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Abstract: An algorithm is presented for the design of inferential sensors for fault diagnostics in
thermal management systems. The algorithm uses input and output sensed system information
to improve the detection and isolation of a fault by generating inferential sensors that augment
the measured information to: (i) reduce the evidence of uncertainty in the inferred variables,
and thus decrease false alarm and nondetection rates; and (ii) provide distinguishable responses
to faults, and thus reduce reduce the rate of misdiagnoses. The novelty of the algorithm is its
use of genetic programming to evolve explainable inferential sensors that maximize information
criteria specific to fault diagnostics. The chosen criteria: (i) least squares regression; and (ii)
Ds-optimality (calculated from the Fisher Information Matrix), leverage symbolic mathematics
and automatic differentiation to obtain parametric sensitivities of the measured outputs and
inferential sensors. The algorithm is included in a standard work for fault diagnostics, where
its effectiveness is assessed through k-NN classification and illustrated in an application to an
aircraft cross-flow plate-fin heat exchanger.

Keywords: fault detection and diagnosis, experiment design, AI methods for FDI

1. INTRODUCTION

Data analytics typically involves methods and apparatus
that explore and improve the overall quality and efficiency
of a process or system. Data analytics can be performed
in a descriptive (e.g., characterization, association, correla-
tion) or predictive (e.g., classification, regression) manner
by leveraging developments in statistics (Gajjar et al.,
2018; Zhou et al., 2014), machine learning (Domingos,
2012; Jordan and Mitchell, 2015), artificial intelligence
(Liu et al., 2018), and deep learning (LeCun et al., 2015;
Liu et al., 2017; Schmidhuber, 2015). The techniques devel-
oped today aim at tackling the issues of noise, uncertainty,
and errors present in data that can result in erroneous
conclusions. An approach to dealing with these issues is
to implement inferential sensors (i.e., latent variables or
soft sensors) (Fortuna et al., 2007). Inferential sensors are
indirect estimates of complex process variables or parame-
ters that cannot be measured or require additional infras-
tructure investment. These indirect system measurements
are often in the form of analytical relationships or other
functional combinations of available system information
(measured system inputs and outputs). These analytical
relationships can be based on physical laws, domain system
knowledge, or empirical relationships such as: regression
models, support vector machines, neural networks, or ge-
netic programs. Inferential sensors can provide additional,
more accurate insight into process variables impacted by
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noise and uncertainty, at a lower cost than more sophis-
ticated physical sensing methods. The added insight can
result in more robust information compared to traditional
physical sensors by reducing the evidence of noise and
uncertainty, which is critical to the field of fault diagnostics
and prognostics (Hale et al., 2019).

In this paper, symbolic regression and test design opti-
mization are used to create inferential sensors for the pur-
poses of fault detection and isolation (FDI). This method
combines genetic and mathematical programming to find
optimal inferential sensors and system operating points
that improve the information with respect to faults in
the system. The inferential sensors use existing system
measurements at an optimal operating point to reduce
the impact of noise and uncertainty and provide better
FDI capability. The method is applied to a system where
increased uncertainty during operation negatively impacts
system performance, reliability, and safety by masking the
occurrence of faults (resulting in missed detections) or
mimicking faulty performance (resulting in false alarms).
The algorithm and workflow of this method extends upon
the design of robust built-in tests for active FDI (Hale
and Bollas, 2018; Hale et al., 2019; Palmer et al., 2019;
Palmer and Bollas, 2019a,b). The product of this work is
an algorithm that produces an optimal test design (i.e.,
admissible input values, the set of physical sensors used,
and the inferential sensors that augment the sensor archi-
tecture) that improves fault diagnostics and prognostics
for systems prone to noise and uncertainty.
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Fig. 1. Block-flow diagram of the sequential inferential
sensor and input design method proposed.

2. METHODS

The proposed model-based active FDI workflow is shown
in Fig. 1. The three main steps of this workflow involve
system modeling, optimization for FDI, and execution of
FDI. Of these steps, the main focus is on the algorithm for
FDI optimization in systems with uncertainty.

2.1 Inferential sensor and input design using a sequential
optimization procedure

The framework of Fig. 1 utilizes accurate steady-state
or dynamic models of the system subject to uncertainty
and anticipated faults, including its healthy state. The
developed system model is used in a sequential optimiza-
tion procedure for improving fault diagnostics. First, the
system model is used to generate predictions of the system
outputs at a given operating point and anticipated uncer-
tainty (i.e., mean values for uncertain variables and pa-
rameters). These system outputs are then used to symbol-
ically regress inferential sensors that maximize a desired
objective. Next, the regressed inferential sensors augment
the original system model and are used for FDI test design
optimization, where the best test design (i.e., the selected
physical sensors, inferential sensors and test conditions)
are calculated. The augmented model is used to run Monte
Carlo simulations at the optimal test conditions over the
range of uncertainty (assumed normally distributed), to
assess the effectiveness of the test design. The pseudo-
algorithm of this procedure is presented in Alg. 1.

The set of differential algebraic equations that accurately
models the system of interest and its anticipated faults

and uncertainty is:

f [f ](ẋ[f ](t),x[f ](t),u(t),θu,θ
[f ]
f , t) = 0,

∀[f ] ∈ {[0], ..., [Nf ]} (1)

where f [f ] : Dx[f] × Du × Dθu
× D

θ
[f]

f

→ RNx is the

system of equations that are assumed to be continuously
differentiable over its open domain Dx[f] ⊂ RNx , Du ⊂
RNu , Dθu ⊂ RNθu , D

θ
[f]

f

⊂ RNθf . The superscript [f ]

denotes the fault scenario of interest and Nf is the total
number of faults studied (with [f ] = [0] representing the
fault-free system). The variable x[f ] ∈ Dx[f] ⊂ RNx is the
vector of system states, u ∈ U = {u ∈ RNu : uL ≤ u ≤
uU} is the vector of admissible system inputs, θu ∈ Θu =

{θu ∈ RNθu : θL
u ≤ θu ≤ θU

u } is the vector of uncertain

parameters, θ
[f ]
f ∈ Θ[f ]

f = {θ[f ]
f ∈ RNθf : θ

[f ]L

f ≤ θ[f ]
f ≤

θ
[f ]U

f } is the vector of parameters corresponding to fault

[f ], and t is time. The system outputs are expressed as:

y[f ](t) = h(x[f ](t)) + w, ∀[f ] ∈ {[0], ..., [Nf ]} (2)

where y[f ] ∈ Y [f ] ⊂ RNy is the vector of system outputs
corresponding to [f ], h is the system of equations mapping
the system states to the measured outputs, and w ∈
W ⊂ RNy is the vector of measurement noise. Using the
measured system outputs and inputs, inferential sensors
can be developed:

z[f ](t) = λ(u(t),y[f ](t)), ∀[f ] ∈ {[0], ..., [Nf ]} (3)

where z[f ] ∈ Z [f ] ⊂ RNz is the vector of inferential sensors
corresponding to [f ] and λ is the system of equations map-
ping the measured inputs and outputs to the inferential
sensors. These inferential sensors are augmented to the
original system model. The initial conditions at time t0
for (1), (2), and (3) are expressed as:

γ0 =

{
f(ẋ(t0),x(t0),u(t0),θu,θf , t0) = 0,
y(t0) = h(x(t0)),
z(t0) = λ(y(t0),u(t0))

(4)

where γ0 is the combined vector of initial conditions.
The general formulation of the sequential optimization
procedure for inferential sensor and input design is:

G∗ = max
u∈U,y∈Y,z∈Z

G(u(t), θ̃u, θ̃f ,y(t), z(t), t)

s.t. f(ẋ(t),x(t),u(t), θ̃u, θ̃f , t) = (f [1], ..., f [Nf ]) = 0,

y(t) = h(x(t)) + w = (y[1], ...,y[Nf ]),

z(t) = λ(u(t),y(t)) = (z[1], ..., z[Nf ]),

γ0 =

{
f(ẋ(t0),x(t0),u(t0),θu,θf , t0) = 0,
y(t0) = h(x(t0)),
z(t0) = λ(u(t0),y(t0))

(5)

where G : Du × Dθu × Dθf
× Dy × Dz × Dt → R is

the objective function that defines the FDI capability,
f(ẋ(t),x(t),u(t), θ̃u, θ̃f , t) = (f [0], ..., f [Nf ]) = 0 is the
system of differential algebraic equations combined for
all fault scenarios from (1), augmented with the state
variables x = (x[0], ...,x[Nf ]) ∈ X ⊂ RNx(Nf+1) and

parameters corresponding to faults θ̃f = (θ̃
[0]

f , ..., θ̃
[Nf ]

f ) ∈
Θf ⊂ RNθf

(Nf+1) at their anticipated values (∼), θ̃u ∈ Θ
is the vector of uncertain parameters at their anticipated
values, y ∈ Y ⊂ RNy(Nf+1) is the combined vector of
system outputs, and z ∈ Z ⊂ RNz(Nf+1) is the combined
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Algorithm 1 Symbolic Regression and Optimization for Inferential Sensor and Input Design.
initialization;

Model: Equations, States, Inputs, Uncertain Parameters, Fault Parameters, Outputs

Genetic Program: Basis Functions, Inputs, Population, Generations, Complexity, Parameter Ranges, Objective Function, Selection Type,

Crossover and Mutation Probabilities

Optimization: Objective Function, Initial Guess, Constraints, Termination Criteria

algorithm;

1: Initialize: randomly generate initial population of Npop inferential sensors and save in the population Λ0 = {z1, ..., zNpop}
2: Genetic Program Procedure:

while not at final generation, k 6= Kmax do population evolution

Evolve Population

Performance: calculate objective function Gi of each individual zi, i = 1, ..., Npop, in Λk and rank;

Elitism: select the best Nelite = pelite Npop individuals from Λk and save them to the next generation Λk+1;

Direct: select Ndirect = pdirect Npop individuals from Λk and save them to the next generation Λk+1;

Crossover: select Ncross = pcross Npop pairs of individuals from Λk, perform crossover, and save them to the next generation Λk+1;

Mutation: select Nmutate = pmutate Npop individuals from Λk, perform mutation, and save them to the next generation Λk+1;

Update: calculate objective function Gi of each individual zi, i = 1, ..., Npop, in the next generation Λk+1 and rank;

Optimize: perform 3: Test Design Optimization Procedure using the best ranked individual(s) in Λk+1 to find optimal operating point u

and selected sensors y and z;

repeat for next generation k = k + 1;

end while

Return u∗,y∗, z∗, G∗

3: Test Design Optimization Procedure:

Select Sensors and Optimize Operating Point

Initial Guess: provide the optimizer with an initial guess for u∗;

Simulation: simulate the system at the initial guess/future iterations of u;

Objective Function: calculate the objective function G given the input u and selected sensors y and z;

Convergence: iterate until the optimal objective function G∗ is found at the optimal input u∗ using the selected sensors y∗ and z∗;

Update: update the measured outputs used in 2: Genetic Program Procedure for the optimal operating point;

vector of inferential sensors. It is important to note that
the objective function G should be appropriately chosen
for the problem at hand. Using Alg. 1 and the equations
above, a genetic programming procedure is implemented
to evolve a population of Npop inferential sensors Λ =
{z1, ..., zNpop

} of varying complexity (built from a list
of basis functions), whose independent variables are the
measured inputs and outputs. The basis functions used to
form and evolve the initial population of inferential sensors
can originate from domain expert knowledge of the key
physics pertaining to the system and faults of interest, to
better capture the evidence of faults. The first generation
of individuals in the genetic programming procedure is
randomly generated from these basis functions. The pop-
ulation then undergoes evolution, where a percentage of
the population is selected for direct reproduction (for the
best performers), crossover, and mutation. After evolu-
tion, the most informative individual(s) for FDI, based
on the selected metric/objective, are selected from the
population and used in optimizing the system operating
point u(t) to further improve FDI. Once the new optimal
operating point is found, the measured inputs and outputs
are updated and the next generation of evolution in the
genetic program is performed. This process continues until
the maximum number of generations is reached. At this
point, the best test design (i.e., optimal/selected physical
sensor(s), inferential sensor(s), and operating point(s)) is
provided for diagnostics and prognostics.

2.2 Test design criteria for fault diagnostics

Two criteria were considered for designing the inferential
sensors and operating points of FDI. The first was a least-
squares objective function, commonly used in regression.
This objective function minimizes the squared error be-
tween the predicted and actual values of the parameter(s)
of interest (i.e., fault(s)), where the inferential sensors
of (3) are designed to predict an anticipated fault from

the noisy measured outputs in the presence of system
uncertainty. The objective function was formulated as:

G(u(t), θ̃u, θ̃f ,y(t), z(t), t) =

Ns∑
i=1

Nf∑
j=0

(θ̃
[j]
f − z(i)

[j])2, (6)

where Ns is the number of sampling points (at steady-
state, z is indexed by the Monte Carlo samples instead
of time). A key requirement of this method is that data
on the fault/class exists beforehand. When this is unavail-
able, other objectives need to be chosen, such as the Ds-
optimality criterion (Atkinson and Bogacka, 1997). The
Ds-optimality criterion utilizes the Fisher Information Ma-
trix (FIM), a common metric used in the fields of statistics
and design of experiments (Han et al., 2016a,b; Galvanin
et al., 2006; Bock et al., 2007). In its application to fault
diagnostics and prognostics, Ds-optimality minimizes the
the covariance between the parameters representing faults
and uncertainty (improving isolation) while neglecting the
covariance between the parameters representing uncer-
tainty (improving detection), thus reducing the joint confi-
dence region between the uncertain and fault parameters.
The general formulation of the Ds-optimality criterion is
expressed as:

G(u(t), θ̃u, θ̃f ,y(t), z(t), t)) = ψ(H) =

∣∣H∣∣∣∣Huu

∣∣ (7)

where ψ is the test design criterion (in this case Ds-
optimality), H is the FIM, and Hff , Hfu, Huf , and Huu

are submatrix blocks in the FIM that provide information
on the relationship between faults, faults and uncertainty,
and uncertainty, respectively. The information gained from
the FIM depends on the outputs chosen for FDI, which
in this work includes both the measured outputs and
inferential sensor outputs. The FIM can be calculated by
taking the partial derivatives of the selected measured
outputs and inferential sensors with respect to the un-
certain and fault parameters, known as their parametric
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sensitivities. The outputs are selected using the binary
vector a = (a1, ..., aNy+Nz )) and their sensitivities are
calculated using forward sensitivity analysis and symbolic
differentiation. Mathematically, the FIM is expressed as:

H =

[
HffHfu

HufHuu

]
= (1T a)−1

Ny+Nz∑
i=1

Ny+Nz∑
j=1

aiajσ
−2
ij QT

i Qj (8)

where (1Ta)−1 is a normalization factor equal to the
number of measured outputs and inferential sensors se-
lected, the elements of a are the binary decision variables
corresponding to the chosen measured or inferential out-
puts, σi,j is the known variance between the i-th and j-
th outputs, and Qi is the sensitivity matrix of the i-th
output containing the partial derivatives with respect to
anticipated uncertain and fault parameters. For brevity, in
the following we present the results of using the objective
function (6) in (5) and discuss the value of the resulting
inferential sensors.

2.3 Methods of classification for FDI

Common methods for fault diagnostics using the optimal
operating point and selected sensors (physical and infer-
ential) are neural networks, principal component analysis,
and support vector machines (Yu, 2013; Moosavian et al.,
2013; Palmer and Bollas, 2019a). For this work, the k-
nearest neighbors (k-NN) algorithm was selected due to its
simplicity and commercial success (Chen and Shah, 2018).
Performing classification using k-NN involves classifying
the system measured outputs y and the inferred outputs z
through searching the neighborhood of nearby historical
points to provide confusion matrices of the actual vs.
predicted classes and the overall (mean) correct classifica-
tion rate, Acc (Hale et al., 2019). This historical dataset,
known as the training data, is obtained here by running a
Monte Carlo simulation for the given uncertainty domain.
The accuracy of k-NN classification is gauged by creating
a prediction data set through Monte Carlo simulation,
independent from the training data, that is tested against
the trained classifier to calculate the confusion matrices
and correct classification rate.

3. APPLICATION TO AN AIRCRAFT SYSTEM

3.1 Classification of particulate fouling in a cross-flow
plate-fin heat exchanger amid uncertainty

Alg. 1 is demonstrated on a cross-flow plate-fin heat
exchanger (PFHE) system that is prone to fouling and
has uncertain flow conditions. The diagram of the PFHE,
whose system model was originally studied by Palmer et al.
(2016), is shown in Fig. 2. The single admissible system
input is the controlled mass flow rate of the hot stream,
u = ṁh,i (kg/s). System uncertainty exists in the cold
air inlet stream moisture content, temperature, mass flow
rate, and pressure θu = (ωH2O,c,i, Tc,i, ṁc,i, Pc,i), with
normal distributions as presented in Table 1. The fault
of the system is particulate fouling in the cold stream
side, expressed as a change in thermal fouling resistance

θ
[f ]
f = R

[f ]
f . Three levels of fouling are studied: 20%

blocked, 50% blocked, and 80% blocked, along with the
fouling-free scenario. The measured outputs of the system

Fig. 2. Cross-flow plate-fin heat exchanger diagram from
Palmer et al. (2016). Uncertainty exists in the flow
conditions of the cold air stream (blue) and is pre-
sented in Table 1.

Table 1. Parameters of uncertainty θu and

faults θ
[f ]
f and their normally distributed

N (µ,σ2) values with mean µ and variance σ2.

Faults and Uncertainties Distribution

Moisture Content (kg H2O/kg dry air) N (2.0, 0.0625)
Temperature (◦C) N (30.0, 1.0)
Mass Flow (kg/s) N (1.0, 0.0025)
Pressure (Pa) N (105, 6.25 · 106)
Thermal Fouling Resistance (m2K/W)
Fault-Free: 0% Blocked N (0.00, 0.0)
Fault 1: 20% Blocked N (1.60 · 10−3, 0.0)
Fault 2: 50% Blocked N (4.00 · 10−3, 0.0)
Fault 3: 80% Blocked N (6.40 · 10−3, 0.0)

are y = (Tc,o, Th,o, Pc,o, Ph,o) where Tc,o (◦C) is the cold
stream outlet temperature, Th,o (◦C) is the hot stream
outlet temperature, Pc,o (Pa) is the cold stream outlet
pressure, and Ph,o (Pa) is the hot stream outlet pressure.

The impact of uncertainty on the PFHE outputs was
explored through a Monte Carlo simulation of 150 samples
for the fault and uncertainties reported in Table 1. This
was done at two different operating points (i.e., inputs) in
order to understand the impact system operating condi-
tions have on fault diagnostics. The resulting measured
outputs at their final steady-state for each of the 150
Monte Carlo samples are shown in Fig. 3. The “Nominal”
operating point was taken to be u = 0.25 kg/s and the
“Optimal” operating point was taken at u = 1.0 kg/s
from previous work (Palmer et al., 2019). Looking at Fig.
3, it is obvious that there exists significant overlap in the
measured outputs due to the impact of uncertainty for
each of the 4 fault scenarios studied. This was evident at
both operating points (with a slight improvement in the
“Optimal” test), creating challenges in the detection and
isolation of faults. To quantify the challenge of FDI given
the overlap in measured outputs, k-NN classification was
performed using a training data set of 10,000 Monte Carlo
simulation samples for both operating points. The actual
class (i.e., fault scenario) of each of the 150 Monte Carlo
samples in Fig. 3 was predicted using the trained classifier.
As expected from the overlapping outputs, the correct
classification rates were found to be very poor, ranging
from 25%–55% for the two operating points.

3.2 Inferential sensor design and implementation for
steady-state FDI of different fouling levels

The goal of designing inferential sensors was to improve the
overall rate of correct classification of fouling by optimizing
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Fig. 3. PFHE measured outputs at the “Nominal” u = 0.25 kg/s and “Optimal” u = 1.0 kg/s operating point from
Monte Carlo Simulation. The solid lines show the measured outputs at the anticipated value of uncertainty in Table
1 for each fault scenario.

Table 2. Arbitrary (z1) and optimal (z2 − z3)
inferential sensors.

Inferential
Sensor Equation

z1 exp(y2/y1)
z2 −31.94 + 28.40 sin(

√
y1) + 28.40 sin(y0.251 )

+14.43 sin(y4)− 28.45
√
y1 cos(y4)

−0.00019y2 exp(
√
y1) + 3.50 cos(y4)(y1 +

√
y2)

z3 3.26 + 0.024y1y2 − 0.01y21 − 0.01y22

the system operating point and incorporating inferential
sensors into FDI to reduce the impact of uncertainty. To
illustrate the benefit that operating points and inferential
sensors can provide in achieving this goal, an example in-
ferential sensor z1 was arbitrarily created (equation shown
in Table 2) using the outputs of Fig. 3 as the independent
variables. This inferential sensor (“Inferential Sensor # 1”)
is shown in Fig. 4 for each sample of the Monte Carlo
simulation at the “Optimal” operating point. In Fig. 4, it
can be seen that using the mathematical operators of z1

on the measured outputs, significantly reduced the noise
associated with the different realizations of uncertainty.
This allowed more accurate conclusions/classifications to
be made on the (now) fully separated fault scenarios,
which was validated by the 100% correct classification
rate obtained when performing k-NN classification with z1

at the “Optimal” operating point. However, the arbitrary
inferential sensor z1 had a correct classification rate of only
62% at the “Nominal” operating point, highlighting the
need and value of optimizing both the inferential sensor
and operating point for diagnostics.

After validation of the benefit of inferential sensors in FDI,
Alg. 1 was used to create inferential sensors that explicitly
infer the value of thermal fouling resistance Rf from the
measured outputs, at both operating points. The objective
function (6) was selected and optimized through a tree-
based genetic program, using the open source software
GPTIPS 2 (Searson, 2015), to produce an optimal infer-
ential sensor z2 at the “Nominal” operating point and an
optimal inferential sensor z3 at the “Optimal” operating
point (equations shown in Table 2). The uncertain fouling
predictions of z3 (“Inferential Sensor # 3”) is shown in
Fig. 4. The accuracy of the inferential sensor in the pre-
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Fig. 4. PFHE Monte Carlo simulation of the example
inferential sensors z1 and the optimal inferential sen-
sor z3 in Table 2 at the “Optimal” operating point
u1 = 1.00 kg/s. The solid lines show the inferential
sensor output at the anticipated value of uncertainty
in Table 1 for each fault scenario.

diction of thermal fouling resistance for each fault scenario
(anticipated values Rf = {0, 1.4, 4.0, 6.4}) was excellent.
The separation between the four fault scenarios in Fig.
4 makes the classification of data transformed through
the optimal inferential sensor z3 very easy. Specifically,
the correct classification rate was 100% in this case. It
is interesting to note that inferential sensor z3 formed
an analytical relationship between the two temperature
outputs (y1 and y2) while ignoring the pressure outputs
(y3 and y4). A further discussion on the algorithm’s ability
to select sensors that provide more pertinent information
for fault diagnostics will be had in future work.

3.3 Dynamic inferential sensor design

Finally, the trajectories of both the “Nominal” and the
“Optimal” operating points were studied, along with the
transition from the former to the latter. The same issue
of overlap in the measured outputs of Fig. 3 was observed
in the dynamic responses. The challenge of the symbolic
regression algorithm was then to identify invariants (the
constant fault value) in noisy transient data. This issue has
been addressed in Schmidt and Lipson (2009) and a similar
method was deployed here. The invariants in the data were
searched using genetic programming to learn variables that
remain constant in (6). The method presented here was
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successful in finding one inferential sensor that improves
the isolation of each fault scenario for each steady state
(the initial and the final) of the dynamic test. Invariants in
the transient data were approximated satisfactorily, but all
the inferential sensors exhibited some dynamic response,
which currently is under investigation. Overall, algorithm
Alg. 1 with the objective of (6) were shown successful in
developing latent variables that can detect constant faults
at tests that vary over time (variable steady states and
transient data).

CONCLUSIONS

We presented a novel algorithm for developing optimal
inferential sensors and operating points that reduce the
impact of uncertainty on inferred outputs during fault
diagnostics. Techniques from optimization and symbolic
regression were deployed to create inferential sensors with
much richer information, via their mathematical represen-
tations of the measured inputs and outputs. It was shown
that deploying inferential sensors in FDI at an optimal
operating point improves the correct classification rates of
in FDI, achieving rates of 100%.
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