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Abstract: At present, the public charging network can not fully satisfy the charging demands
of electric vehicles (EVs), which hinders the further development of EVs. In fact, as the key
roles of charging service market, the operators need to plan charging stations properly to
improve the profit while ensuring qualified charging service. Meanwhile, as the power supplier,
the grid requires the charging stations to be deployed properly to lower the generation cost
while ensuring safe and stable grid operation. This paper aims to plan the EV charging station
(CS) network to improve the comprehensive profit by taking both the operator and the grid into
consideration. Firstly, the Voronoi diagram method is used to divide the area to be planned based
on the candidate set. Then, a mathematical profit maximization model with electric physical
constraints is designed to distribute appropriate capacities for each candidate EV CS locations.
The generalized Benders decomposition algorithm is applied to obtain the optimal solution.
Finally, the simulation results demonstrate the effectiveness of the proposed algorithm based on
a case study which consists of a 56-node distribution system and Xiamen traffic network system.

Keywords: Electric Vehicle, Charging Station, Planning, Operators, Generalized Benders
Decomposition.

1. INTRODUCTION

Compared with traditional vehicles, EVs have many ad-
vantages such as energy conservation, emission reduction,
and power grid optimization. However, the range anxiety
troubles the EV users all the time. The abundant construc-
tion of fast charging stations can prominently alleviate this
trouble. As a matter of fact, the proportion of charging
piles in comparison to EV’s is only 3:8 in China, far
away from sufficient quantity. Besides, the inappropriate
locations and capacities of CSs also result in inefficient
EV charging. These all means the charging network is
in urgent need of construction and optimization (Shukla
et al., 2019; Shi and Lee, 2015).

The planning problem of EV CSs has been formulated as
different optimal models with different objectives or con-
straints. Several traffic flow models related to graph theory
have been proposed to meet users’ charging demands as
much as possible (Wang et al., 2013). Based on these traffic
flow models, many CS deployment schemes have been pro-
posed to minimize multi-target cost. Rajabi-Ghahnavieh
and Sadeghi-Barzani (2016) used the real grid data and
traffic data of the northern part of Delane considering
construction cost, operation cost, EVs’ travel distance
cost, and power loss of the grid. Sun et al. (2016) studied
how to size and locate charging stations in traffic networks
considering grid constraints with budget constraints. A
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comprehensive planning model was proposed which is op-
timal for both the transportation network (TN) and the
power distribution network (PDN), planning locations and
capacities of new CSs, charging spots, TN lines, and PDN
lines (Wang et al., 2018). Kong et al. (2019) proposed a
novel location planning method of fast charging stations,
in order to achieve the overall optimization of operators,
drivers, vehicles, traffic condition, and power grid.

Usually, the planning problem relates to the TN, the
PDN, the user charging preference, and urban construc-
tion. However, the charging service revenue of the oper-
ators is rarely considered. Only very recently, several CS
placement strategies are proposed to maximize the profit
of the operators. Zhang et al. (2018) studied the trade off
between cost and revenue of CSs to maximize the profit of
the operators, though the grid was not taken into consid-
eration. Lin et al. (2018) identified the optimal location of
EV CSs in cities based on Geographic Information System
(GIS), then traffic flow data and land-use classifications
aggregated charging profiles were utilized to maximize the
total profit of new CSs.

Actually, most of these works only focus on satisfying the
charging requirements or maximizing social welfare. The
voltage power quality and the generation cost are rarely
taken into account, which will affect the safe and stable
grid operation and decrease the comprehensive profit of
the operators. Under this background, this paper takes
not only the power quality but also the generation cost
into account to maximize the comprehensive profit of the
operators while ensuring safe and stable grid operation.
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The highlights of this paper can be summarized as follows:

• The PDN and the TN information are deeply com-
bined to maximize the profit of the operators under
the constraints of safe and stable grid operation.
• The mathematical optimization problem is linearized

by introducing a new variable in order to apply the
generalized Benders decomposition for results.
• The EV users’ uncertainties of transferring between

adjacent CSs are considered by two scenarios. Param-
eters of simulations come from the real operating data
of CSs and traffic data of vehicles in Xiamen.

However the applicable scenario of the method in this
paper is that there is no installed CS in the area to be
planned.

The remaining of this paper is organized as follows. Section
2 explains the optimal planning model of the CS network.
Then the mathematics problem is transformed and solved
in Section 3. In Section 4, a case combined with the TN in
Xiamen and the 56-node IEEE PDN is studied to validate
the method. Followed by Section 5 that concludes this
paper.

2. PROBLEM FORMULATION

This paper focuses on how to plan the CS network, which
takes both the operators and the power grid into account.
As a charging service operator, profit is the primary
concern which is revenue minus cost. The revenue of CSs in
one day depends on how much the charging requirements
of EVs are satisfied. Generally speaking, there is an
estimated investment recovery time, so we can allocate
the long-term construction cost and the maintenance cost
to one day. Meanwhile, according to the EV load and
baseload of the PDN, the generation cost can be obtained,
which is included in the comprehensive profit of the
charging service operator.

2.1 The TN Cost

How to get the potential CS is out of the scope of this
paper, due to point of information and urban planning
factors, here the CS candidate set NC = {1, 2, . . . , Nc} is
given. The whole area to be planned is divided into several
zones centered by the CS candidate set through Voronoi
diagram method. Let u represents the charging piles to be
built at candidate set:

ui ≤ ũi, ui ∈ N, i ∈ NC (1)

where ũi is the spatial upper limit of charging piles number
in ith CS. The TN cost including fixed construction cost
and the maintenance cost of ith CS can be defined as:

Coi = Si(C1,i + C2,iui) (2)

where C1,i is the fixed construction cost of ith CS, C2,i is
the maintenance cost of a single charging pile in ith CS,
and Si is decided by ui:

Si =

{
1, if ui 6= 0

0, if ui = 0
(3)

2.2 The Service Revenue

The service revenue of ith CS can be formulated as:

Cii = C3,iMi,t (4)

where C3,i is the revenue of one single EV in ith CS, Mi,t

is the served EV number in ith CS during time slot t.

In order to compute Mi,t, the first-in-first-out M/M/c/N
model in queuing theory is employed to simulate the
operating processes of CSs (Varshosaz et al., 2019). It is
assumed that there are average λ EVs arriving at the CS
in each time slot, and there are c charging piles in the CS.
Each charging pile can serve µ EVs in each time slot. The
EV capacity of the CS is limited to N including the queue.
Therefore, service intensity is ρ = λ/(cµ). Pn indicates the
probability that there are n EVs in the system, which can
be defined as:

Pn =


1
n!

(
λ
µ

)n
P0, 1 ≤ n ≤ c

1
cn−cc!

(
λ
µ

)n
P0, c ≤ n ≤ N

(5)

P0 =

[
c−1∑
n=0

1

n!

(
λ

µ

)n
+

1

c!

(
λ

µ

)c
1

1− ρ

]−1
, ρ 6= 1 (6)

PBi,t = PN =
1

cN−cc!

(
λ

µ

)N
P0 (7)

where c = ui, µ = E/Ri,t. According to the limited
system capacity, when the number of EVs in the system
is greater or equal to N , the system is blocked. PBi,t is the

blocking probability of ith CS during time slot t, which
also represents the proportion of lost EVs in ith CS. These
lost EVs arrive at ith CS but can’t get the charging service
in ith CS.

It is assumed that when a CS is blocked, a part of the
lost EVs will give up charging directly, while others will
transfer to an adjacent CS. The transfer probability is
inversely proportional to the distance between these two
CSs, which can be given as:

pii,t + pBi,t = 1, ∀i, t (8)

pii,t + pBi,t

 ∑
j∈O(i)

pij,t + pil,t

 = 1, ∀i, t (9)

pij,t = (1− pil,t)
1/dij∑

j∈O(i) 1/dij
∀i, t (10)

where O(i) ∈ NC is the adjacent CS set of ith CS, pii,t
is the probability that EVs charge in ith CS without lost,
pij,t is the probability that lost EVs transfer to adjacent
jth CS when ith CS is blocked, pil,t is the probability that
lost EVs give up charging and leaving directly from ith CS
during time slot t, and dij means the distance between ith

CS and jth CS.

Therefore, λ in the queuing theory model finally can be
obtained by (11). Considering the possibility that EVs may
transfer to an adjacent CS, Mi,t can be obtained by (12).

λ = λi,t +
∑
j∈O(i)

λj,tpji,t (11)

Mi,t = λi,tpii,t +
∑
i∈O(j)

λj,tpji,tpii,t, ∀i, t (12)
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2.3 The Generation Cost

When EVs are connected to the PDN as some high-power
loads, the power flow of the grid will change, especially
the power generation cost. The PDN is usually a radial
network, which can be represented by a connected directed
graph G = (NB,E), where NB = {1, 2, . . . , N}, E and
NG = {1, 2, . . . , Ng} represent buses, edges and power
stations in the grid respectively. Both NC and NG belong
to NB. The generation cost is minimized by the objective
function below in (13), which is a quadratic function of
active power (You et al., 2017). The power flow model
of a radial distribution network can be described by the
distflow equations (14) (Ding et al., 2017).

min
u,s,sg,v,l,S

∑
t

∑
j∈NB

fj,t
(
pgj,t
)

(13)

s.t.
∑

k:(j,k)∈E

Sjk,t = Sij,t − zij lij,t + sj,t, j ∈ NB

vj,t − vk,t = 2 Re
(
zHjkSjk,t

)
− |zjk|2 ljk,t, j → k ∈ E

vj,tljk,t = |Sjk,t|2 , j → k ∈ E
(14)

vj,t ≤ vj,t ≤ vj,t, ∀t, j ∈ NB (15)

pg
j,t
≤ pgj,t ≤ p

g
j,t, ∀t, j ∈ NB (16)

qg
j,t
≤ qgj,t ≤ q

g
j,t, ∀t, j ∈ NB (17)

|Sjk,t| ≤ Sjk,t, ∀t, j → k ∈ E (18)

where

pgj,t active power generated at jth bus

zij complex impedance from ith to jth bus

lij,t squared current from ith to jth bus

sj,t complex power at jth bus

vj,t squared voltage at jth bus

vj,tvj,t lower/upper squared voltage at jth bus

pg
j,t
pgj,t lower/upper active power generated at jth bus

qg
j,t
qgj,t lower/upper reactive power generated at jth bus

Sjk,t complex power of edge from jth to kth bus

Sjk,t upper complex power of edge from jth to kth bus

where the subscript t means the states of the grid during
time slot t, (14) is the power balance constraints in power
flow model, (15) is the voltage limits of buses, (16) and
(17) denote the active and reactive power limits of power
generation buses, respectively. And (18) represents the
transfer power limits of lines.

Complex power composed of active power and reactive
power can be described as sj,t = pj,t + iqj,t. It is assumed
that EVs are active loads at CS buses in the grid. The
power injection process can be expressed as:

pj,t =

{
pgj,t − pbj,t − E/1000Mj,t, j ∈ NC
pgj,t − pbj,t, j ∈ NB\NC

(19)

It can be seen that not only the loads of CS buses will be
affected, but also the entire power flow will change in the
end.

2.4 The Mathematical Optimal Problem

The planning problem of EV CSs in this paper involves
two optimization variables u and x := (s, sg, v, l, S), which
denote charging piles planning and power flow states of
the grid respectively. Combining the above factors, the
optimization problem can be formulated as follows:

max
x,u

F (x, u) :=
∑
i

(
C3,i

∑
t

Mi,t − Si (C1,i + C2,iui)

)
− α

∑
t

∑
j∈NB

fj,t
(
pgj,t
)

(20)
s.t. G(x, u) = 0, x ∈ X, u ∈ U (21)

where the final objective function is the difference that
the service revenue minus the TN cost and the generation
cost (20), α is the weighting coefficient utilized to balance
the generation cost in optimization, the constraints (21)
is transformed from (19), X indicates that x satisfies the
constraints (14) (15) (16) (17) (18). U indicates that u
satisfies the constraints (1) (3) (12).

3. PROBLEM TRANSFORM AND SOLUTION

The generalized Benders decomposition algorithm can be
used in mathematical programming problems with com-
plicated optimization variables. And when a subset of the
variables is temporarily fixed, the remaining optimization
problem should be a linear or convex problem. In our
model, when the discrete decision variable u is fixed, re-
maining objective problem is exactly convex (Jamalzadeh
and Hong, 2018; Zhang et al., 2018).

The problem (20) (21) can be transformed into the stan-
dard form of generalized Benders decomposition:

min
x,u

−F (x, u)

s.t. G(x, u) = 0, u ∈ U ∩W
(22)

where

W := {u : G(x, u) = 0 for some x ∈ X} (23)

When u is fixed, the problem can be divided into the main
problem (24) and the slave problem (25) as follows:

min
u

W (u)

s.t. u ∈ U ∩W
(24)

W (u) := min
x∈X
−F (x, u)

s.t. G(x, u) = 0
(25)

where the slave problem is convex with respect to x. The
slave problem is converted into dual form:

min
u∈U

sup
µ∈R2|NB|

{
min
x∈X

{
−F (x, u) + µTG(x, u)

}}
s.t. min

x∈X

{
λTG(x, u)

}
= 0 ∀λ ∈ R2|NB|

(26)

where λ and µ are Lagrange multiplier vectors for W and
W (u). This problem is equivalent to:

min
u∈U,u0∈R

u0

s.t. u0 ≥ min
x∈X

{
−F (x, u) + µTG(x, u)

}
, ∀µ ∈ R2|NB|

min
x∈X

{
λTG(x, u)

}
= 0, ∀λ ∈ R2|NB|

(27)
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Relax this problem into the following:

min
u∈U,u0∈R

u0

s.t. u0 ≥ min
x∈X

{
−F (x, u) + (µm)

T
G(x, u)

}
m = 1, . . . , nµ

min
x∈X

{
(λm)

T
G(x, u)

}
= 0

m = 1, . . . , nλ

(28)

The relaxed optimization problem (28) involves discrete
variables, thus is nonconvex, but is much simpler to be
solved than the original problem (27). In our problem,
functions F and G are independent of x and u. In fact,
it is exactly the distinction between the PDN and the TN:

F (x, u) =: F1(x) + F2(u)

G(x, u) =: G1(x) +G2(u)
(29)

where

F1(x) =
∑
t

∑
j∈NB

fj,t
(
pgj,t
)

F2(u) =
∑
i

(
C3,i

∑
t

Mi,t − Si (C1,i + C2,iui)

) (30)

So (28) can be easily transformed into the following (You
et al., 2017):

u0 + F2(u)− (µm)
T
G2(u) ≥ min

x∈X

{
−F1(x) + (µm)

T
G1(x)

}
m = 1, . . . , nµ

(λm)
T
G2(u) = −min

x∈X
(λm)

T
G1(x)

m = 1, . . . , nλ
(31)

However, since F2(u) and G2(u) are nonlinear, a binary
variable z is introduced to linearize these functions, let:

zi,h := {0, 1}, i ∈ NC, h ∈ {1, 2, . . . , ũi}

s.t.

ũi∑
h=1

zi,h ≤ 1, ∀i
(32)

then

u =

Nc∑
i=1

zi,hf(h)

F2(u) =

Nc∑
i=1

zi,hF2(h)

G2(u) =

Nc∑
i=1

zi,hG2(h)

(33)

The procedures of the generalized Benders decomposition
algorithm for solving this model are summarized as Algo-
rithm 1.

4. CASE STUDY

In this paper, a case study of CSs planning comes from
Xiamen island with its TN and PDN information is
employed for demonstration. The GPS data of vehicles is

Algorithm 1 Linearized Generalized Benders Decompo-
sition
1: Input: λi,t, αij,t, ũi, C1,i, C2,i,C3,i,Nc, N ,E,Ri,t,pil,t,

and the PDN data G = (NB,E),NC,NG;
2: Initialization: Randomly set z → u ∈ U∩W, get the

upper limit of u0 denoted by u0 by solving the dual
problem (25);

3: While True
4: Get the lower limit of u0 denoted by u0 by solving

the relaxed master problem (28);
5: Update z;
6: If u0 − u0 ≤ ε, where ε > 0 is a sufficiently small

threshold then
7: Return z → u ∈ U ∩W.
8: Else
9: Use the updated z to update u0 by solving the

dual problem (25);
10: End if
11: End while

distributed in a region of 133 square kilometers for a period
of 24 hours in a typical working day. Among all the vehicles
in this region, it is assumed that 10,000 EVs have charging
demands. By analyzing CS operating data of Xiamen in
2018, it can be seen that the charging probability is time-
varying. Furthermore, because of the car’s close relation to
people’s work, the characteristics of charging probability
are different on weekdays and weekends as shown in Fig.1.
The probability of starting to charge during 19 o’clock
is suddenly increase on working days, since that quite a
lot people charge their EVs after work. In contrast, the
charging probability changes more smoothly on weekends.
Hence, charging EV numbers during different time slots
can be obtained, when the total number of EVs to charge
is known.

Generally, EV users intend to charge in the nearest CS,
which is the candidate CS in each zone according to
the characteristics of the Voronoi diagram method (Meng
et al., 2019). Xiamen island is divided into 18 regions. The
candidate locations are the regional centers as shown in
Fig.2.

Different candidate locations have different costs, the
fixed construction cost of CS C1,i and the maintenance
cost of a single charging pile C2,i are listed in Table 1.
Due to the spatial limit, each CS can not deploy more
than 30 charging piles, with up to 10 EVs in queue.
The charging power of fast charging piles is 120kW, and
charging requirement of each EV is 40 kWh (Sheikhi et al.,
2013). In this case, the expected revenue for charging one
EV is $5 (Zhang et al., 2018). These relevant parameters
are listed in Table 2. Besides, other data about PDN such
as line data and bus data are provided by a real-world 56-
bus distribution grid (Wang et al., 2016). The weight α is
set to be 0.04$/kWh here. All numerical tests are running
on a laptop with Intel Core i5-3230QM CPU@2.60 GHz,
8GB RAM, and 64-bit Windows 10 OS.

The optimization model given in Section 2 and the algo-
rithm given in Section 3 are employed to obtain optimal
locations and capacities of EV CSs among the candidate
locations, which is the optimal strategy. Its results are
illustrated in Table 3. In order to compare the performance
of the proposed model and algorithm, the average strategy
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Fig. 1. The charging probabilities during one typical day

Fig. 2. CS candidate set and divided region

Table 1. The construction and the maintenance
cost of candidate locations

Locations 1-2 3-5,13-14 6,12,18 7-10,15-17 11

C1,i 150 200 150 150 200
C2,i 35 40 40 30 30

Table 2. Operating parameters of CS and EV

Parameter Value Unit

Nc 18 -
N c+10 -
ũi 30 -
C3,i 5 dollar per EV
E 120 kW
R 40 kWh

Table 3. Optimal strategy CS planning results

Locations index 1 2 3 4 5 6 7 8 9

ui 11 22 18 0 14 20 11 10 0

Locations index 10 11 12 13 14 15 16 17 18

ui 0 0 22 0 15 22 0 15 11

and the traffic flow strategy are proposed as the bench-
marks. These two strategies will build the same number of
charging piles as the optimal strategy, but the distribution
is different. The average strategy averagely distributes all
charging piles into every candidate location. In the traffic
flow strategy, the charging pile number in each candidate
location are positive linear with the EV number originally
wanted to charge there.

The relationship between the number of EVs initially
arrived at each CS and the number of charging piles in
each CS under the optimal strategy can be seen in Fig.3. It
is obviously that candidate locations with few EVs would
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Fig. 3. Arrived EV number and planning results under
optimal strategy
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Fig. 4. Total profit and serviced EV number under different
strategies

not build a CS, EVs have to transfer to an adjacent station
to charge.

When the CS is blocked or not built in a region, only a
part of EV users will transfer to an adjacent station with a
distance-related probability, while others will not transfer,
but leave directly without charging. The comparison of
the comprehensive profit with three strategies are shown
in Fig.4 (left), it can be found that when considering the
transfer of EVs, the profitability of operators adopting
optimization strategies is 36.83% higher than the average
strategy, and 45.38% higher than the traffic flow strategy.
When the transfer of EVs is not considered, the profitabil-
ity of operators adopting optimization strategies is 20.04%
higher than the average strategy, and 1.12% higher than
the traffic flow strategy.The comparison of serviced EVs
number with three strategies are shown in Fig.4 (right),
it can be seen that the traffic flow strategy serves the
most EVs at about 83.57%, the optimal strategy following
closely at about 80.52%, the average strategy is the lowest
at 77.37%. Here all three strategies can achieve the service
rate at least 50% in two scenarios, which are valid charging
service.

In short, compared with the average strategy, the optimal
strategy is superior in two aspects. Compared with the
traffic flow strategy, the optimal strategy can get 45.38%
more profit with only losing 3.05% EV users, which has
great marginal benefits. It can be said that the operators
can adopt the optimal strategy to achieve a good balance
between charging service and profitability.

In order to explore the impacts of the fixed construction
of each CS C1,i and the maintenance cost of each charging
pile C2,i on the optimization of the CS network, more
numerical simulations are conducted by adjusting C1,i and
C2,i. We set the range of these costs as [0.1C1,i, 1.5C1,i]
and [0.1C2,i, 1.5C2,i], respectively. The numerical results
for the total TN cost, the number of charging piles, the
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Fig. 5. The effects of C1,i and C2,i on the decision of the
planning results.

comprehensive profit of the operators, and the number of
serviced EVs can be seen in Fig. 5.

From the simulation results, it can be found that C1,i and
C2,i affect the profit of the operators greatly. Furthermore,
C1,i will increase the total TN cost more greatly due to
its high price. When C1,i or C2,i increases, the total TN
cost will increase, while the number of charging piles, the
number of serviced EVs, and the comprehensive profit will
decrease. That is because the operators need to make a
trade off between the mainly TN cost and the service
revenue. Some possible CSs and charging piles will not
be planned, such that the comprehensive profit for the
charging service operators can be maximized.

5. CONCLUSION

In this paper, an optimal charging stations planning strat-
egy is raised for the charging service operators to max-
imize the comprehensive profit considering both traffic
and the power grid. Especially, the generation cost of
the grid is included in the comprehensive profit of the
operators. To minimize the side effect caused by charg-
ing station loads, several critical constraints like voltage
deviation and power balance are taken into consideration.
The complicated mixed-integer programming problem is
solved by linearized generalized Benders decomposition
algorithm. The effectiveness of our algorithm is validated
by comparing with two other regular planning methods.
The impacts of the construction and the maintenance cost
on charging stations planning are discussed. In the future,
how to deploy new charging stations based on the existed
will be marked in our calendar.
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