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Abstract:
The force transmitted from the front tires and tie rods to the steering rack of a vehicle, called
the rack force, significantly influences the torque experienced by a driver at the steering wheel.
As a result, estimates of rack force are used in a wide variety of advanced driver assist systems.
Existing methods for producing rack force estimates are either susceptible to steering system
disturbances or are only applicable for driving on roads with low frequency profile variations such
as road slopes. In this paper we present a model that can produce disturbance-free rack force
estimates for driving on roads with high frequency profile variations, such as road cleats and
potholes, in addition to roads with low frequency profile variations. We validate the estimation
accuracy of our model by presenting results from two driving experiments that were performed
on test tracks with known low and high frequency road profile variations. We further demonstrate
the merits of our model relative to the existing models by comparing the various estimates to
rack force measurements obtained using a sensor mounted in the test vehicle.
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1. INTRODUCTION

The torque feedback experienced by a driver at the steer-
ing wheel plays an important role in the lateral control
of a vehicle. The steering feedback couples the driver’s
hands and arms to the vehicle and makes the driver aware
of the state of the vehicle, the road conditions, and the
environment. This enables the driver to plan and choose
the driving inputs that would achieve a desired vehicle tra-
jectory and is therefore critical to smooth and controlled
vehicle maneuvers (Dornhege et al. (2017)).

A significant portion of the steering torque feedback comes
from the steering rack force, which is defined as the force
transmitted from tires to the steering rack of a vehicle
through the tie rods. When a driver performs a maneuver,
forces and moments are generated at the tire contact patch
(as a result of tire-road interaction) that counteract the
effort applied by the driver. These forces and moments
get transmitted to the steering rack through the tie rods
as the rack force that in turn is transmitted as a torque
feedback at the steering wheel through the steering pinion
and steering column. The tire forces and moments, and
hence the rack force, depend on the driver’s inputs (such
as steering angle and speed) and the road profile variations
(such as road slopes, cleats, and potholes).

⋆ This work was supported by Ford Motor Company under a
Ford/U-M Alliance Project UM0146.

Apart from the rack force, the steering torque feedback
is also influenced by disturbance forces that result from
the elements internal to the steering system, for example,
suspension asymmetries, steering system friction, wheel
rotor imbalance, and brake torque variations (Pick et al.
(2007); Dornhege et al. (2017)). Such disturbances must be
rejected as they are not useful feedback to the driver and
can potentially be dangerous. Likewise, it is also important
to attenuate the influence of steering rack force on the
torque feedback so that the driver has to apply less effort
to counteract the rack force. However, the rack force must
not be completely rejected as it is important for the driver
to maintain awareness of the state of the vehicle and the
road conditions.

To address these requirements, modern electric power
steering (EPS) systems utilize estimates of steering rack
force (Grüner et al. (2008)) to overlay controlled amounts
of torque at the steering wheel to improve the quality of
steering feedback. For example, EPS applications such as
disturbance rejection controllers (Dornhege et al. (2017),
Pick et al. (2007), Blommer et al. (2012)), lane keep-
ing assist systems, and steer-by-wire position controllers
(Fankem et al. (2014), Nehaoua et al. (2012)) use the
estimates of rack force in their control algorithms. Apart
from EPS, rack force estimation is also useful in designing
steering feedback in driving simulators, hardware in the
loop simulators (Nehaoua et al. (2012); Segawa et al.
(2006)), and in performing steering system evaluation and
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bench-marking (Wang and Esser (2016)). Unfortunately,
reliable and durable measurement systems for rack force
are expensive. Therefore, estimation of rack force using
real time capable models has been of recent interest in
the literature (Dornhege et al. (2017); Pick et al. (2007);
Fankem et al. (2014); Blommer et al. (2012); Nehaoua
et al. (2012); Wang and Esser (2016)).

Three real-time capable methods to estimate the rack
force exist in the literature. The first method is based
on identifying a model for rack force based on experi-
mental data using system identification techniques (Wang
and Esser (2016); Blommer et al. (2012)). In Wang and
Esser (2016), several driving experiments were conducted,
and a rack force model was identified by characterizing
the relationship between measurements of rack force and
rack displacement. A disadvantage of system identification
based rack force estimation methods is in their limited
applicability in maneuvers and vehicle configurations dif-
ferent from the ones for which they are identified. Also,
currently these methods do not suggest a way to incor-
porate road profile variations in the models. The second
rack force estimation method that exists in the literature
is based on an input observer that uses steering system
sensors and a lumped parameter model of the steering
system (Dornhege et al. (2017); Fankem et al. (2014);
Blommer et al. (2012); Nehaoua et al. (2012)). The rack
force estimates produced by this method are applicable
in a wide variety of maneuvers and road profile varia-
tions and have been validated using measurements from
rack force sensors (Dornhege et al. (2017); Fankem et al.
(2014); Blommer et al. (2012)). However, the estimates
of rack force produced by this method are susceptible to
disturbance forces that act within the steering system as
shown in Dornhege et al. (2017).

The third and final rack force estimation method uses
vehicle and tire dynamics models to determine the steering
rack force based on sensed driver inputs (Dornhege et al.
(2017); Pick et al. (2007); Koch (2010); Segawa et al.
(2006)). By using only the driver inputs, this method
eliminates the presence of any disturbance forces in the
estimated rack force (Dornhege et al. (2017)). However,
this method currently ignores the presence of road profile
variations and only considers the driver’s inputs when
estimating the rack force. In our work, we have attempted
to fill this gap by extending the vehicle and tire dynamics
based rack force estimation method to incorporate road
profile inputs (that is, the dimensions of road unevenness).

In a previous paper, we presented two models, a 2DOF
model and a 3DOF model, to estimate rack force (Bhard-
waj et al. (2019)) due to road profile variations. These
models could however only capture the effect of lateral
road slopes (road banks), and longitudinal road slopes
(road grades) on the rack force which are generally cat-
egorized as low frequency road profile variations (< 8Hz)
(Pacejka (2005)). In this paper, we extend our previous
work and present a new model that we call RR (Rigid
Ring) Model, that can also estimate rack force due to
higher frequency road profile variations such as oblique
cleats, curbs and potholes (8Hz−80Hz) (Schmeitz (2004),
Zegelaar and Pacejka (1996)). To validate the estimation
accuracy of the developed RR Model, we present the
results from two driving experiments and compare the

estimates produced by the RR Model in these experiments
with those produced by the rack force sensor mounted in
the vehicle, the 3DOF model developed in our previous
paper, and a vehicle dynamics model existing in the liter-
ature that does not account for road profile variations.

This paper is structured as follows. In Section 2 we present
the modeling framework and present the details of the RR
Model followed by the details of the experimental setup in
Section 3 that was used to validate the estimation accuracy
of the model. Section 4 presents the results of the driving
experiments on varying road slopes and on road cleats of
known dimensions. Section 5 presents the conclusions of
the paper.

2. MODELING

Figure 1 describes the overall structure of a dynamic model
that can be used to estimate the steering rack force. Three
inputs were required in the model; namely, steering angle,
vehicle speed, and road profile inputs (which include lat-
eral road slope or longitudinal road slope or cleat/pothole
dimensions).

Fig. 1. The estimates of steering rack force were produced
by a communicating vehicle model and tire model
given road profile, steering angle, and vehicle speed.

Using these inputs, a dynamic model of the vehicle was
developed to generate the vehicle states (lateral speed,
yaw rate, roll angle, etc.) which were fed into a tire
slip model that determines the slip angles of the tire.
Normal tire forces were computed using the road profile
inputs. Normal tire forces along with the slip angles, were
used to compute the tire forces and moments which were
again used as inputs to the vehicle model to generate the
states for the next time interval. During this process, the
aligning moments resulting from the tire model were used
to determine the steering rack force (using information of
the transmission mechanics of tire moments to rack force).

2.1 Vehicle Model

A 2 DOF bicycle model was used as the vehicle model with
the RR Model. A detailed derivation of this vehicle model
can be found in Bhardwaj et al. (2019). Here we simply
provide the equations of motion that produce the vehicle
states that are used in the tire model discussed in the next
subsection.
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Consider a vehicle of mass m and yaw inertia I driving
with steering angle δ, and speed u. Let the lateral slope of
the road be θ, the vehicle yaw angle be ψ, and let the forces
on the vehicle’s front and rear tires in the longitudinal and
lateral directions respectively be denoted by Fxf , Fxr and
Fyf , Fyr. Then assuming steering angle δ is small, the two

degrees of freedom, namely, lateral speed v and yaw rate ψ̇
for driving on lateral slope are governed by the following
differential equations

mv̇ +muψ̇ +mg sin θ = Fyf + Fyr

Iψ̈ = lfFyf − lrFyr,
(1)

Where lf and lr are the distances from the vehicle’s center
of gravity to the front and rear axles, respectively.

For driving on a longitudinal slope, the lateral speed and
yaw rate are simply governed by the following equations

mv̇ +muψ̇ = Fyf + Fyr

Iψ̈ = lfFyf − lrFyr

(2)

2.2 Tire Model

Longitudinal and lateral slopes are categorized as lower
frequency (or longer wavelength) road profile variations.
For such variations, the profile (or geometry) of the road
surface can be used directly as an input to the vehicle and
tire models. However, for higher frequency road profile
variations, such as road cleats and potholes, the first
step is to reconstruct the profile of the road (Zegelaar
and Pacejka (1996)). This is because while driving on a
cleat or a pothole, the tires deform significantly due to
their elastic properties. And because of their deformation
and geometry, the road profile that the tires experience,
called the “effective road profile”, is significantly different
from the actual profile of the road on which the tires are
traversing (Schmeitz (2004)). One often says that the tires
filter (or smoothen) the sharp edges of road cleats and
potholes (Zegelaar and Pacejka (1996)).

As mentioned in Zegelaar and Pacejka (1996), an effective
road profile can be generated using a “tire enveloping
model”. In this paper, we used a semi-empirical three
dimensional tire enveloping model introduced in Schmeitz
(2004) to determine the effective road profile. This model
produces an effective road profile in the form of three road
geometry parameters: effective tire height w, effective tire
lateral slope βx, and effective tire longitudinal slope βy. In-
puts to the tire enveloping model are the dimensions of the
cleat (length, height, width, and angle), and the location
of the cleats. A detailed description of this tire enveloping
model can be found in Schmeitz (2004) (Chapter 4). The
purpose of this section is to describe the simplified Rigid
Ring tire model that was used to obtain the tire forces and
moments using the effective road profile obtained from the
enveloping model.

Consider the case of driving on a flat road with no
unevenness as shown in Fig. 2. Suppose the tire has a
vertical stiffness Cz and suppose that under a normal
force Fz (acting due to vehicle’s weight), the tire displaces
vertically by a distance za. Then, the normal force Fz for
this tire can be given by

Fz = Czza (3)

Road

Unloaded

Tire

Loaded

Tire

Fig. 2. A tire rolling over a flat road profile experiences a
vertical tire deflection za that is roughly proportional
to the normal load Fz acting on the tire.

Also, by applying a vertical force balance on a vehicle
traveling on a road with slope θ (lateral or longitudinal),
the normal force Fz can be written as

Fz =



















mglr cos θ

2(lf + lr)
for the front tires

mglf cos θ

2(lf + lr)
for the rear tires

(4)

Then using equations (3) and (4), za can be determined
as follows

za =



















mglr cos θ

2Cz(lf + lr)
for the front tires

mglf cos θ

2Cz(lf + lr)
for the rear tires

(5)

Now consider the case of driving on an arbitrary high
frequency road unevenness such as an oblique cleat. Fig.
3 shows three orthogonal views of a tire hitting a cleat at
an impact angle γ. We will use this figure to develop a
model for tire lateral force Fy that is used to estimate the
associated tire aligning moment and rack force.

Looking at the side view of Fig. 3, we see that when a
tire hits an oblique cleat, it displaces upwards and the tire
center o moves to o′. The vertical distance between o and
o′ is denoted by w and the overall displacement of the
loaded tire on the cleat with respect to the unloaded tire
is denoted by ρz. Moreover, the deformation of the tire
converts the “step” profile of the cleat into an effective
longitudinal tire slope βy. As mentioned previously, both
w and βy can be obtained using semi-empirical tire en-
veloping models. Displacement w and angle βy along with
za obtained in Equation (5) can be used to determine the
radial deflection of the tire ρz as follows

ρz = (w − za) cosβy. (6)

Now, looking at the front view of Fig. 3, we see that along
with experiencing a longitudinal tire slope βy, the tire also
experiences a lateral slope βx due to the obliqueness of the
cleat. Angle βx along with tire deflection ρz (Equation 6)
can be used to estimate the radial tire force using the
following semi-empirical equation (Schmeitz (2004))

F rad
z = qFz1(1 + qFz3(βx)

2)ρz + qFz2ρ
2

z, (7)

where qFz1, qFz2, and qFz3 are tire parameters that can
be determined using empirical tests.

When a tire is loaded against a cambered road surface, a
side force FyN is developed on it due to non-symmetric
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Top View

Cleat
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Front View Side View
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Cleat

Cleat
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Tire
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Fig. 3. A tire rolling over a high frequency road unevenness
such as an oblique road cleat experiences a road profile
different from the actual profile of the road. Three
orthogonal views demonstrate how a road with an
oblique cleat can be transformed into an effective road
profile with an effective lateral slope βx, an effective
longitudinal slope βy, and an effective tire height w.
The forces acting on the tire on an effective road
profile are also shown.

deformation of the tire sidewalls. This side force is called
the “non-lagging” lateral force. The effective lateral slope
βx, and the radial tire force F rad

z (obtained in equation
(7)) can be used to determine the non-lagging force FyN

using the following empirical model

FyN = (DN sin(CN arctan(BNβx))) cosβx−

F rad
z sinβx,

(8)

where the coefficients DN , CN , and BN are functions of
the radial tire force F rad

z and tire normal force Fz.

Looking at the front view of Fig. 3, the non-lagging tire
force FyN and the radial tire force F rad

z can then be used
to estimate the contact patch force FcN acting normal to
the tire contact patch as follows

FcN =
1

cosβx
(F rad

z + FyN sinβx) (9)

Finally, using the Rigid Ring Tire Model, the tire lateral
force Fy can be estimated using the following expression
(Schmeitz (2004))

Fy = Dy sin(Cy arctan{Byαy − Ey(Byαy−

arctan(Byαy))}) + SV y,
(10)

and the resulting aligning moment Mz acting on a single
tire can be estimated using

Mz = −tFy +Dr cos(arctanBrαr), (11)

where the pneumatic trail t is given by

t = Dt cos(Ct arctan{Btαt − Et(Btαt − arctan(Btαt))}),

and the slip angles (αy, αt, and αr) are given by

αy = SHy + tanα, αt = SHt + tanα, αr = tanα.

The coefficients: By, Br, Bt, Cy, Ct, Dy, Dr, Dt, Ey, Et,
SHy, and SHt are either constants or are functions of slip
angles (αy, αt, and αr), tire normal force Fz, and contact
patch normal force FcN (Schmeitz (2004)).

The slip angle α can be obtained using the vehicle states
obtained in Section 2.1 using the following expression
(Ulsoy et al. (2012))

α = arctan

(

v + lf ψ̇

u

)

− δ, (12)

Using equation (11), we can find the aligning moment for
the front left tireMz1 and for the front right tireMz2. The
steering rack force is then simply given by

FR = ip(Mz1 +Mz2), (13)

where the constant ratio ip defines the tire moment to rack
force transmission ratio for a vehicle.

2.3 Model Assembly

Referring back to Fig. 1, the vehicle states (lateral speed

v and yaw rate ψ̇) are produced by the vehicle model
represented by equations (1) and (2). The vehicle states are
then used to find the tire slip angle α using equation (12).
The vehicle’s weight and road profile inputs are used to
compute the tire contact patch normal force using equation
(9). Tire slip angles and normal forces are used to find tire
lateral forces and aligning moments using equations (10)
and (11). The tire forces are fed back in the vehicle model
in equation (1) and equation (2) to generate the vehicle
states for the next time instant. During this process, the
rack force for each time instant is obtained using equations
(11) and (13).

3. METHODS

To validate the performance of the RR Model for produc-
ing estimates of rack force, the following driving experi-
ments were performed:

(1) Experiment 1: Driving on a crowned road
This experiment was performed on a crowned road
with a large lateral slope of about 11◦ on the two
sides. The vehicle was driven from one side of the
road crown to the other side.

(2) Experiment 2: Driving on a road with cleats
This experiment was performed on a road with thir-
teen 4 cm long metal cleats of known heights: the
first four cleats were 1 cm tall, the next five cleats
were 2 cm tall, and the rest of the cleats were 3
cm tall. The steering angle was intentionally varied
between approximately −50◦ and 50◦ so that the
vehicle impacted the cleats at an angle (roughly equal
to the steering angle) to test the performance of the
models when driving on arbitrarily uneven roads.

The experiments were conducted on a Lincoln MKX ve-
hicle equipped with Pirelli AS tires. Tire model specific
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parameters used in the RR Model were taken from Pacejka
(2005) and Schmeitz (2004). Other vehicle specific pa-
rameters can be found in Bhardwaj et al. (2019). The
model-based estimates of rack force were compared to
measurements from strain gauges installed on the tie rods
of the test vehicle, to the estimates of the 3DOF model
developed in our previous work (Bhardwaj et al. (2019)),
and also to the estimates of a vehicle dynamics model
existing in the literature (Dornhege et al. (2017)). We use
the label 2DOF-FR (where FR stands for ‘flat road’) to
refer to the existing model since this model uses a 2DOF
vehicle model and ignores road profile variations during
rack force estimation.

The steering angle and the longitudinal velocity were
measured using steering angle and tire speed sensors
respectively. During the driving tests, a rapid control
prototyping platform (dSPACE MicroAutoBox) was used
to link sensed steering angle and vehicle speed signals with
an online simulation of the dynamic models (integrated
in real-time Simulink), using CAN-bus communications
at 250 Hz. The road slopes (longitudinal and lateral)
were measured using slope measurements from a high
fidelity IMU (OXTS RT3003 v2) installed in the vehicle
that transmitted signals at 100 Hz. The cleat dimensions
(height, width and length) were physically measured on
the track where the tests were performed.

4. RESULTS AND DISCUSSION

The differences between the 2DOF-FR Model, the 3DOF
Model, and the RR Model were apparent in the compari-
son of their estimation errors as shown in Table 1.

Table 1. Mean absolute estimation errors (N)
for the two experiments

Model/Experiment Experiment 1 Experiment 2

2DOF-FR (Flat Road) 645.14 229.36

3DOF 108.23 193.60

RR (Rigid Ring) 101.14 136.89

For driving on a crowned road with large slope variation
in Experiment 1, we found that the rack force estimates
produced by both the 3DOF model and the RR model
agreed well with the sensor measurements (see Fig. 4). As
expected, the estimation accuracy of the 2DOF-FR Model
was lower than both the 3DOF model and the RR model
because the 2DOF-FR did not incorporate road slopes
in estimation. Interestingly, despite the differences in the
tire models used in the 3DOF Model and the RR Model,
the estimation performance of the two models were only
marginally different from each other.

While driving on road with cleats in Experiment 2, we
saw that the RR model showed the highest accuracy out
of all the models as shown in Table 1. This was especially
apparent at the instances when the tires hit the cleats (as
demonstrated by the insets in Fig. 5) indicating that the
RR model could successfully account for high frequency
road profile variations in the estimation of rack force.

The results from the two experiments showed that both the
3DOF model and the RR Model performed better than the
2DOF-FR model, and could therefore estimate the rack

(a) Input: Lateral slope of the road

Velocity

Steering Angle

(b) Inputs: Steering angle and vehicle speed

Rack Force
Estimate

(2DOF-FR)

Measured
Rack Force

(c) Rack force estimated with the 2DOF-FR Model and measured
using sensor

Rack Force
Estimate
(3DOF)

Measured
Rack Force

(d) Rack force estimated with 3DOF Model and measured using
sensor

Rack Force
Estimate

(RR)

Measured
Rack Force

(e) Rack force estimated with RR Model and measured using sensor

Fig. 4. Experiment 1 performed on a crowned road. (a)
Input Lateral Slope. (b) Input steering angle and
input velocity (approximately constant at 5.5 m/s).
(c) Rack Force estimated using the 2DOF-FR model
and measured using sensor. (d) Rack Force estimated
using the 3DOF model and measured using sensor.
(e) Rack Force estimated using the RR model and
measured using sensor.

force accurately due to road profile variations (which were
ignored in the 2DOF-FR model). Moreover, Experiment
1 showed that even though the RR Model used a tire
model of higher complexity than the tire model used in
the 3DOF model, the performance of the two models were
similar for driving on road slopes. On the other hand, in
Experiment 2 when the tires hit the oblique cleats, the RR
Model demonstrated a higher estimation accuracy as only
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Velocity

Steering Angle

(a) Inputs: Steering angle and vehicle speed

Rack Force
Estimate

(2DOF-FR)

Measured
Rack Force

(b) Rack force estimated with 2DOF-FR Model and measured using
sensor

Rack Force
Estimate
(3DOF)

Measured
Rack Force

(c) Rack force estimated with 3DOF Model and measured using
sensor

Rack Force
Estimate

(RR)

Measured
Rack Force

(d) Rack force estimated with RR Model and measured using sensor

Fig. 5. Experiment 2 performed a road with cleats. (a)
Inputs: steering angle (representing a slalom maneu-
ver) and velocity (approximately constant at 8.8m/s).
(b) Rack Force estimated using the 2DOF-FR model
and measured using sensor. (c) Rack Force estimated
using the 3DOF model and measured using sensor.
(d) Rack Force estimated using the RR model and
measured using sensor.

the Rigid Ring tire model had the ability to capture the
effect of tire deformation due to high frequency road profile
variations in the estimation of tire forces and moments.

5. CONCLUSION

In this paper, we presented a model that can estimate rack
force for driving on uneven roads. We validated the perfor-

mance of our model by performing driving experiments on
two test tracks with known low and high frequency profile
variations. Furthermore, we compared the performance
of our model with the performance of two existing rack
force estimators. We found that our model supports better
estimation performance than the existing models for driv-
ing on roads with high frequency profile variations, such
as road cleats and potholes. However, for low frequency
road profile variations, such as road slopes, the estimation
accuracy of our model was almost similar to the accuracy
of one of the existing models. In the future, we would like
to estimate the effect of tire model, independent of the
vehicle model, on the accuracy of rack force estimation.
We would also like to explore the utility of our model in
various EPS applications and in improving steering feel.
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