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Abstract: A cybersecurity problem for a multi-agent consensus problem is investigated through
a dynamic game formulation. Specifically, we consider a game repeatedly played between a
jamming attacker and a defender. The attacker attempts to jam the links between a number of
agents to delay their consensus. On the other hand, the defender tries to maintain the connection
between agents by attempting to recover some of the jammed links with the goal of achieving
faster consensus. In each game, the players decide which links to attack/recover and for how
long to continue doing so based on a Lyapunov-like function representing the largest difference
between the states of the agents. We analyze the subgame perfect equilibrium of the game and
obtain an upper bound of the consensus time that is influenced by the strategies of the players.
The results are illustrated with a numerical example.

Keywords: Multi-agent systems, Consensus problem, Game theory, Cybersecurity

1. INTRODUCTION

Jamming attacks are one of the most common security
threats in networked multi-agent systems, where the ad-
versary from outside the system transmits interference
signals that disrupt the communication process among
the agents in a network. These attacks are potentially
more dangerous if the adversary is intelligent and aware
of the system parameters and the agent states, since the
adversary can then decide how and when to attack in order
to maximize the damage.

In response to the jamming attacks, a defense mechanism
can be incorporated to coordinate the recovery process of
the network. Similar to the attacks, the recovery process
may be more efficient if the defense mechanism is aware of
system parameters and states.

In this paper, we investigate the effects of state-dependent
attack and defense strategies in a networked multi-agent
system. In particular, we formulate a two-player game
which will be repeatedly played by an attacker and a
defender in the context of a consensus problem. The
agents attempt to reach consensus over edges which may

⋆ This work was supported in the part by the JST CREST (Grant
No. JPMJCR15K3) and by JST ERATO HASUO Metamathematics
for Systems Design Project (Grant No. JPMJER1603).

be attacked but then possibly recovered. The attacker is
motivated to delay consensus by attacking links connecting
agents, whereas the defender, in response to the attacks,
attempts to recover some of the attacked links to maintain
communication among agents and therefore reduces the
consensus delay. The players spend energy by attacking
and recovering, and therefore the attack and recovery
durations are limited.

We provide an optimal network design in the face of cyber-
attacks as in Chen et al. (2020a,b); Nugraha et al. (2019);
Kordonis and Papavassilopoulos (2017). To characterize
the game, we follow our recent work (Nugraha et al.,
2019), which considers links connecting agents and attack
or recovery intervals as decision variables. The strategies
of the players are constrained by their available energies.
For this, we follow the model studied in Feng and Tesi
(2017); Cetinkaya et al. (2017, 2020). Differently from
the abovementioned works, here we focus on the state
dependent attack/recovery strategies. To identify the tight
relation of such strategies with the consensus problem,
we utilize a Lyapunov-like function of the agent states in
characterizing the utilities in the game.

Consensus problems of multi-agent systems with self-
triggered communication protocol in the presence of jam-
ming attacks are discussed in Senejohnny et al. (2018).
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Moreover, game-theoretic approaches have also been uti-
lized for the analysis of false data injection attacks (see,
e.g., Pirani et al. (2019) and the references therein). In the
related studies on resilient consensus, some agents may be
attacked by an adversary, making them update their state
values in a faulty and even malicious manner. Distributed
algorithms to mitigate such effects on the consensus pro-
cess have been proposed in, e.g., Wang and Ishii (2020).

The main contribution of this work is to formulate a
game problem in a multi-agent consensus setting, where
the players’ strategies depend on the state values of the
agents and on how close to consensus they may be. This
aspect is novel in comparison to the conventional security
works for networked systems including our own (Nugraha
et al., 2019). We find explicit conditions characterizing
the players’ optimal strategies and then investigate the
implication of the conditions by studying simple cases,
leading us to some conditions on the players’ utilities that
determine the players’ strategies.

2. PROBLEM FORMULATION AND UTILITY
FUNCTION DESIGN

We explore a cybersecurity problem for a multi-agent
system of n agents. The network topology in this system is
described by an undirected graph G = (V, E) that consists
of the set V of vertices with |V|= n and the set E ⊆ V ×V
of edges. The agents are described by the vertices, while
the communication links between the agents correspond to
the edges. We use Ni(t) to denote the set of agents that
are able to communicate with agent i at time t. Note that
the set Ni(t) may be different at different times due to
jamming attacks. We assume that agent i has the scalar
state xi whose dynamics are defined as

ẋi(t) =
∑

j∈Ni(t)

(xj(t)− xi(t)), x(0) = x0, t ≥ 0. (1)

Under the dynamics (1), all agents are expected to con-
verge towards the same state as time progresses. We
assume that the underlying, attack-free communication
topology G is connected.

A game between two players, the attacker and the de-
fender, is considered in terms of the communication among
the agents. The attacker is an entity capable to block the
communication by jamming some targeted links and there-
fore delay the consensus process, whereas the defender
tries to recover some or all of the attacked links. The
actions of both players are subject to constraints due to
limited energy resources for attack/recovery.

The attacker attacks the networked system by sending
jamming signals. We define the attack action by the at-
tacker as the removal of edges in graph G. In response
to the attacks, the defender demands the agents to send
stronger communication signals to overcome jamming sig-
nals in some of the attacked communication links, which
is represented by rebuilding some of the removed edges.
We define this as the recovery action. From this sequence
of attacks and recoveries in a single game, we observe that
the graphs are resilient, i.e., the group of agents are able
to recover from the damages caused by the attacker.

In this paper we consider games played repeatedly be-
tween the players. The kth game is played in the time

interval [tk, tk], with k ∈ N and tk > tk = tk−1. At
time tk, the communication topology of the system is
represented by the original graph G. Then, the players
may start attacking and recovering certain links in two
stages, with the attacker acting first before the defender.
The attack/recovery durations and the links for the at-
tack/recovery actions are the action variables to be de-
cided by the players. We assume that the players can make
their actions at most once in [tk, tk]. Once the attacker
stops the attacks (and therefore also ending all recovery
attempts), the kth game ends at tk. If there is no attack,
the kth game ends after a fixed time duration. The players
play the next (k + 1)th game immediately after the kth
game ends, that is, tk+1 = tk.

The attacker attacks G by deleting EA
k ⊆ E from time τAk

until τAk for δAk := τAk − τAk duration, whereas the defender
recovers ED

k ⊆ EA
k from time τDk until τDk for δDk := τDk −

τDk duration, with tk < τAk ≤ τDk ≤ τDk ≤ τAk ≤ tk.
Because of the presence of the attacks, G is changed to
GA
k := (V, E \ EA

k ) at τAk , and GA
k is further changed to

GD
k := (V, (E \ EA

k ) ∪ ED
k ) at τDk until τDk because of the

recovery action by the defender. The graph becomes G
again when the attacker stops jamming, and immediately
a new (k + 1)th game begins. For attacking/recovering
links, both players spend some energy in proportion to the
attack/recovery duration. Fig. 1 illustrates the sequences
of the attack and recovery actions in a single game.

In the kth game, both players attempt to choose the
best strategy to maximize their own utility functions that
are defined over the time interval [tk,tk], as discussed
later. The attacker’s and the defender’s strategies are
determined in terms of (EA

k , δAk ) and (ED
k , δDk ), respectively.

It is assumed that there is a constant waiting time γA > 0
(resp., γD > 0) between the start of the interval tk and the
start of attack time τAk (resp., between τAk and τDk unless
the attacker ends attacking earlier), given by

τAk := tk + γA, τDk := min{τAk , τ
A
k + γD}.

We also assume that the end time tk of the kth game is
given by

tk :=

{

τAk , if EA
k 6= ∅,

tk + γA + γD, otherwise.
(2)

The players cannot keep sending signals for very long dura-
tions due to energy constraints. We follow the approach in
Cetinkaya et al. (2020) to model such energy constraints.
The total energy used for player p ∈ {A,D} must satisfy

k−1
∑

m=1

βp|Ep
m|δpm + βp|Ep

k |(t− τpk) ≤ κp + ρpt, (3)

for any time t ∈ [τpk, τ
p
k+1], with κp > 0, βp > ρp > 0,

and k ∈ N. Note that κp and ρp denote the initial
energy at t = 0 and the recharge rate of energy for
player p, respectively. Also, βp denotes player p’s cost to
attack/recover one edge per one time unit. The inequality
(3) implies that total energy spent by a player cannot
exceed the available energy characterized by the initial
energy κp and the supplied energy ρpt by time t.
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Fig. 1. Illustration of graph transitions for the first game, with the underlying graph G shown in the left side. At time
interval [t1, t1], the attacker attacks two edges e1,2 and e2,4, but the defender recovers one of them. Note that the
solid lines in the right figure indicate that the edges are connected, i.e., the agents are able to communicate through
these edges, and the dashed lines indicate that the edges are disconnected.

Under this problem formulation, if the player attacks or
recovers Ep

k , then from (3), we obtain an explicit expression
for the maximum interval ∆p

k on the time duration δpk when
player p completes the attack/recovery actions as

∆p
k :=

κp + ρpτpk −
∑k−1

m=1 β
p|Ep

m|δpm
βp|Ep

k |−ρp
.

For simplicity, we assume that there are finite numbers of
possible attack and recovery durations, since the optimal
durations can be found easier from finite numbers of
choices. In particular, the choices of durations δAk and δDk
are determined by parameters αA, αD ∈ N as

δAk ∈

{

0,
∆A

k

αA
,
2∆A

k

αA
, . . . ,

(αA − 1)∆A
k

αA
,∆A

k

}

,

δDk ∈

{

0,min
{

δAk − (τDk − τAk ),
∆D

k

αD

}

, . . . ,

min
{

δAk − (τDk − τAk ),∆
D
k

}

}

.

Note that the choices of recovery durations of the defender
are also limited by the attack durations of the attacker,
since the recovering action immediately ends when the
attack ends. In this paper, we assume that all parameters
associated with the system are known by both players.

In this game, both players maximize their own utilities
which are affected by the states of the agents. The agent
states are in turn influenced by the actions taken by the
players in the form of attacked/recovered edges Ep

k and
attack/recovery durations δpk.

We first define the max-min nonnegative-definite function
V (x) representing the difference among the agent state
values as

V (x) := max
i∈V

xi −min
i∈V

xi. (4)

Then we define zk((E
A
k , δAk ), (E

D
k , δDk )) as

zk((E
A
k , δAk ), (E

D
k , δDk )) := V (x(tk))δ

A
k , (5)

for the kth game. The function zk represents the reward
for the attacker, which is larger if the attacks are longer
and are able to keep V (·) from decreasing too fast over the
attack duration δAk , since V (·) is multiplied by δAk .

We define the utility function of the players for the kth
game of time interval [tk, tk] as

UA
k ((EA

k , δAk ), (E
D
k , δDk )) := zk − βA|EA

k |δAk , (6)

UD
k ((EA

k , δAk ), (E
D
k , δDk )) := −zk − βD|ED

k |δDk . (7)

Note that the utility function (6) represents the reward of
the attacker and the cost for jamming EA

k . Similarly, (7)
represents the attacker’s reward (with the negative sign)
and the cost for recovering ED

k . For simplicity, we formulate
that βA (resp., βD) is uniform for every attacked edge
(resp., recovered edge), regardless of the position of the
edge in the topology.

We formulate the game as a two-stage game where the at-
tacker first attacks and then the defender makes recoveries.
This will be played repeatedly over k. It should be noted
that each game is played independently at time tk. The
strategies of the players will depend on the consensus level
that the agents have reached and also their energy level
at that point. It is however noted that there is another
stage, which will be implicit in our formulation; this stage
is related to the design of the network structure of the
underlying graph G. The graph is assumed to be given
here, but clearly affects the game as it is the default
network at the start of each game. Our formulation will
thus be useful in finding resilient networks under hostile
environments.

Here, we seek the equilibrium of this game, which will be a
subgame perfect equilibrium as in the works by Chen et al.
(2020a,b); Nugraha et al. (2019). The defender’s game is
formulated in the subgame of the attacker’s game, since
the defender decides its action after the attacker. To obtain
the optimal strategies, a backward induction approach is
used for each kth game.

The optimal edges and durations are specified as follows.
For the kth game in [tk, tk], given the attacker’s strategy
(EA

k , δAk ), the optimal strategy for the defender is given by

(ED∗
k (EA

k , δAk ),δ
D∗
k (EA

k , δAk ))

∈ argmax
(ED

k
,δD

k
)

UD
k ((EA

k , δAk ), (E
D
k , δDk )),

with ED
k and δDk depending on EA

k and δAk . Likewise, given
E , the attacker decides the strategy as

(EA∗
k , δA∗

k )

∈ argmax
(EA

k
,δA

k
)

UA
k ((EA

k , δAk ), (E
D∗
k (EA

k , δAk ), δ
D∗
k (EA

k , δAk ))).
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In this research, we analyze the strategy profile of the play-
ers in terms of the pairs (EA

k , δAk ) and (ED
k , δDk ). Therefore,

we seek pairs (EA
k , δAk ) and (ED

k , δDk ) such that (ED
k , δDk )

is the best response to (EA
k , δAk ). We call the strategy

profile ((EA
k , δAk ), (E

D
k , δDk )) that follow the subgame perfect

equilibrium principle as the optimal combined strategy.

3. GAME AND CONSENSUS ANALYSIS

3.1 Optimal Strategies

To derive optimal strategies of the players, we consider
three cases based on the presence of attack and recovery.
We analyze the game case-by-case.

Case 1 (No Attack, therefore no recovery): Since both
players do not attack/recover, their utilities in (6) and (7)
become

UA
k ((∅, 0), (∅, 0)) = 0, UD

k ((∅, 0), (∅, 0)) = 0.

We classify these strategies for the players as Combined
Strategy 1:={Strategy A1, Strategy D1}.

Case 2 (Attack without Recovery): In this case, the at-
tacker attacks while the defender chooses not to recover.
From (6), since zk depends only on the maximum and min-
imum states of agents, an option for the attacker is to iso-
late them from the rest of the network. This should be done
by removing as few edges as possible. Such agents can be
found by ik ∈ argmini{d(i) : xi(τ

A
k ) = maxj xj(τ

A
k ), i, j ∈

V} and ik ∈ argmini{d(i) : xi(τ
A
k ) = minj xj(τ

A
k ), i, j ∈

V}, with d(i) being the degree of agent i. By isolating
agents ik and ik, the attacker obtains maximum V (x(tk)).
We divide the discussion of the attacker’s strategy into
two parts based on whether the attacker isolates state-wise
farthest agents ik and ik or not.

(i) Combined Strategy 2a (The farthest agents are iso-
lated): If the attacker isolates agents ik and ik, then
V (x) does not change, and therefore the optimal dura-
tion for the attacker is δAk = ∆A

k . Hence, (6) becomes
UA
k ((EA

k ,∆A
k ), (∅, 0)) = (xik

(τAk )−xi
k
(τAk )−βA|EA

k |)∆A
k =:

ÛA2a
k (EA

k ).

The edges needed to isolate agents ik and ik are given by

E iso
k = {eik,j , ∀j ∈ Nik

} ∪ {ei
k
,j , ∀j ∈ Ni

k
},

and the number of edges |E iso
k | can also be expressed as

|E iso
k |=

n
∑

j=1

A(G)ik,j +
n
∑

j=1

A(G)i
k
,j −A(G)ik,ik

,

with A(G) denoting the adjacency matrix of G.

Then, we obtain the optimal edges as EA2a∗
k = E iso

k . With
this strategy, the utility of the defender becomes

UD
k ((EA2a∗

k ,∆A
k ), (∅, 0))

= (xik
(τAk )− xi

k
(τAk ))∆

A
k =: ÛD2a

k , (8)

The combination of the optimal strategies in the case
where the farthest agents are isolated is classified as
Combined Strategy 2a:={Strategy A2a, Strategy D1}.

As a remark, attacking EA
k such that |EA

k |≥ |EA2a∗
k | is not

optimal for the attacker, because the attacker suffers from
higher cost while getting no additional payoff from V (tk).

1

3

5

4

2

1

3

5

4

2

(a) (b)

Fig. 2. Two different graph topologies resulting in different
optimal strategies for the attacker. The parameters
used are x(0) = [1 0 0 0 − 1], ρA = 0.01, βA = 0.2,
κA = 3, αA = 1. Assume that there is no recovery.

(ii) Combined Strategy 2b (The farthest agents are not
isolated): The attacker may obtain better payoff by at-
tacking fewer edges, depending on the agents’ states and
graph topology. Here, the attacker simply attacks EA

k with
|EA

k |< |E iso
k |, implying that agents ik and ik are not iso-

lated. In this strategy, we cannot easily determine the
optimal attack duration. Hence, the optimal edges and
durations of the attacker are given by

(EA2b∗
k , δA2b∗

k ) ∈ argmax
EA

k
,δA

k

ÛA2
k (EA

k , δAk ),

s.t. 0 < |EA
k |< |E iso

k |,

with ÛA2
k (EA

k , δAk ) := UA
k ((EA

k , δAk ), (∅, 0)). However, note
that this strategy is not available for n = 2, since E = E iso

k .
In that case, only Combined Strategy 2a is considered in
formulating the optimal strategy in Case 2. The combina-
tion of the optimal strategies in the case where the farthest
agents are not isolated is classified as Combined Strategy
2b:={Strategy A2b, Strategy D1}, with the utility of the

defender ÛD2b
k := UD

k ((EA2b∗
k , δA2b∗

k ), (∅, 0)).

In Fig. 2, we provide an example showing the Strategy 2a
and 2b on different graph topologies. In topology (a), the
attacker isolates agents 1 and 5 by attacking 3 edges e1,2,
e1,5, and e4,5 in the first game (k = 1), whereas in the
topology (b), the attacker only attacks the edge connecting
agent 1, i.e., e1,2, in k = 1. In (b), the attacker obtains
relatively high payoff by attacking only e1,2, because δAk
becomes longer (attacking fewer edges) and V (x(t)), t ≥ 0
is relatively high since agent ik is isolated. However, since
the attacker needs to attack two edges to isolate only ik
in (a), it is better for the attacker to isolate both agents
ik and ik with only attacking one more edge.

Case 3 (Attack and Recovery): Unlike in the previous case,
in this case attacking more edges such that |EA

k |> |E iso
k |

may be optimal for the attacker, since it forces the defender
to recover for a shorter duration. Thus, the players simply
calculate the utilities among all possibilities of nonzero EA

k ,
δAk , E

D
k , and δDk .

The optimal edges and durations are given by

(ED3∗
k (EA

k 6= ∅,δAk > 0), δD3∗
k (EA

k 6= ∅, δAk > 0))

∈ argmax
ED

k
6=∅,δD

k
>0

UD
k ((EA

k , δAk ), (E
D
k , δDk )),

and

(EA3∗
k , δA3∗

k ) ∈ argmax
EA

k
6=∅,δA

k
>0

UA
k ((EA

k , δAk ), (E
D3∗
k , δD3∗

k )).

The combination of the optimal strategies in Case 3 is
called Combined Strategy 3:={Strategy A3, Strategy D3}.
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In this case, the utility of the attacker is denoted by
ÛA3∗
k := UA

k ((EA3∗
k , δA3∗

k ), (ED3∗
k , δD3∗

k )).

From (8), the defender recovers for EA
k 6= ∅ if

βD <
zk((EA

k , δAk ), (∅, 0))− zk((EA
k , δAk ), (E

D
k , δDk ))

|ED
k |δDk

, (9)

which means that the defender recovers if the cost of
recovering one edge is less than the decaying speed of
V (x(t)) per recovered edge. Since zk varies for different
attacked edges, the defender’s decision whether to recover
or not may be different for different attacked edges. Note
that though the defender recovers, the attacker is still able
to obtain relatively high utility since the defender may end
recovering earlier or the attacker can attack for a short
time to minimize the recovery duration.

From the three cases discussed above, we are now
ready to state the main result of this paper. We ap-
ply the backward induction method to the simplified
utility functions in the form of ÛA2a∗

k := ÛA2
k (EA2a∗

k ),

ÛA2b∗
k := ÛA2

k (EA2b∗
k , δA2b∗

k ), and ÛA3∗
k for the attacker,

and ÛD3∗
k := UD

k ( (EA3∗
k , δA3∗

k ), (ED3∗
k (EA3∗

k , δA3∗
k ), δD3∗

k

(EA3∗
k , δA3∗

k )) ), ÛD3-2a
k := UD

k ( (EA2a∗
k ,∆A

k ), (E
D3∗
k (EA2a∗

k ,

∆A
k ), δ

D3∗
k (EA2a∗

k ,∆A
k )) ), Û

D3-2b
k := UD

k ( (EA2b∗
k , δA2b∗

k ),
(ED3∗

k (EA2b∗
k , δA2b∗

k ), δD3∗
k (EA2b∗

k , δA2b∗
k ))) for the defender.

Since the defender’s strategy depends on the attacked
edges, we also use ÛA3-0

k := maxEA

k
∈Ek,δ

A

k

ÛA2
k (EA

k , δAk )

and (EA∗
k , δA∗

k ) ∈ argmaxEA

k
∈Ek,δ

A

k

ÛA2
k (EA

k , δAk ), where

Ek is the set of edge sets EA
k such that for the pair

{EA
k , E

D3∗
k (EA

k )}, inequality (9) is not satisfied.

Theorem 1. With the utility functions (6), (7) and n > 2,
the optimal combined strategy of the players is given by

(1) Combined Strategy 1 if max{ÛA2a∗
k , ÛA2b∗

k } ≤ 0,

(2) Combined Strategy 2a if ÛA2a∗
k > 0, ÛA2a∗

k ≥ ÛA2b∗
k ,

and ÛD3-2a
k ≤ ÛD2a

k ,

(3) Combined Strategy 2b if ÛA2b∗
k > 0, ÛA2b∗

k > ÛA2a∗
k ,

and ÛD3-2b
k ≤ ÛD2b

k ,

(4) Combined Strategy 3 if ÛA3∗
k > 0 and ÛA3∗

k > ÛA3-0
k .

Theorem 1 presents a characterization of the optimal
strategies of the players under different conditions. This
characterization is general and applies to all graph topolo-
gies. To provide more explicit relation between optimal
strategies and attack/recovery parameters, we present a
result for a specific case which allows us to determine the
equilibrium based on the cost, agent states (represented
by V (·)), and action durations.

To this end, we consider a graph with n = 2 and |E|= 1
with αA = αD = 1. In this setup, both players can only
attack/recover one edge. First, note that the dynamics

in (1) can also be stated as x(t) = e−t(L(G′))x(0), with
G′ being the graph representing communication topology
(either G, GA

k , or G
D
k , depending on time) and L(G′) being

the Laplacian matrix of G′. Then we define P2 representing
matrix exponential if the defender recovers by

P2 := e(−(min{∆A

k
−(τD

k
−τA

k
),∆D

k
})[1 −1;−1 1]).

Corollary 2. The optimal combined strategy of the players
with n = 2, αA = 1, and αD = 1 is given by

(1) Combined Strategy 1 if βA ≥ V (x(τAk )),
(2) Combined Strategy 2a if βA < V (x(τAk )) and

βD ≥
(V (x(τAk ))− V (P2x(τ

A
k )))∆

A
k

min{∆A
k − (τDk − τAk ),∆

D
k }

, (10)

(3) Combined Strategy 3 if βA < V (P2x(τ
A
k )) holds and

(10) is not satisfied.

From the corollary above, we note that the costs βA and
βD need to be small enough in order for the players to
attack/recover. The following lemmas, which hold for gen-
eral graph topologies, provide sufficient conditions based
on the energy levels and the agent states, under which no
action will be made by the players.

Lemma 3. The optimal strategy for the attacker is not
to attack, i.e., Combined Strategy 1 is optimal, if βA ≥
V (x(tk)). Moreover, there is no attack for any k if βA ≥
V (x(0)).

Lemma 4. The optimal strategy for the defender is not to

recover if βD ≥
V (x(0))∆A

k

min{∆A

k
−(τD

k
−τA

k
),

∆D

k

αD
}
.

3.2 Approximate Consensus Time Bound

Here we investigate the effects of state-dependent jam-
ming attacks in terms of the time for the agents to
reach approximate consensus. To this end we define an
approximate consensus set Dǫ := {x ∈ R

n : V (x) ≤ ǫ},
with ǫ > 0. For the initial state x(0) = x0 ∈ R

n \ Dǫ,
the approximate consensus time is given by T∗(x0) :=

inf{t ≥ 0:x(t) ∈ Dǫ}. Let P := [Pi,j ] = e−γAL(G) and
p := maxj∈{1,...,n} mini∈{1,...,n} Pi,j . Since γ

A > 0 and G is
connected, note that Pi,j ∈ (0, 1) and therefore p ∈ (0, 1).

The next result gives an upper bound for the approximate
consensus time of agents under jamming attacks. The
bound here is smaller than the one in Nugraha et al.
(2019), since the attacker’s strategy relies on the agents’
states, and the optimal strategy is not to attack when
V (·) becomes sufficiently small (see Lemma 3). Here, it
is assumed that V (x(0)) > βA, since there is no attack in
any k otherwise. We denote the ceiling function by ⌈·⌉.

Proposition 5. Consider the multi-agent system (1) with
the initial condition x0 ∈ R

n\Dǫ. Under the optimal attack
and recovery strategies for games with utility functions (6),
(7), the approximate consensus time satisfies

T∗(x0) ≤
βA(γA + γD)k′ + κA

βA − ρA
+ (γA + γD)(k∗ − k′),

(11)

with k∗ :=
⌈

(ln ǫ− lnV (x0))/ln(1− p)
⌉

and k′ :=
⌈

(ln(max{βA, ǫ})− lnV (x0))/ln(1− p)
⌉

.

Note that if βA > ǫ, then k′ < k∗, and the bound in (11)
is strictly smaller than the one obtained in Nugraha et al.
(2019). Otherwise, we have k′ = k∗, and the two bounds
have the same value.

4. NUMERICAL EXAMPLES

In this section, we illustrate the results in the optimal
combined strategy and upper bound of approximate con-
sensus with a numerical example. The graph shown in Fig.
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Fig. 3. G used in simulation.
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Fig. 4. States evolution of agents following communication
protocol in (1) and V (x(t)) of the system represented
by the initial graph as in Fig. 3.
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Fig. 5. Energy level, number of games, and optimal com-
bined strategy of the simulation.
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Fig. 6. Attacked and recovered edges during the games.
The black lines indicate that the agents are able to
communicate via the particular edges.

3 is considered, with parameters βA = 0.4, βD = 0.5,
κA = 3, κD = 0.5, ρA = 0.3, ρD = 0.2, γA = 0.2,
γD = 1, αA = 6, αD = 3, and ǫ = 0.3. The initial
states are x(0) = [5.6 1.3 2.7 6.0 3.0]T. Figs. 4 and 5
show the states of the agents, the max-min Lyapunov-like
function V (x), and some properties of the system with the

utility functions (6), (7). In this simulation, the attacker
attacks e1,2 and e2,4 to isolate agent 2 in the first game.
In the second game, the attacker only attacks e2,4 for a
short duration because of the limitations in the available
attack energy. The attacker does not attack from the third
game onward, since V (x(t3)) ≤ βA. The attacked and
recovered edges over time are shown in Fig. 6. In the
figures, the areas with red and green background denote
time intervals where the attacker attacks and the defender
recovers, respectively. Also, the areas in light blue denote
time intervals with no attack due to V (x(tk)) ≤ βA.

The approximate consensus is achieved at T∗(x0) ≈ 7.52,
with the upper bound being t ≈ 482.77 from Proposition
5 and t ≈ 522.82 according to Nugraha et al. (2019).

5. CONCLUSION

We have provided the two-player subgame perfect equilib-
rium analysis of state-dependent attacks and recovery of
the communication links in a multi-agent system. We have
obtained the optimal strategies of the players in terms of
edges and durations of action intervals by considering the
effect of the attack or recovery actions to the states of
the agents. In a consensus problem, we have explored how
the time for the agents to reach approximate consensus is
influenced by the value of the max-min function as well as
the energies of the players and topology of the graph.
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