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Abstract: Fault prediction in manufacturing systems has consistently been an important theme in 

engineering research. Data-driven methods to deliver this service are gaining momentum due to 

developments regarding information and communication technologies. Particularly, fault prediction may 

be interpreted as a supervised learning classification problem, in which algorithms trained by operational 

data gathered from the shop-floor are capable of informing managers whether a machine might enter in a 

failure state or not. Despite the relevance of this approach, implementations are hindered by several 

challenges. In this work, we review approaches aimed to deal with four of these challenges, namely: 

limited amount of training data, unbalanced training data sets, uncertainty regarding which variables 

should be monitored, and uncertainty regarding how exactly historical data should be employed in the 

algorithm’s training. To deal with training sets with limited size, learning procedures observed to perform 

well with a lower volume of training data can be used, such as the Random Forests technique. 

Alternatively, transfer learning techniques can be utilized to adapt models trained in a virtual domain 

with abundant synthetic data to the real manufacturing system domain. To deal with unbalance among 

classification classes, cost-sensitive learning methods can be employed to alter the penalties incurred 

when misclassifications occurs in the minority class. Alternatively, resampling methods can be applied 

before learning occurs. Lastly, both the decisions regarding which variables to track, and to what extent 

historical data should be included in the training process, can be addressed through the use of specific 

feature selection methods. 

Keywords: Production activity control, intelligent maintenance systems, maintenance models and 

services. 

 

1. INTRODUCTION 

We are living a period in which novel technologies promise 

to drastically change the way manufacturing operations are 

performed. This has been commonly referred to as a fourth 

industrial revolution (Liao et al., 2017). Upcoming 

technologies allow shop-floor resources to gain both 

enhanced communication capabilities (e.g. near real-time 

gathering of production data); as well as smart decision 

support capabilities (e.g., capacity to predict potential faults 

in production equipment). It is the beginning of the era of 

smart factories (Burke et al., 2017). 

In an effort to organize and better exploit these technologies, 

a number of structured architectures are being proposed in the 

literature, such as the manufacturing digital twin framework 

(Zhuang et al., 2018) or the cloud manufacturing system (Li 

et al., 2010). In these applications, data is usually gathered 

from the physical world through  the use of a network of 

cutting-edge sensors, software and embedded objects, 

currently referred to as the 'internet of things' (IoT) (Kang et 

al., 2016); furthermore, all these data is generally stored in 

big-data enabled platforms, following the model of the cloud. 

Lastly, with the objective of offering a decision support 

service, analytic tools are typically used to provide 

descriptive analyses and predictions, which are prepared 

according to the specific service demands of stakeholders. 

A plethora of services may be offered through the 

employment of these steps. Specifically in manufacturing 

systems, services related to machine fault prediction are 

commonly mentioned as key applications (Qiao et al., 2019; 

Xu et al., 2019; Stojanovic and Milenovic, 2019).  One way 

to deliver this type of service consists in acquiring 

operational data from machines in the shop-floor and using 

these data to train and deploy supervised learning 

classification methods, capable of predicting and informing 

managers weather a machine might enter in a failure state. 

This can be done through the classification of an analysed 

instance in classes that represent both normal behaviour as 

well as an expectancy of imminent failure.   

This data-driven approach to fault prediction is gaining more 

popularity as smart technologies are rapidly evolving (Xu et 

al., 2019); however, despite its practical relevance, a few 

challenges may hinder the success of implementation efforts. 
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In particular, we discuss four specific challenges. Firstly, 

companies may only have a limited amount of training data 

available to develop the classifier, due to the young age of 

many smart factory implementation projects. Secondly, due 

to the nature of fault occurrences in the shop-floor, these 

training data sets may be highly unbalanced in regard to the 

distribution of classification classes. Thirdly, despite the 

ubiquitous presence of sensors in manufacturing systems, 

many companies may still be unsure about which operational 

variables should be monitored and fed to the fault prediction 

classifier. And lastly, as logs of past data related to each 

monitored variable are saved in the cloud, another challenge 

arises in trying to determine how exactly this historical data 

can be best used as input to the classifier. 

In this work, we review strategies designed to overcome all 

these four obstacles to effective fault prediction. At first, we 

focus on characterizing each challenge in more detail. 

Subsequently, we investigate a series of approaches 

specifically intended to deal with these challenges and assess 

how these approaches fit together in the context of fault 

prediction in manufacturing systems. The importance of this 

work lies in the mapping of common challenges faced by 

companies to credible and up-to-date solutions being 

produced in the machine learning literature.  

The remainder of this paper is structured as follows: Section 

2 presents a theoretical background regarding strategies 

commonly used to address fault prediction in manufacturing 

systems. Section 3 describes the identified four challenges of 

classification-based fault prediction in more detail. Section 4 

reviews several solutions aimed at dealing with the stated 

challenges. Section 5 presents our concluding remarks. 

2. MANUFACTURING FAULT PREDICTION 

STRATEGIES 

Methods to predict the occurrences of failure in production 

represent an important theme in engineering research. 

Different strategies for this have been proposed from distinct 

literatures. Nguyen and Medjaher (2019) establish an 

important classification of these strategies in two main 

groups: model-based techniques and data-driven techniques. 

To achieve fault prediction capability, the model-based group 

is mainly focused in the development of an effective 

stochastic model to represent the system degradation over 

time and guide predictive maintenance interventions. 

Examples of applications involve the use of the Markov 

decision process with dynamic programming techniques, as 

can be observed in the work of Huynh et al. (2019). Issues 

associated with this model-based view mostly revolve around 

the fact that it requires users to possess a highly refined 

knowledge of how equipment degradation occurs. It is also 

difficult to formalize or model the deterioration mechanisms, 

and even theoretically modelled systems may be not 

applicable in practice due to the amount of variables in real 

production systems that can affect the validity of a model 

(Huynh et al., 2019; Nguyen and Medjaher, 2019). To top it 

off, simplifications of the theoretical models may lead to non-

optimized decisions, which one can argue that makes 

modelling lose its main purpose. 

As opposed to the modelling-based perspective, the data-

driven approach to fault prediction is valuable exactly 

because in its objective of making predictions about future 

behaviour it neither relies on prior knowledge of the complex 

deterioration mechanisms of real machines nor faces 

difficulties making a transition from theory to practice 

(Nguyen and Medjaher, 2019). Instead, these methods are 

capable of getting better at the task of predicting failures 

through learning from experience contained in data sets. 

These methods can be divided in (i) supervised learning 

techniques, when training data is labelled and algorithms are 

aware of the correct responses that correspond to a given 

input (Gupta et al., 2019); (ii) unsupervised learning 

techniques, when unlabelled data is provided and the 

algorithms must learn from patterns on their own  (Janjua et 

al., 2019), and; (iii) semi-supervised learning, when there are 

both sections of labelled and unlabelled data (Yin et al., 

2019). Unsupervised and semi-supervised approaches mostly 

treat fault prediction as an anomaly detection problem, as can 

be seen in Strauß et al. (2018). In these cases, techniques 

such as the Isolation Forests proposed by Liu et al. (2008) 

can be used. Supervised learning fault prediction, differently, 

can be categorized between regression problems (mapping 

input variables into continuous functions), and classification 

problems (mapping input variables into discrete classes). 

Regression-based fault prediction focuses on attempting to 

predict the exact residual useful life (RUL) of an analysed 

instance, based on prior training with a data set labelled with 

RUL information (Nguyen and Medjaher, 2019). 

Classification-based fault prediction, on the other hand, 

attempts to classify an instance into categorical classes such 

as “not going to fail” and “imminent failure” (or even more 

categories representing different warning levels), without 

explicitly predicting the RUL; an example can be seen in Xu 

et al. (2019). Methods such as Support Vector Machines 

(SVM), Logistic Regression and Random Forests can be 

employed in these cases (Strauß et al., 2018). Notably, it is 

specifically in the context of classification-based techniques 

that we delimitate the analysis which is further conducted in 

this work. An illustration of how all the reviewed fault 

prediction strategies are hierarchically classified can be seen 

in Fig. 1. 

 

Fig. 1. Classification of fault prediction strategies. 
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3. CHALLENGES OF CLASSIFICATION-BASED FAULT 

PREDICTION 

Despite not requiring extensive prior knowledge of 

degradation mechanisms, classification-based fault prediction 

has other pitfalls, which we have summarized in four main 

challenges that are addressed in this work. 

• C#1: limited amount of training data. 

• C#2: unbalanced training data sets (in regard to the 

distribution of classification classes). 

• C#3: uncertainty regarding which variables should 

be monitored. 

• C#4: uncertainty regarding how exactly historical 

data should be employed in training. 

We begin by C#1, the challenge of having a limited amount 

of training data to develop an effective fault prediction 

service. The link between a big amount of training data and 

the performance of data-driven methods has been 

documented in a series of important works. Banko and Brill 

(2001), for instance, published one of the first key works 

demonstrating how data volume may benefit performance, 

regardless of specific choices of algorithms. Particularly, the 

authors observed that, for natural language processing tasks, 

a series of learning-based techniques had a significant 

improvement of performance when trained with larger data 

sets. Similarly, Halevy et al. (2009) discussed applications 

where a similar learning algorithm would achieve an 

improved performance when exposed to a much greater 

volume of training instances. As a last example, when 

discussing the potential of deep learning techniques, 

Najafabadi et al. (2015) argued that these sophisticated 

techniques are inherently suited to exploit massive amounts 

of data, through which it is possible to explore and 

understand highly complex data patterns. That being said, 

many organizations just recently started to systematically 

gather operational data, as IoT technologies have risen in 

popularity and smart factory projects began to gain traction. 

As a consequence, it is not uncommon for companies to have 

only a limited volume of operational data available to train a 

classifier, which is employed to deliver the fault prediction 

service. 

To better assess the second challenge, it is adequate to 

assume that in most of the mature manufacturing systems, 

failures related to production equipment can be rather 

unusual events (Janjua et al., 2019). Consequently, 

operational data used as input to train the fault prediction 

classifier might have an unbalance regarding the number of 

instances labelled in each particular class, e.g. the number of 

instances labelled as 'not going to fail' is much greater than 

the number of instances labelled as 'imminent failure’ 

(considering a setting where only these two classes are used 

to categorize instances). The main issue derived from using 

unbalanced training sets comes from the fact that, in these 

cases, standard classification approaches will generally be 

biased towards the majority class (Nanni et al., 2015), 

resulting in a decreased capacity to correctly deal with the 

minority class. 

Since the gathered data used as input to train the classifier 

may include any number of variables of interest (e.g. 

temperature, vibration), the third challenge is related to the 

uncertainty organizations face when choosing which of these 

variables should be tracked by sensors. In this regard, 

according to Turabieh et al. (2019), one of the major issues 

that affect the performance of the learning algorithms is data 

dimensionality. Furthermore, monitoring every possible 

variable is not only unpractical, but may also harm the 

classifier’s performance (Xue et al., 2016). From the 

perspective of the classification problem at hand, adequately 

choosing which operational variables are going to be 

monitored is fundamentally what is typically addressed as 

feature selection, i.e., a method employed to select an 

optimum subset of relevant features which leads to the least 

error for learning a classification model (Zorarpacı and Özel, 

2016). 

As sensors are deployed in the shop-floor and gathered 

measures are saved in the cloud, every variable of interest 

eventually becomes associated with a vector of historical 

measures. Hence, the fourth challenge addressed in this work 

deals with deciding how exactly this historical data should be 

fed to the fault prediction classifier, i.e., how far back should 

the classifier reach to understand the patterns that lead to 

particular classification classes, and also what type of data 

should be input (only the raw historical measures, 

summarizing statistics, or both). 

All these addressed challenges are related to the process of 

training the fault prediction classifier. Therefore, a visual 

depiction of the relationship between the challenges and the 

different dimensions of a training dataset is provided in Fig. 

2. Every data instance is portrayed as a square ‘block’ of 

information with two dimensions (the selected features or 

variables of interest – C#3, as well as the utilized historical 

data regarding each feature – C#4). The data blocks are 

stacked together to build the training set, providing the shape 

with a third dimension (quantified by the number of training 

instances – C#1). Lastly, instances with distinct labels are 

colored differently – C#2. 

 

Fig. 2. Dimensions of data and the challenges of 

classification-based fault prediction. 
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4. APPROACHES TO HANDLE FAULT PREDICTION 

CHALLENGES 

In this section, we review available approaches aimed at 

dealing with the challenges which commonly hinder effective 

fault prediction. 

Firstly, we address classification-based machine learning 

methods, focusing specially in approaches that have been 

deployed in similar problems and have been found to perform 

well with a low amount of training data (C#1). Cerrada et al., 

(2016) employed the Random Forest (RF) classification 

technique to deal with a fault diagnosis problem in spur 

gears; the authors argue that the RF technique has shown 

adequacy to handle applications in the field of engineering 

where there is a low number of available learning data. RF 

classifiers consist in the combination of multiple 

independently sampled tree predictors and are presented in 

detail in Breiman (2001). 

Fault prediction classifiers built on deep learning models, 

such as the application of a Long Short-Term Memory 

(LSTM) network as can be observed in Nguyen and 

Medjaher (2019) typically require a large volume of input 

data, which turns these approaches away from the scope of 

our work. Nonetheless, Xu et al. (2019) offered a strategy to 

somehow take advantage of the benefits of deep learning 

while handling the low data volume issue, through the 

concept of transfer learning (i.e. train a model in a source 

domain and apply the model in a different, but analogous, 

target domain). The authors proposed a digital twin assisted 

fault diagnosis approach in which a deep learning model is 

fully trained in the virtual domain, using abundant simulation 

data as input and bypassing the real-world data availability 

constraints; Thereafter, the model is transferred and 

minimally adjusted to the physical space to perform fault 

prediction. 

Next, we review strategies designed to deal with unbalance 

among classification classes (C#2). Classification class 

unbalance has been studied by a number of authors.  The 

works of Haixiang et al. (2017) and Nanni et al. (2015) cover 

a plethora of techniques to deal with the matter. Two main 

approaches can be verified: the first approach consists in the 

use of preprocessing techniques, which are executed before 

the development of the machine learning model; the second 

approach consists in the use of cost-sensitive learning 

methods, in which a higher cost is incurred when the machine 

learning model misclassifies an instance from the minority 

class, providing more robustness against class unbalance 

during the learning process. Cost-sensitive methods have 

been shown by Haixiang et al. (2017) to be less popular than 

resampling, but more computationally efficient. Furthermore, 

the authors identified the most popular preprocessing 

technique to be resampling, which is operationalized by 

either an over-sampling (adding more instances) of the 

minority class to reduce or eliminate the unbalance of the 

dataset, or an under-sampling (reducing instances) of the 

majority class to reach the same goal. Of particular interest to 

our analysis (due to the objective of also dealing with a lack 

of training data) is the over-sampling approach, which is 

typically implemented through random duplication or the 

more refined Synthetic Minority Oversampling Technique 

(SMOTE), proposed by Chawla et al. (2002). 

For the next topic, we assess feature selection strategies for 

classification problems that can be encompassed in the 

context of this work (C#3). Cai et al. (2018) argue that for 

these particular cases, the concept of relevance or correlation 

between a specific feature and the class label is central to 

selecting features. The authors also state that heuristic 

methods are commonly employed to determine an optimal 

subset of features. In this regard, Xue et al. (2016) state that 

evolutionary heuristic techniques based on the genetic 

algorithms (GA) have been widely applied to feature 

selection problems. The authors note that GA’s typical binary 

codification naturally fits with indicating whether a feature is 

selected or not.  Furthermore, as illustrated by Cerrada et al. 

(2016) use of GA to enable feature selection for a fault 

prediction RF classifier, it is possible to optimize the chosen 

features in relation to multiple performance metrics, which 

are embedded in the heuristic’s fitness function. Focusing on 

different types of techniques, Speiser et al. (2019) compared 

the performance of several feature selection methods 

specifically in the context of the RF classifier (which was 

previously addressed in this section). The authors found out 

that the strategies which granted the lowest out-of-bag (OOB) 

error metrics came from the VSURF package (Genuer et al., 

2015) and the Boruta package (Kursa and Rudnicki, 2010). 

On the other hand, if the area under the curve (AUC) is used 

as the performance metric, Jiang’s approach (Jiang et al., 

2004) was found to be the most effective method. Particularly 

in the tests carried out on datasets with more than 50 features, 

both varSelRF (Díaz-Uriarte and Alvarez de Andrés, 2006) 

and Boruta packages had low OOB errors and low 

computational times (despite having the lowest OOB error, 

VSURF exhibited a high computational time). 

Hereafter, we address how historical data may be fed to 

supervised classification algorithms (C#4). Brownlee (2016) 

presents two particular ways. The first consists of adding lag 

features containing raw features’ values of different ages. The 

second consists of adding descriptive statistics summarizing a 

time window of the features’ historical values. As can be 

observed in both these approaches, historical data of a 

particular feature end up being represented somehow as 

additional features, which means that a strategy of how to 

optimally employ historical data can also be determined by 

the feature selection methods discussed in the previous 

paragraph. As an example, Donate and Cortez (2014) utilized 

evolutionary heuristics to determine if time lags of a specific 

size were going to be used as input for a time series 

forecaster application. 

A synthesis of all the approaches reviewed in this section to 

deal with fault prediction challenges can be seen in Fig. 3. 

Lastly, we show in Fig. 4 how a subset of the aforementioned 

techniques can be integrated into a unified architecture to 

enable classification-based fault prediction, specifically when 

the four addressed challenges are in play. This framework is 

by no means the only possible way in which the techniques 

reviewed in this section can be arranged, as a plethora of 

distinct strategies may be developed. 
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Fig. 3. Synthesis of the approaches aimed to address fault 

prediction challenges. 

 

Fig. 4. Fault prediction service architecture designed to 

overcome four common challenges of implementation. 

In the architecture presented in Fig. 4, we conceptually 

illustrate how an evolutionary heuristic based on GA can 

optimize several parameters of a fault prediction classifier, in 

order to overcome the challenges addressed in this work. The 

RF technique is chosen due to its potential compatibility with 

smaller training data sets (in the context of C#1). The GA 

fitness function should be developed based on metrics (and 

weights of importance among metrics) determined with the 

support of managers, so that the concept of performance 

sought by the GA is clear and aligned with the management's 

view. Several parameters of the classifier are subject to the 

GA optimization. The parameters are organized as follows: 

two parameters, represented by two bits of binary data, are 

optimized to mitigate the effect of unbalanced datasets in the 

context of C#2: firstly, a decision is made to define whether 

resampling should occur or not; secondly, a decision is made 

to define whether the values of the weights associated with 

the classes of the RF should be tuned or not (if tuning is 

activated, the weights are adjusted inversely proportional to 

the class frequencies). This way, both the reviewed 

techniques of preprocessing and cost-sensitiveness can be 

deployed in the search of better performance. Next, the other 

parameters are used to perform the feature selection. All 

potential variables of interests (in the context of C#3), as well 

as their respective vectors of historical data and summarizing 

statistics (in the context of C#4) are also coded as single bits 

of binary data: when a bit is set to 1, the ‘feature’ it 

represents is activated and serves as an input to train the 

classifier; when a bit is set to 0, the ‘feature’ is not used to 

train the classifier. The GA looks for the subset of features 

that generates the greatest level of fitness. 

5. CONCLUSIONS 

Our work comes with limitations. Firstly, we delimitate our 

study to the challenges that specifically affect the service 

providing capabilities of fault prediction systems, and not the 

development of their whole structure. Therefore, the pitfalls 

regarding the implementation of real-time data acquisition 

and storage technologies lie outside the boundaries of our 

analysis. Secondly, we specifically address challenges that 

besiege fault prediction when viewed as a supervised learning 

classification problem; this view, admittedly, is not 

comprehensive (see Section 2). Thirdly, the challenges 

addressed in this work are presented in a broad perspective, 

as we do not look at the specific issues and characteristics of 

any particular domain. In this regard, an analysis capable of 

providing tailored suggestions to deal with a diverse set of 

application domains represents an important direction for 

future work. 
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