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Abstract - Most parameter ID methods use least squares criterion to fit parameter values to observed 

behavior. However, the least squares criterion can be heavily influenced by outlying data or un-modelled 

effects. In such cases, least squares estimation can yield poor results. Outlying data is often manually 

removed to avoid inaccurate outcomes, but this process is complex, tedious and operator dependent.  

This research presents an adaptation of the Levenberg-Marquardt (L-M) parameter identification method 

that effectively ignores least-square contributions from outlying data. The adapted method (aL-M) is 

capable of ignoring outlier data in accordance with the coefficient of variation of the residuals and was 

thus, capable of operator independent omission of outlier data using the 3 standard deviation rule. The aL-

M was compared to the original Levenberg-Marquardt (L-M) method in C-peptide, insulin and glucose 

data. In total three cases were tested: L-M in the full dataset, L-M in the same data where the points that 

were suspected to be affected by incomplete mixing at the depot site were removed, and the aL-M in the 

full data set.  

There were strong correlations between the aL-M and the reduced dataset from [0.85, 0.71] for the 

clinically valuable glucose parameters. In contrast, the unreduced data yielded poor residuals and poor 

correlations with the aL-M [0.44, 0.33]. The aL-M approach provided strong justification for consistent 

removal of data that was deemed to be affected by mixing.  
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1. INTRODUCTION 

Parameter identification methods are used to determine 

optimal parameter values such that models can accurately 

capture some observed behaviour (Carson and Cobelli, 2001). 

Most parameter identification algorithms identify these 

parameter values by minimising a least squares 

objective/penalty function (Bard, 1970, Davidon, 1991, 

Docherty et al., 2012, Levenberg, 1944, Marquardt, 1963, 

Steihaug, 1983). This means doubling the distance of a data 

point from the modelled behaviour will lead to four times the 

influence from the objective function. 

This approach works well with most datasets, but is a cause of 

inaccurate parameter identification when outlying data is 

present (Sheiner and Beal, 1985). Outliers can cause least-

squares optimal parameter sets to diverge from an optimal 

parameter set defined by ‘inlying’ data points. This issue is 

overcome by performing inverse problems over a number of 

observations, determining the variance of the residuals, then 

defining points outside 3 standard deviations from simulated 

behaviour to be outliers and omitting them from subsequent 

iterations (Pukelsheim, 1994, Bakar et al., 2006). This process 

is time-consuming and can lead to ambiguous outcomes and 

diminished operator independence.  

We previously presented an adaption of the Gauss-Newton 

gradient-descent parameter identification method that reduces 

the contribution of outliers to the inverse problem (Gray et al., 

2016). Subsequently, this adaptation was compared with a 

typical approach through modelling a cohort of C-peptide and 

insulin data and showed that the adapted method can capture 

model parameters obscured by outlier points (Docherty et al., 

2014). This analysis compares very similar methods with the 

addition of glucose modelling, and also compares the adapted 

method to the typical method where the main unmodelled 

outlier data has been manually removed in all datasets.  

2. METHODS 

2.1 Clinical Protocol 

This analysis used data from a dietary intervention study that 

measured the effect of dietary fibre in females at risk of 

developing type 2 diabetes. The outcomes of the trial were 

presented by TeMorenga et al. (2010). Eighty-three 

individuals underwent the DISST (Lotz et al., 2010) at weeks 

0, 12, and 24. Some participants did not attend followup 

appointments and a total of 218 DISST procedures were 

undertaken. 

Participants fasted from 10 p.m. the night before the test and 

attended the clinic in the morning. During the test, participants 
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sat in a relaxed position. They had a cannula placed in their 

antecubital-fossa to administer glucose and insulin boluses, 

and draw blood samples. This ultimately led to high local 

depot concentrations of insulin and glucose after 

administration. A 10 g glucose bolus (50% dextrose) was 

administered at 6 minutes, and a bolus of actrapid insulin was 

administered at 6 minutes. Blood samples were taken at t = 0, 

5, 10, 15, 20, 25, 30, 35, 40, and 50 minutes. Glucose was 

measured at the bedside (Enzymatic glucose hexokinase assay, 

Abbot Labs, Illinois, USA), and samples were then spun and 

frozen for batch assays of insulin and C-peptide (ELISA 

Immunoassay, Roche, Germany).  

2.2 DISST Model 

The DISST model defines glucose, insulin, and C-peptide 

kinetics (Lotz et al., 2010). The models are defined: 

�̇� = 𝑘2𝑌 − (𝑘1 + 𝑘3)𝐶 + 𝑈𝑁 (1) 

�̇� = 𝑘1𝐶 − 𝑘2𝑌  (2) 

𝑈𝑁 = 𝑈𝐵 + 𝑈1(𝑡) + 𝑈2(𝑡) + 𝑈3(𝑡) (1𝑎) 

𝑈B = 𝑘3𝐶0 (1𝑏) 

𝑈1(𝑡) =  {
𝜃1, 𝑡 = 6
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 
(1𝑐) 

𝑈2(𝑡) =  {
𝜃2(60 − 𝑡)/54, 6 ≤ 𝑡 ≤ 60

0, 𝑡 < 6
 

(1𝑑) 

𝑈3(𝑡) =  {
𝜃3(𝑡 − 6)/54, 6 ≤ 𝑡 ≤ 60

0, 𝑡 < 6
 

(1𝑒) 

𝐼̇ =
𝑛𝐼

𝑉𝑝
𝑄 − (𝜃4 +

𝑛𝐼

𝑉𝑝
) 𝐼 + 𝜃5𝑈𝑁 +

𝑈𝑋

𝑉𝑃

 
(3) 

�̇� =
𝑛𝐼

𝑉𝑄

𝐼 − (𝑛𝐶 +
𝑛𝐼

𝑉𝑄

)𝑄 (4) 

�̇� = 𝑝𝐺(𝐺 − 𝐺0) − 𝜃6(𝐺𝑄 − 𝐺0𝑄0) + 𝜃7𝑃𝑋 (5) 

where: 𝑈𝑁 is the endogenous insulin production comprised of 

the basal rate (𝑈𝐵), and first and second phases of insulin 

release (𝑈1−3) (pmol∙L-1∙min-1); 𝑈𝑋 is the exogenous insulin 

dose (mU∙min-1); 𝐶 is the plasma C-peptide concentration 

(pmol∙L-1); 𝑌 is the interstitial C-peptide concentration 

(pmol∙L-1); 𝐼 is the plasma insulin concentration and 𝑄 is the 

interstitial insulin concentration (mU∙L-1); 𝐺 is the blood 

glucose concentration (mmol∙L-1); 𝑃𝑋 is the exogenous glucose 

dose (g∙min-1) 𝑉𝑃 is the plasma insulin distribution volume (L); 

𝑉𝑄 is the interstitial insulin distribution volume (L); 𝑘1−3 are 

the C-peptide kinetic parameters (min-1); 𝑛𝐼 is the plasma-

interstitial diffusion rate (L∙min-1); 𝑛𝐶 is the interstitial insulin 

degradation rate (min-1); 𝑝𝐺  is the non-insulin mediated 

glucose disposal rate (min-1).  

𝜃1−7 are the lumped parameters identified in this analysis. 𝜃1 

is the first phase insulin release, 𝜃2 and 𝜃3 are the start and 

finish of the second phase insulin release, respectively. 𝜃4 is a 

combined metric for renal and hepatic insulin clearance. 𝜃5  is 

equal to 1 minus the first pass hepatic extraction of insulin. 𝜃6 

is the insulin sensitivity of the subject and is the key metric of 

clinical interest. 𝜃7 is the inverse of the glucose distribution 

volume. The remaining parameters from (1) and (2) were 

determined a-priori via the methods of Van Cauter et al. (Lotz 

et al., 2010, Van Cauter et al., 1992). 

2.3 Parameter identification methods 

This analysis compares the outcomes of the adapted 

Levenberg-Marquardt method (aL-M) with the original 

approach (L-M). The original Levenberg-Marquardt 

parameter identification approach iterates towards the optimal 

parameter set (𝛉𝒐𝒑𝒕) with the iterative process: 

𝛉𝑖+1 = 𝛉𝑖 − (𝐉𝐓𝐉 + 𝜆 ∙ 𝑑𝑖𝑎𝑔(𝐉𝐓𝐉))−1𝐉𝐓𝛙 (6) 

where: 

𝐉 =

[
 
 
 
 
 
 
 
𝜕𝜓1

𝜕𝜃1

𝜕𝜓1

𝜕𝜃2

⋯
𝜕𝜓1

𝜕𝜃𝑛

𝜕𝜓2

𝜕𝜃1

𝜕𝜓2

𝜕𝜃2

⋯
𝜕𝜓2

𝜕𝜃𝑛

⋮ ⋮ ⋱ ⋮
𝜕𝜓𝑚

𝜕𝜃1

𝜕𝜓𝑚

𝜕𝜃2

⋯
𝜕𝜓𝑚

𝜕𝜃𝑛 ]
 
 
 
 
 
 
 

 (6𝑎) 

𝛙 = [𝑋(𝛉𝒊, 𝑡𝑗) − 𝑋𝑀,𝑗] =

[
 
 
 
𝑋(𝛉𝒊, 𝑡1) − 𝑋𝑀,1

𝑋(𝛉𝒊, 𝑡2) − 𝑋𝑀,2

⋮
𝑋(𝛉𝒊, 𝑡𝑚) − 𝑋𝑀,𝑚]

 
 
 

 (6𝑏) 

and 𝐉 is a Jacobian, 𝛙 is the residual vector, 𝑋 is the measured 

property; 𝑗 is the sample index from 1 up to the number of 

samples (m, 𝑗 = 1..m); 𝑋(𝛉𝒊, 𝑡𝑗) is the simulated value of 𝑋 at 

𝑡 = 𝑡𝑗; and 𝑋𝑀,𝑗 is the measured value of 𝑋 at 𝑡 = 𝑡𝑗. The 

damping term 𝜆 scales based on the Jacobian value. In contrast 

to typical implementation of L-M, 𝜆 is set as a constant in this 

analysis. This sacrificed some convergence speed but enabled 

more stable and consistent iteration. 

The aL-M was designed to dissipate the contribution of 

outlying data on the identification of  𝛉𝒐𝒑𝒕. The Gauss-Newton 

method defines the optimal direction, given by the combined 

Jacobian terms ((𝐉𝐓𝐉)−1𝐉𝐓), for reducing residuals of each data 

point, for each parameter. These direction vectors are 

multiplied by the residual matrix to determine the ideal 

direction for convergence. The adapted method modulates the 

effect of the residual vector by the residuals, but still uses the 

Jacobian in (6a). This contrasts with other robust estimation 

methods which use the long-established class of M-estimators 

(Farcomeni and Ventura, 2012, Banaś and Ligas, 2014). 

Hence, the adapted method reduces the effect of outliers on 𝛙 

in (6), while inheriting the robustness properties of Gauss-

Newton, substituting 𝛙 for �̂�:  
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𝛉𝑖+1 = 𝛉𝑖 − (𝐉𝐓𝐉 + 𝜆 ∙ 𝑑𝑖𝑎𝑔(𝐉𝐓𝐉))−1𝐉𝐓�̂� (7) 

where: 

�̂� = 𝛙⨀ exp (
−|𝛙|

𝛽|𝜓𝑀|
) 

(7𝑎) 

|𝜓𝑀| is the median of the absolute values of the residuals and 

𝛽 is a scaling factor that determines the width of the peak as a 

function of |𝜓𝑀|. In this analysis, 𝛽 = 3. This value provides 

maximal objective function contributions at 𝜓 = ±𝛽|𝜓𝑀|, 
shown in Fig. 1. In contrast, the objective surface of typical 

Gauss-Newton minimises least-squares residuals and thus 

follows 𝜓2 as 𝜓 increases. The choice of 𝛽 significantly down-

weights outlier data over three standard deviations, in 

accordance with accepted statistics for rejection (Pukelsheim, 

1994, Bakar et al., 2006). 

 

Fig. 1. Objective contributions from (6) and (7). 

Three identification approaches were used to identify 𝛉: L-M 

with the full dataset (L-Mf), L-M with a down-sampled dataset 

(L-Mds), and the aL-M with the full dataset. First, the L-M and 

aL-M approaches were used to identify the parameter set 𝛉 =
[𝜃1, 𝜃2, 𝜃3]

𝑇, to determine the contributions to 𝑈𝑁 using the C-

peptide data. This generated two sets of 𝑈𝑁 profiles and two 

sets of residuals for each DISST trial. The 𝑈𝑁 profiles were 

then used to identify the insulinaemic pharmaco-kinetic 

parameters 𝛉 = [𝜃4, 𝜃5]
𝑇. The UN profile determined via the 

aL-M methodology was used for the aL-M estimation in the 

full insulin dataset. The UN profile determined using L-M was 

used to identify the insulinaemic parameters using the L-M 

method, and the full insulin data set, then in a dataset that had 

the point 5 minutes after insulin administration manually 

removed. Finally, the modelled interstitial insulin 

concentration (𝑄(𝑡)) was used to identify 𝛉 = [𝜃6, 𝜃7]
𝑇 using 

the glucose data. The aL-M derived 𝑄(𝑡) profile was used to 

identify glycaemic parameters with aL-M. The 𝑄(𝑡) profile 

from L-Mf was used to identify glucose parameters in the full 

data set. Finally, the 𝑄(𝑡) profile from the L-Mds was used to 

aid identification of glycaemic parameters in a dataset that had 

the glucose samples 5 and 10 minutes after glucose 

administration removed. Visual inspection showed that 

glucose had slower mixing behaviour than insulin.  

2.4 Evaluation 

The 3 approaches were assessed qualitatively based on the 

model residuals. Since the typical approach minimises ‖𝛙‖2 

and the adapted approach minimises ‖�̂�‖
2
, the methods 

cannot be quantitatively compared. To highlight the 

differences in the approach outcomes, both summary statistics 

of absolute 𝜓 values and residuals as a function of time (𝜓(𝑡)) 

will be presented. 

3. RESULTS 

Correlations between the methods are presented in Table 1. 

Samples at 𝑡 = 20 minutes for insulin, and 𝑡 =10, 15 minutes 

for glucose were removed from the datasets to form the 

‘downsampled’ parameter identification set. The adapted 

results correlated well to the downsampled glucose 

parameters, but were not so well correlated for the insulin 

parameters.  

Table 1. Summary statistics of parameter correlations 

Set 1 Set 2 Parameter Correlations  

L-Mf aL-M [0.96, 0.92, 0.91, 0.44, 0.08, 0.44, 0.33] 

L-Mds aL-M [0.96, 0.92, 0.91, 0.27, 0.26, 0.85, 0.71]  

L-Mds L-Mf [1.00, 1.00, 1.00, 0.21, 0.11, 0.68, 0.15] 

Summary statistics of the absolute residual data are presented 

in Table 2. This residual data was not moderated by equation 

7a in any case, indicating a discordance across the objective 

function and residuals recorded for the aL-M.  

Fig. 2 shows a set of responses in which outliers appear at the 

locations where the residuals are biased. Fig. 3 shows the 

distribution of the residuals about the measured points (𝛙). C-

peptide samples are relatively well centred about zero and 

follow a seemingly normal distribution. In contrast, both the 

insulin and glucose residuals were sporadic, showing biases 

during the mixing phases at 𝑡=20 minutes for insulin, and 𝑡=10 

minutes for glucose. 

4. DISCUSSION 

The adaptation to the Levenberg-Marquardt parameter 

identification method yielded different results to the typical 

approach. By minimising a residual that represents a majority 

of the datapoints and mitigating the contribution from outliers, 

the adapted method produced residuals that were qualitatively 

different from the original method (Figs. 2 and 3). The residual 

curves of the aL-M approach resembled those of the L-Mds, 

which identified parameters in data wherein the most common 

outliers had been removed.  
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The adapted method performs similarly to the original 

approach in noisy data that does not contain outliers, providing 

no benefit nor deleterious outcomes. However, when data 

contains known outliers, the adapted method considerably 

improves identification. The correlations in C-peptide 

parameters 𝜃1−3 were between 0.91 and 0.96 (Table 1). These 

high correlations occurred as the C-peptide data contained 

measurement noise but no significant outliers, and the adapted 

method varied minimally from the original approach.  

However, the insulin and glucose data both had un-modelled 

mixing behaviour that led to outlying data. This caused 

significant divergence in parameter values obtained (R=0.08 – 

0.44 for the insulin parameters, and R=0.33 – 0.44 in glucose 

parameters). The aL-M method recognised the outlier points 

and minimised their contribution to convergence in the 

parameter space. Fig. 3 shows where biases occur in the 

models for the insulin and glucose data. In the insulin data, the 

original approach models the t = 20 minutes data point more 

accurately than the adapted approach. However, this data point 

is affected by incomplete mixing of insulin at the depot site, 

and is thus, an unmodelled phenomenon. Hence, this point was 

a consistent outlier in measured data, and an ideal fit for this 

data would not be influenced by this point. The adapted 

method increased the apparent residuals at the outlier data 

point in order to improve fit for the points that were well 

approximated by the model. Fig. 2 and Fig. 3 indicate 

performance of the aL-M was comparable to the manual 

removal of outliers undertaken in the L-Mds approach. 

The glucose data also benefits from the use of the adapted 

method, though not as much as the insulin. The first two 

datapoints have the most bias due to mixing at t = 10, 15 

minutes, and adapted method again decreases their 

contribution to the objective surface and follows the remaining 

datapoints closely. Table 1 shows that the aL-M method 

displays good correlation with the L-Mds method (R=0.85, 

R=0.71), compared to the original approach (R=0.44, R=0.33).  

The higher correlation was for insulin sensitivity, which is the 

primary metric of interests in glycaemic modelling (Ferrannini 

et al., 1997, Haffner et al., 1999, Bergman et al., 1979). 

This study considered applying a simple Gauss-Newton 

algorithm similar to the methods from Gray et al. (2016). 

However, this method was susceptible to instability when 

outliers were particularly severe in data. While adapted Gauss-

Newton was stable, the un-adapted method became unstable 

and led to extreme residuals for several trials, preventing 

proper comparisons. Hence, a simplified version of the 

Levenberg-Marquart algorithm was used. This required more 

iterations to converge, but allowed consistent and stable 

results.   

 

 

Table 2. Summary statistics of model residuals 

Model Approach Percentiles of Relative Residuals 

(as percentage of observed data) 
[ψ25, ψ50, ψ75, ψ95, ψ99] 

C-peptide 

[pmol.L-1] 

L-M 

aL-M 

[0.55, 1.69, 3.62, 8.24, 13.6] 

[0.08, 0.96, 3.58, 9.89, 20.6] 

Insulin 

[mU.L-1] 

L-Mf 

L-Mds 

aL-M 

[13.2, 34.8, 78.0, 304, 1219] 

[6.94, 17.4, 35.6, 100, 283] 

[4.82, 14.8, 36.4, 75.9, 138] 

Glucose 

[mmol.L-1] 

L-Mf 

L-Mds 

aL-M 

[0.86, 2.82, 5.54, 15.5, 31.3] 

[0.40, 1.52, 3.35, 12.4, 24.4] 

[0.28, 1.54, 4.52, 14.0, 28.7] 

 

Fig. 2. Plasma C-peptide, insulin, and glucose responses of a 

patient response to the DISST test with noticeable outliers in 

the insulin and glucose data.  
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C-peptide data did not benefit from the adaptive method 

overall. While the interquartile ranges remained similar, the 

extreme outliers out spread further, creating outlier residuals. 

This suggests the adapted method is not beneficial in every 

case, and that the nature of noise in the data should be 

considered before choosing to use the method. In particular, 

the method should be used when there are significant outliers 

or unmodelled effects. This may be due to the method relying 

on inlier datapoints meeting or exceeding the number of 

identified parameters. With three parameters to identify and 

random noise sometimes creating too many points that classify 

as outliers, the method may return a poor model, this could 

potentially be ameliorated by shifting to a 75th percentile 

residual in Eq. 7a rather than the median, 50th percentile. 

The adapted method is relatively simple to add to the 

parameter identification methods, and computationally 

inexpensive. The adapted method removes need for the manual 

removal of outlier data. Removing outlier data using other 

applications often requires two runs of the inverse problem: 

once to simulate a model, then again after datapoints that fall 

at more than three standard deviations from the model have 

been removed. This is costly in operator time, and risks 

reducing operator independence. 

The presence of outliers is often suspected a priori. In 

particular, outliers can be observed when recording data, or 

through plotting the data before initiating parameter 

identification. However, it can be difficult to determine which 

data points should be declared outliers with statistically 

justified scientific integrity. This analysis shows that removing 

  

Fig. 3. Residual plots for C-peptide, insulin, and glucose. The plots on the right are cropped to show the general behaviour. The 

thick error bars show the interquartile range, thin error bars show the 5th to 95th percentile range, and the dots show the outlying 

points. The time points are offset for L-Mds and aL-M to enable clearer observation. 
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points directly after mixing is justified according to the 

operator independent aL-M algorithm that automatically 

applies well-known statistical justification (Pukelsheim, 1994, 

Bakar et al., 2006). Further research could be performed to 

directly compare the adapted method with a downsampled 

method that does two runs of the inverse problem to properly 

remove outlier points.  

5.  CONCLUSIONS 

In this analysis we tested the aL-M method against a more 

typical Levenberg-Marquardt method where outliers were 

both kept in, and manually removed. The methods were tested 

for both noisy data that contained outliers and un-modelled 

effects, and data that were only noisy. The aL-M method 

captured observed behaviour better in data that contained un-

modelled effects or outlying data, performing similarly to the 

typical method following a manual removal of outliers. It 

provided minimal changes in identification to data that was 

just noisy.  

Overall, this analysis showed that the data immediately after 

bolus administration are consistently affected by unmodelled 

mixing. This paper provides a statistical justification for 

consistent removal of these points in accordance with the 3-

sigma rule outlier detection rule.  
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