ⊗ ε′cd (8)

where ε′ = [ε0 − εv] is the conjugate of ε, and ⊗ defines
the quaternion Hamiltonian-product that represents rotation of
quaternions, which as error, it can be interpreted as the rotation
needed to reach ε0 = 1 and εv = [0, 0, 0]. Controlling εv is
enough for the orientation task.

Now let us define the local tasks for each individual robot, with
one defined in (7). For the end-effectors to reach a specified
point on the sphere surface we define the desired end-effectors’
pose coordinates by the following transformation:

pjd = pc +R(εc)dj (9)

whereR(εc) is the quaternion-derived rotation matrix, dj = ljr
is the distance between the sphere’s center and its surface’s
desired point for the end-effector j, where lj ∈ R3 is a unit
vector of the distance direction in the sphere center’s frame. The
rotation of the end-effectors must correspond to the sphere’s
rotation. However, a desired initial rotation of end-effectors
can be performed by an offset quaternion εjo , such that end-
effectors’ local z-axis aligns with dj .

εjd = εc ⊗ ε′jo (10)

The desired linear velocity for the end-effectors is obtained by
differentiating (9), which gives

ṗjd = ṗc + ωc × dj (11)

where [ωc×] ∈ so(3) is angular velocity of the sphere’s local
coordinates frame. In contrast, the quaternion orientation rate
is expressed as ε̇c, where ωc 6= ε̇c. However, the relationship
between them is given via ωc = Jεε̇c and ε̇c = J+

ε ωc, with

Jε = 2 [−εv ε0I + [εv×]] , J+
ε =

1

2

[
−εTv

ε0I − [εv×]

]
(12)

Therefore (11) can alternatively be computed as

ṗjd = ṗc + (Jεε̇c)× dj (13)

The end-effectors’ desired rate of the orientation expressed with
quaternions are computed as

ε̇jd = ε̇c (14)

The position and orientation errors can then be computed as

epj = pj − pjd (15)

eεj = εj ⊗ ε′jd (16)
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3. OPERATIONAL-SPACE SYNCHRONIZATION
CONTROL

The control of the sphere’s pose can be decomposed in two
parts, with the first one defining the sphere’s behavior as ex-
ponentially diminishing motion[

ėpc1
ėεc1

]
=−

[
Kap 0
0 Kaε

] [
epc
eεc

]
ėc1 =−Kaec (17)

and the second part including the coupling errors of r end-
effectors

ėpc2 =−Kbp

repc − r∑
j=1

epj

 (18)

ėεc2 =−
r∑
j=1

Kbε

(
eεc ⊗ e′εj

)
(19)

where Ka,Kb ∈ Rm×m are positive diagonal matrices. Let
ėc2 =

[
ėpc2 ėεc2

]T
. Then we have

ėc = ėc1 + ėc2 (20)

On the other hand, the controller that keeps the j-th end-effector
in the constraint is

ϕ̇j = −Cϕj + Jϕj ṗc (21)

where j = 1, 2 . . . r, C ∈ R is the constraint stabilizer,
which is a positive constant, Jϕj ṗc , ϕ̇jd tracks the changes
in sphere’s position. The operational control of the j-th end-
effector’s position is computed as

ėpj =−Gapepj −Gbp

(r − 1)epj −
r−1∑
k 6=j

epk

+ ṗjd

(22)

and the orientation control of the j-th end-effector is computed
as

ėεj =−Gaεeεj −
r−1∑
j=1

Gbε

(
eεc ⊗ e′εj

)
+ ε̇jd (23)

where Ga, Gb ∈ Rm×m are positive diagonal matrices. The
terms ṗjd and ε̇jd from (13) and (14) respectively, track the
changes in sphere’s position and orientation, thus become the
desired linear and angular velocity for the end-effectors. Sim-
ilarly to (5) and (6) we map the operational space control into
the generalized-coordinates space of each end-effector j

q̇cj = J+
cj ϕ̇j

q̇xj =
[
JjNcj

]+ (
ėxj − Jj q̇cj

)
q̇j = q̇cj + q̇xj (24)

4. STABILITY ANALYSIS

Notice that (17)-(19) define the desired trajectories for all end-
effectors. For the position task it can be seen that ėpc1 alone
is stable as long as Kap is positive. However considering

that all robots with the sphere are within an unidirectional
communication structure, we get ėpc = ėpc1 + ėpc2 , which is
analyzed as follows

ėpc =−(Ka + rKb)epc +Kb

r∑
j=1

epj (25)

with Ka, Kb > 0. The Lyapunov function is Vpc = 1
2e
T
pcepc

and its derivative becomes

V̇pc =−eTpc(Ka + rKb)epc + eTpcKb

r∑
j=1

epj (26)

then we need to fulfill

‖Ka + rKb‖‖epc‖ > ‖Kb‖‖eTpc
r∑
j=1

epj‖ (27)

Therefore we establish the following bounding condition

eTpcKb

r∑
j=1

epj ≤ λp ≤ eTpc(Ka + rKb)epc (28)

which leads to

V̇pc ≤ −eTpc(Ka + rKb)epc + λp (29)

For this to hold, we depend on λp, which contains all epj .
Therefore (29) is not guaranteed even if Ka > rKb, most no-
tably when epc ≈ 0 and reTpcepc < eTpc

∑r
j=1 epj . Technically

this situation means that the sphere has already converged and
slowed down, but some epj do not converge yet, so the sphere
moves (V̇cp increases), to adjust pjd such that epj → 0, but if
such motion disturb some epk , then V̇cp increases again and so
on. This occurs given the dependencies between the systems.
Therefore, if we ensure that epj → 0 faster than epc → 0, then
(29) always holds. We ensure this later on.

The orientation control variables are parametrized with unit
quaternions, such that we avoid representation singularities.
Similarly, from (23), the orientation of the sphere with the
coupling terms is:

ėεc =−Kaeεc −Kb(eεc ⊗ e′ε1) . . .−Kb(eεc ⊗ e′εr ) (30)

with eεc = εc ⊗ ε′cd and eεj = εj ⊗ ε′jd . A quaternion product
εc ⊗ ε′r can be written as

εc ⊗ ε′r =Q(εc)εr (31)

where

Q(ε) =

[
ε0 −εTv
εv ε0I − [εv×]

]
∈ R4×4 (32)

thus (30) becomes

ėεc =−Kaeεc −KbQ(eεc)(eε1 + eε2 · · ·+ eεr ) (33)

Then the Lyapunov’s function is Vεc = 1
2e
T
εceεc and its deriva-

tive becomes

V̇εc = eTεc ėεc = −e
T
εcKaeεc − eTεcKbQ(eεc)

r∑
j=1

eεj (34)
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where Ka, Kb > Rm×m are diagonal positive matrices.
The operator Q(ε) has useful properties: if ‖ε‖ = 1 then
Q(ε)Q(ε)T = 1, also det(Q(ε)) = 1. Also for two different
unit quaternions i, j, it holds that εTi εj < 1. The coupling error
terms in (34) include the orientation errors of the sphere (8) and
end-effectors’ (16), which are also quaternion products with
same properties. Now for the first term of (34) we can establish
that

λmin(Ka)
‖eεc‖ ≤ eTεcKaeεc ≤ λmax(Ka)

‖eεc‖ (35)

Then, let us set the following bound:

eTεcQ(eεc)

r∑
j=1

eεj ≤ ‖eTεc‖‖Q(eεc)

r∑
j=1

eεj‖, ξ (36)

where since ‖Q(ε)‖ = 1, then ‖Q(eεc)
∑r
j=1 eεj‖= ‖

∑r
j=1 eεj‖.

Therefore we get

‖eTεc‖‖
r∑
j=1

eεj‖, ξ (37)

Note that if eεc and eεj are unitary we directly get r , ξ, with
this we can establish the bounds as

−ξλmax(Kb)
≤ eTεcKbQ(eεc)

r∑
j=1

eεj ≤ ξλmax(Kb)
(38)

Note that the lower bound exists since we can have negative
quaternions, however they have the same bound ξ. Finally, the
derivative of Lyapunov’s function becomes

V̇εc ≤ −λmax(Ka)
‖eεc‖+ ξλmax(Kb)

(39)

which means that

λmax(Ka)
‖eεc‖ > ξλmax(Kb)

(40)

therefore Ka > ξKb or Ka > rKb.

On the other hand, the control term for the end-effectors posi-
tion to track the trajectories described by the sphere’s motion is
(22), which follows an all-to-all communication structure:

ėp =−Gep + ṗd (41)

with ėp = [ėp1 . . . ėpr ] ∈ Rrm, ep ∈ Rrm, ṗd ∈ Rrm and

G = −

Ga + (r − 1)Gb · · · −Gb
...

. . .
...

−Gb · · · Ga + (r − 1)Gb

 , (42)

where G ∈ Rr(m×m) is the coupling matrix, whose r eigenval-
ues are negative, i.e. is Hurwitz if

Ga > rGb (43)

where Ga and Gb are positive diagonal matrices. Then, the
solution of (42) is

ėp = ep0 exp(Gt) (44)
where ep, ėp ∈ Rrm are stacked vectors of errors, ep0 ∈ Rrm
are the initial conditions of the r robots for the task i. The
Lyapunov function is Vp = 1

2e
T
p ep and its derivative becomes

V̇p = eTp ėp = −eTpGep + eTp ṗd (45)

where (13) describe the desired velocities: ṗd = ṗc + (Jεε̇c)×
dj , from which we already verified that ṗc, ε̇c → 0 as t → ∞.
However, notice that ṗd may become larger enough such that
(45) does not hold. To prevent this let see how ṗd from (22)
affects the Lyapunov’s function of the j-th robot, which we
rewrite as follows:

V̇pj =−βj1 − βj2 + βj3 + βj4 (46)

with

βj1 , eTpjGapepj > 0 (47)

βj2 , eTpjGbp(r − 1)epj > 0 (48)

βj3 , eTpjGbp

r−1∑
k 6=j

epk (49)

βj4 , eTpj ṗjd (50)

it is interesting to compare βj2 and βj3 , since in both terms the
errors are scaled by the same constant matrix and depend on the
same number of robots. From (46) we can only guarantee that
βj1 > βj3 −βj2 by setting Ga > rGb, which is consistent with
the Hurwitz condition (43), then βj1 + βj2 − βj3 > 0. On the
other hand, βj4 is a vanishing term dependent on the desired
trajectory, it must be verified that βj1 + βj2 − βj3 > βj4 . Then
let βj1 + βj2 − βj3 , ηj , such that

ηj > eTpj ṗjd = ηj > eTpj (ṗc + (Jεε̇c)× dj)
substituting ṗc with (25)

ηj > eTpj

−(Ka + rKb)epc +Kb

r∑
j=1

epj + (Jεε̇c)× dj


Now the following terms arise

αj1 = eTpj (Ka + rKb)epc (51)

αj2 = eTpjKb

r∑
j=1

epj (52)

αj3 = eTpj (Jεε̇c)× dj (53)

from (33) and (40) we see that αj3 < 0. Let us compare αj2
with terms from η, then it is clear that

eTpj (Gap +Gbp(r − 1))epj > eTpjKb

r∑
j=1

epj (54)

then let us compare it with αj2

eTpj (Gap +Gbp(r − 1))epj > eTpj (Ka + rKb)epc (55)

which is true if

(Gap +Gbp(r − 1)) > (Ka + rKb) (56)

this guarantees that βj1 + βj2 − βj3 > βj4 , so (45) is fulfilled.
Note that this condition implies that ėpj → 0 faster than ėpc →
0, which was the missing condition for (29) to hold. The control
term for the end-effectors orientation to track the trajectories
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described by the sphere’s motion is (23), and follows the same
all-to-all communication structure. From (33) we have:

ėεj =−Gaeεj −GbQ(eεj )

r−1∑
k 6=j

eεk + ε̇jd (57)

Thus the Lyapunov’s function is Vjε = 1
2e
T
εjeεj and its deriva-

tive becomes

V̇jε =−eTεjGaeεj − e
T
εjGbQ(eεj )

r−1∑
k 6=j

eεk + eTεj ε̇jd (58)

where ε̇jd = ε̇c as defined in (14), its form is given in (33).
Then we have

eTεj ε̇jd = −eTεjKaeεc − eTεjKbQ(eεc)

r∑
j=1

eεj (59)

In this case we can directly compare the terms from (58), (59),
such that we find a condition that ensures

eTεjGaeεj + eTεjGbQ(eεj )

r−1∑
k 6=j

eεk > eTεj ε̇jd (60)

which leads to the conclusion that Ga > Ka and Gb > Kb,
similar to (56). Now, let us follow the same procedures that get
to (39), such that, for each j-th robot, we arrive to a bound for
the second term of (58)

V̇jε ≤ −λmax(Ga)
‖eεj‖+ ‖eTεj‖‖

r−1∑
k=1

eεk‖λmax(Gb)
+ eTεj ε̇jd

(61)

Finally we can sum the Lyapunov’s functions derivatives:

V̇ = V̇cp + V̇cε + V̇p +

r∑
j=1

V̇jε ≤ 0 (62)

which fulfills that V̇ < 0, ∀ epc , epj , eεc , eεj ∈ D − {0}

5. SIMULATION RESULTS

We performed a numerical simulation of manipulation and
transportation of an object, using two robots controlled through
the proposed control scheme. The common object is an sphere
with radius r = 1[m]. The sphere reached the following
sequence desired coordinates (see Figure 1):

t: time [s] pd: position [m] εd: orientation
0 ≤ t < 2 [2 , 0 , 1] [0.7071 , 0 , 0 , 0.7071]

2 ≤ t < 4 [0 , 0 , 3] [1 , 0 , 0 , 0]

4 ≤ t < 6 [0 , 0 , 2] [0.9239 , 0 , 0.3827 , 0]

6 ≤ t < 8 [−0.5 , 2 , 2] [0.6533 , 0.2706 , 0.2706 , 0.6533]

t > 8 [2 , 0 , 1] [0.7071 , 0 , 0 , 0.7071]

The initial sphere’s and end-effectors’ coordinates with respect
to the world’s frame are:

Robot p0: position [m] ε0: orientation
1 [−1 , 0 , 4.5] [1 , 0 , 0 , 0]
2 [4 , 0 , 4.5] [0 , 0 , 0 , 1]

Sphere [2 , 0 , 1] [0.7071 , 0 , 0 , 0.7071]

Figure 2 shows the sphere pose errors, which are also tra-
jectories for end-effectors. Note that when a quaternion error
converges, it becomes eε0 → 1 and eεv → [0 , 0 , 0]. Notice that
the desired coordinates and initial coordinates indicate large
displacements in short time, this was done to experiment with
a varied succession of desired-coordinates taking a reasonable
amount of time. This in turn required larger gains for faster
convergence, we used the same gains for the position and orien-
tation control, and also are the same for both robots: We chose
C = 10, Ka = 15, Kb = 10, Ga = 45, Gb = 20. Figure 3
shows the control signals (joint velocities) of the end-effectors
with the largest magnitudes at the beginning, because of the
large initial position errors. Afterwards, the signals remain
small and with smooth changes that occurred as the desired
sphere’s pose changed. In Figure 4 we see the errors at the
sphere’s contact surface, which indicates that once the end-
effectors reached the sphere, they were fixed at its surface with-
out separating. Figure 5 shows the results of having a trajectory
and controller that accounts the interaction within the robots,
as the position and orientation errors remain very close to zero
even after the abrupt changes in sphere’s desired coordinates.

6. CONCLUSIONS

We performed a stability analysis for a proposed control scheme
based on HIK and linear synchronization approaches. As a re-
sult we deduced the appropriate control values such to achieve a
synchronized equilibrium of all interacting systems. Testing the
controller on simulations showed good performance when cou-
pling errors are included in the control, since the end-effectors’
pose errors where negligible even though the object performed
complicated maneuvers. Having small errors at cooperative
tasks is of crucial importance, as undesired interaction effects
can result in damage to the robots and to the manipulated ob-
ject. Nonetheless, such errors are difficult to prevent, specially
at complicated or aggressive maneuvers. The use of torque-
controlled robots and force sensors help to alleviate the effect of
such errors, but for kinematic velocity-controlled robots with-
out force sensors, the cooperative possibilities are quite limited,
yet approaches like the one presented in this work extends the
usefulness of velocity-controlled robots for cooperative tasks.
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(a) Initial position at
t = 0

(b) Moving towards
target: 0 ≤ t < 2

(c) Robots holding the
sphere: 0 ≤ t < 2

(d) Robots turning:
2 ≤ t < 4

(e) Robots tilting the
sphere: 4 ≤ t < 6

(f) Robots displacing
the sphere: 6 ≤ t < 8

Fig. 1. Two mobile manipulators being synchronized through a common linkage
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(a) Sphere’s position error
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(b) Sphere’s orientation error

Fig. 2. Position and orientation errors of the sphere
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(a) Generalized control of robot 1
Time [s]

0 2 4 6 8 10 12

J
o

in
ts

 v
e

lo
c
it
ie

s
 [

m
/s

]

-200

-100

0

100

200
q̇1

q̇2

q̇3

q̇4

q̇5

q̇6

q̇7

q̇8

(b) Generalized control of robot 2

Fig. 3. Generalized controls (joint-velocities) of both robots
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Fig. 4. Constraint errors of robot 1 and robot 2
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(a) Robot 1 position error.
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(b) Robot 2 position error.
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(c) Robot 1 orientation error.
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(d) Robot 2 orientation error.

Fig. 5. Position and orientation errors of both end-effectors
when using the proposed synchronization approach within
the HIK.
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