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Abstract: In this paper we present an extension of the carrier-vehicle problem for the case of
delivery in an urban environment. The small vehicle, namely a drone, performs the delivery of
goods at the customer address while the large vehicle is in charge of transporting, launching,
recovering and servicing the drone. In this work it is assumed that the take-off and landing points
are not at the location of the customer but fixed spots predefined by the city. In this context,
the truck is allowed to advance during the drone delivery, providing a landing location closer
to the following client and reducing the route completion time. The selection of these spots is
restricted by the autonomy of the drone and the velocity of both vehicles. The urban environment
is addressed by defining a different distance metric for the aerial and the terrestrial vehicle,
respectively. The paper presents a mixed-integer linear programming formulation which allows to
solve the given problem of computing the truck routes and selecting the optimal takeoff/landing
spots in reasonable time. Illustrative examples of this problem and a computational analysis of
the presented solution conclude the paper.

Keywords: Mission planning and decision making, Multi-vehicle systems, Trajectory and Path
Planning.

1. INTRODUCTION

The use of autonomous vehicles is incessantly gaining
ground in daily life activities. Their technological advance-
ments in terms of performance and reliability have been
gathering the attention of several fields (Hengstler et al.,
2016; Batalden et al., 2017). In this context, delivery
and transportation tasks have raised as one of the their
main areas of application, where the capabilities of these
systems are highly appreciated and demanded (Bagloee
et al., 2016).

Transportation and delivery problems have been widely
studied by the scientific literature. How to combine a
fleet of vehicles and to compute their optimal routes has
been established as one of the well known combinatorial
optimization problems in the literature. The so-called
Vehicle Routing Problem (VRP), introduced by the two
seminal papers Dantzig and Ramser (1959); Clarke and
Wright (1964), has been subject of several studies and
variants all over the years (Kumar and Panneerselvam,
2012; Braekers et al., 2016).

The city environment is often included in this kind of prob-
lems. Most cities present complicate street distributions
and areas with no access for big transportation vehicles.
In this context, the use of groups of heterogeneous vehicles
has been proved to provide levels of flexibility and capa-
bilities unable to be found in homogeneous groups (Salhi
et al., 2014; Koç et al., 2016). The combination of a slow
? This work has been supported by the European Commission
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big vehicle, e.g. trucks, with smaller and faster vehicles,
e.g. drones, is lately coming into focus. Recent works
propose a combination of both kind of vehicles, such that
the deliveries are divided based on location and acces-
sibility (Murray and Chu, 2015; Agatz et al., 2018; Ha
et al., 2018). In these works, still, the role of both vehicles
remains similar as the deliveries are performed by any of
them.

Fig. 1. Schematic of the carrier-vehicle system.

In Garone et al. (2011), the concept of the carrier-vehicle
system is firstly introduced for the case of rescue missions.
In this case, the small vehicle is in charge of visiting the
target points while the big vehicle must transport, service
and recover the drone. In Poikonen et al. (2017), a similar
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concept is applied to delivery systems, where the drone is
the only agent in charge of the delivery of the goods.

At this point, the majority of works of last-mile delivery
assume the launching of these vehicles at the location of
the customer. This assumption can become unrealistic in
certain city distributions due to physiscal or legal con-
straints, and also provide sub-optimal results in systems
with drones of large autonomy or slow trucks. Given that,
papers like Boysen et al. (2018); Poikonen and Golden
(2020) drop the assumption of launching the drone always
at the customers location and provide a heuristic approach
to select the take-off/landing points based on the routes
taken by the truck.

In this paper we follow this recent line of thought, where
we define the case where only certain spots in the city allow
the takeoff and the recovery of the drones. Moreover, these
spots are not linked to any particular customer and must
be chosen according to each mission. The main idea is
to select the route and the optimal takeoff/landing spots
depending on the customer locations such that the route
completion time is minimized. This concept can be seen in
Fig. 1.

A novelty in this paper is that, extending the idea pre-
sented in Garone et al. (2011), the truck is allowed to
advance during the drone delivery, providing a different
location for the landing and the takeoff. This novel ap-
proach in delivery systems permits to improve the mission
completion time by adapting the route to the speed of
both vehicles and the autonomy of the drone. Additionally,
contrary to the cited papers, we assume two different
distance metrics for the vehicles, based on the fact that
aerial and a terrestrial vehicles are subject to different
route constraints.

The main contribution of this paper is to formulate the
routing problem as the selection of the optimal take-off and
landing locations for each delivery. This approach allows
to obtain an optimal solution to this problem based on a
mixed-integer linear program that solves the problem in
reasonable time.

The remainder of the paper is organized as follows. In Sec-
tion 2, the problem is stated and defined. In Section 3, the
characteristics of the urban environment are detailed and
characterized. In Section 4, a mixed-integer formulation
for the carrier-vehicle system is presented. Section 5 shows
several numerical simulations and computational analysis
to support the validity of the presented formulation. Fi-
nally, in Section 6, we present some conclusion and future
works.

2. PROBLEM STATEMENT

In this paper we deal with the problem of transport and
delivery of packages by employing a two vehicles system in
an urban environment. The aim of the mission is to deliver
N packages to a set P = {p1, . . . , pN} ∈ R2 of assigned
delivery locations in the shortest time possible.

The system considered for such a task is composed by a
big and slow vehicle carrier and a small and fast carried
vehicle. The carrier is assumed to be a terrestrial vehicle
which must follow the predefined routes given by the city

distribution, e.g. a truck. On the other hand, the carried
vehicle is assumed to be an aerial vehicle, namely a drone,
which can move freely in the space.

As a result of the physical constraints of the city, the
drone is considered as the only agent able to perform the
delivery of the goods. The role of the carrier is the one of
transporting, launching and recovering the drone such that
the delivery is performed in the shortest time possible.

Due to the high speed of the small vehicle and the low
altitudes considered, both vehicles are considered as points
belonging to the Euclidean space R2. The position of both
vehicles is described as pc(t) = [xc(t),yc(t)]T and pv(t) =
[xv(t),yv(t)]T for the carrier and the drone respectively.

In terms of kinematics, both vehicles are considered as a
single integrator with a maximal speed Vc > 0 in the case
of the carrier and Vv > 0 for the vehicle, being Vv >Vc. The
drone is considered to have a limited autonomy (in time)
a > 0 but that can be restored by the carrier in a negligible
time.

The truck routes must follow the street distribution and
the launch and recovery of the drone is restricted to a
set S = {s1, . . . ,sNp} ∈R2 of specified spots spread over the
city, whose number is Np > N. The customer locations can
belong to any point of R2 while the takeoff spots must
be part of the set formed by the network of streets. An
example of this kind of distributions is detailed in Fig. 2.

The launch/recovery spots are not previously assigned to
any customer but depend on the chosen route for the
truck. Moreover, in order to optimize the delivery route,
the drone can be launched and recovered at different spots
as far as the reachability of another spot is ensured by the
autonomy range of the drone and the speed of the truck.

Fig. 2. Schematic of the available stops deployment where
the crosses represent the customer locations and the
rectangles the truck stops.

In the definition of the problem the following assumptions
are considered:

• The order of delivery is given a priori.
• The drone is instantaneously charged and loaded.
• The drone can only visit one single location per flight.

This system, in the case of n customers, presents two kind
of time intervals. The time when the vehicle is on board
of the truck, denoted by t l,to

i ,i = 1, . . . ,n+1 and when the
vehicle is airborne denoted by tto,l

i , i = 1, . . . ,n. Knowing
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that the drone flight time is limited by the endurance a,
the following constraints must be satisfied:

0≤ tto,l
i ≤ a i = 1, . . . ,n, (1)

0≤ t l,to
i i = 1, . . . ,n+1. (2)

The optimal route for both vehicles is the route which
minimizes the sum of all these time intervals. In this
framework, based on Garone et al. (2011), this route
can be defined and computed by selecting the launch and
recovery spots for the drone and the shortest path between
these points.

3. CITY ENVIRONMENT CONSTRAINTS

This section presents the adaptation of the carrier-vehicle
problem to the case of a city environment. This scenario
implies several constraints related to allowed routes and
the available take-off and landing spots.

3.1 Distance metrics

Due to the different nature of the vehicles, two differ-
ent distance metrics are considered. The drone, as an
aerial vehicle, is not constrained by the distribution of
the streets. Accordingly, the distance travelled by the
vehicle between two points p1 = 〈x1,y1〉 and p2 = 〈x2,y2〉
is given by the Euclidean norm defined as ‖p1− p2‖2 =√
(x1− x2)2 +(y1− y2)2.

On the other hand, the distance travelled by the carrier is
defined by the distribution and length of the grid created
by the streets of the city. In this context, the possible paths
taken by the carrier are given by the shortest distances in
between the available launching spots.

Being the city considered as a Manhattan-like urban
area, the Manhattan distance between two points p1 =
〈x1,y1〉 and p2 = 〈x2,y2〉 is given by ‖p1− p2‖1 = |x1− x2|+
|y1− y2|, which can be seen illustrated in Fig. 3. However,
the distance travelled between two points following the
grid is not always equivalent to the the Manhattan dis-
tances when these points are not part of the joints of the
grid, as it is shown in Fig. 4.

Fig. 3. Example of two points where the shortest route
distance is given by the Manhattan norm.

For the sake of simplicity but with no loss of generality,
let us define the streets of the city as a grid where the
joints are given by natural numbers. In this case, the

Fig. 4. Example of two points where the shortest route is
not given by the Manhattan norm.
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where 〈sx, j,sy, j〉 and 〈sx, f ,sy, f 〉 represent the coordinates in
the Euclidean space of the two spots.

Thus, the set of routes for the truck can be characterized
as a symmetric graph G =<V,E > where V , the vertices of
the graph, represent the location of the available launching
spots and the edges E denote the minimum distance path
d j, f between them by following the city constraints.
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3.2 Local reduction and feasibility

The presented problem assumes non-predefined take-off
and landing spots for each delivery. This assumption
provides more flexibility in the path calculation but it
can heavily increase the computation complexity of the
problem if the size of the area and the number of available
spots is too large.

To reduce the amount of evaluated points for large scenar-
ios, and thus the complexity of the optimization problem,
a reduction of the study area is used for each visiting
point. The main idea of this area reduction lies in the
fact that, given the limited autonomy of the fast vehicle,
the number of streets from where the aerial vehicle can
takeoff is limited. Being the flight autonomy and the grid
structure parameters known in advance, the reduction of
street constraints for each points can be thus computed
beforehand. This concept is depicted in Fig. 5.

Fig. 5. Example of the reduction selection of available stops
for the carrier, indicated by the light blue area.

Let us consider each visit point as the center pi ∈ R2 of a
circle with radius

r =Vva (6)
where Vv is the velocity of the drone and a its flight
autonomy.

Let the location of the available stops be given by Si =
〈sx,i,sy,i〉 ∀i = 1 . . .n. Therefore, by defining the euclidean
distance between each stop and the customer location as

di =
√
(px− sx,i)2 +(py− sy,i)2 (7)

it is enough to check if di > r ∀i = 1 . . .n to discard the
stops out of range for each target point and define the
set Vi as the set of available stops for the i-th target. Ad-
ditionally, this precomputation also provides a feasibility
evaluation of the delivery targets based on the autonomy
of the vehicle and the stops distribution.

4. MIXED-INTEGER FORMULATION

This section presents a mixed-integer formulation to solve
the routing problem for the carrier-vehicle system. The
problem is formulated in such a way that it is enough to
select the optimal takeoff and landing points for the vehicle
to determine the optimal routes of the truck and the drone.

Consider the two binary decision variables α i
j, f and β i

j, f ,
which define the choice of the take-off and landing spots
for each visiting point i. In this case, α i

j, f takes the value
1 when for the delivery point i the carrier stops at the
j-th spot for the takeoff and at the f -th for the landing.
Equivalently, β i

j, f defines the path between landing and
next takeoff of the drone, being 1 if after the i-th delivery
it lands in the j-th spot and the truck drives till f -th stop
for the next flight.

These two variables define the path for each visited cus-
tomer based on the two intervals characterized in (1) and
(2) and therefore, the entire route followed by the system.

At every mission each customer must be served once and
only once, which is expressed as follows

∑
f∈Vi

∑
j∈Vi

α
i
j, f = 1 ∀i = 1, . . . ,N, (8)

∑
f∈Vi

∑
j∈Vi

β
i
j, f = 1 ∀i = 1, . . . ,N−1, (9)

where N denotes the number of delivery orders and Vi
represents the precomputed set of available stops for the
i-th customer. By doing so, we ensure that there is always
a combination of spots used for each delivery.

To guarantee the continuity between flights, the stop
chosen for the landing must coincide with the origin of
the route till the next customer

∑
f∈Vi

α
i
f , j = ∑

f∈Vi

β
i
j, f ∀i ∈ {1, . . . ,N},∀ j ∈Vi. (10)

Equivalently, the take-off must be the end of the route
between the previous customer and the new one

∑
f∈Vi

α
i+1
j, f = ∑

f∈Vi

β
i
f , j ∀i ∈ {1, . . . ,N−1},∀ j ∈Vi. (11)

The distances travelled between take-off and landings
in the case of the aircraft are given by the sum of
Euclidean norms between these spots and the location
of the customer. This distance must be minor than the
maximum range of the aircraft which can be stated as
follows
α

i
j, f (
∥∥s j− pi

∥∥+∥∥pi− s f
∥∥)≤ vvt

to,l
i ∀i = 1 . . .N ∀ j, f ∈Vi

(12)
where the variable α i

j, f ensures that this constraint is based
on the selected take-off and landing spots.

Given the possibility of using different spots for the takeoff
and the landing of the drones, the carrier must ensure
that the distance between these two locations is travelled
sufficiently fast

α
i
j, f d f , j ≤ vct

to,l
i ∀i ∈ {1, . . . ,N−1},∀ j, f ∈Vi. (13)

Then, the period when the vehicle is part of the carrier
system the carrier must provide the shortest path such
that the time is minimized

β
i
j, f d f , j ≤ vct

l,to
i ∀i ∈ {1, . . . ,N−1},∀ j, f ∈Vi (14)

At this point, the routing problem can be stated as the
minimization of the sum of the time intervals for the
deliveries and the routes between flights based on the
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choice of the takeoff/landing spots. This optimization
problem can be formulated as

min
α i

j, f ,β
i
j, f

n

∑
i=1

tto,l
i +

n−1

∑
i=1

t l,to
i ,

s.t. (1)− (2), (8)− (14)

(15)

being a Mixed-Integer Linear Program (MILP).

The main virtue of this formulation is to provide opti-
mal results for the route of both vehicles while being
a class of optimization problem that can be efficiently
solved (Vielma, 2015) by commercial solvers e.g. Gurobi
or Cplex.

5. RESULTS

This section presents several numerical simulations that
demonstrate the efficiency of the proposed formulation.

5.1 Illustrative example

In this example we consider the case of 5 customers. The
carrier-vehicle system must depart from a given depot
D1 and finish the route at the depot D2. To assist the
delivery, 35 random launching and recovery spots have
been generated. These spots are assumed to belong to a
given street but not necessarily to the joints of the graph.
Table 1 describes the location of the 5 customers and 2
depots.

Table 1. Location of customers and depots.

Visit points x(km) y(km)

Depot 1 0 10
Customer 1 15.46 26.632
Customer 2 16.6 2.13
Customer 3 9.92 1.94
Customer 4 29.90 13
Customer 5 12.9 13.09

Depot 2 5 12

The maximum velocity considered for the truck is 20km/h
while the drone has a maximum velocity of 40km/h. In this
example we compute the optimal route for two scenarios
depending on the range of autonomy of the drone. The
two ranges considered are based on common electrical
drones examples, such are 15 and 21 minutes of flight
autonomy. Fig. 6 depicts the results for the case of 15
minutes of autonomy and Fig. 7 depicts the case of 21
minutes. In these figures, the orange circles represent the
available takeoff/landing points and the purple dots the
location of the customers. Regarding the paths, the solid
lines represent the ground displacements while the dashed
lines depict the aerial route followed by the drone.

From Fig. 6 and Fig. 7, it can be seen how the optimal path
for the truck heavily changes depending on the autonomy
range of the drone. In Fig. 6 due to the small range of
action, the take-off and landing are performed in the same
spot while for the case of 21 minutes the optimal route
combines different spots for the launch and the recovery
of the vehicle.

The optimal route time for the case of 21 min autonomy is
2.95h. The same delivery scenario assuming the use of the
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Fig. 6. Optimal route for an autonomy of 15 minutes.
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Fig. 7. Optimal route for an autonomy of 21 minutes.

same spot for the takeoff and landing for each customer
provides a final completion time of 3.33h. This comparison
shows an improvement of 13.3% when allowing the truck
to use a second spot for the landing of the vehicle.

These results support the main claim of this paper that,
depending on the autonomy and speeds of the vehicles,
the optimal drop-off spots may vary and that using the
same spot for takeoff and landing can lead to sub-optimal
results.

5.2 Computational analysis

This section evaluates the computational performance of
the presented solution. Given a confined area of 30×
30 km and 50 available launch spots, several random
scenarios have been generated. This analysis accounts for
cases from 3 to 10 customers and evaluates the solving
time of the optimization problem.

For this test, the characteristics of the vehicles are similar
to the previous example, with Vc = 20km/h and Vv =
40km/h as the maximum velocities for each of the vehicles.
Regarding the autonomy of the drone, the simulations
consider an autonomy of 21 min per flight.
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Fig. 8. Evolution for the computational time of the solver.

The numerical simulations have been performed using
GUROBI solver in YALMIP environment for Matlab. For
each number of customers 10 random cases are generated,
obtaining the maximum, minimum and average time to
solve them. Fig. 8 shows the evolution of the computa-
tional time of the mixed-integer optimization problem by
the solver.

In Fig. 8, it can be seen how the computation of the
solution does not increase too heavily due to the fact that
the number of spots remains the same.

6. CONCLUSIONS

This paper considers the problem of delivery in an urban
area based on the use of a carrier-vehicle system. This
system combines the capabilities of a carrier, such is its
large autonomy, with the speed and maneuverability of a
drone. The problem is characterized in such a way that the
optimal routes can be computed based on the selection of
the optimal launching and recovery points for the drone.

The authors propose a mixed-integer formulation which
optimally solves the presented problem. Several simula-
tions complete the paper to support the efficiency of the
solution and the relevance of the presented scenario, where
take-off and landing points do not necessarily coincide.

Future works will extend the problem to the case where
several vehicles are involved. Another interesting future
scenario considers the use of dynamic launching spots.
These spots will be based on predefined routes provided by
the city public transportation such are tram or bus lines.
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Koç, , Bektaş, T., Jabali, O., and Laporte, G. (2016).
Thirty years of heterogeneous vehicle routing. European
Journal of Operational Research, 249(1), 1–21.

Kumar, S.N. and Panneerselvam, R. (2012). A Survey on
the Vehicle Routing Problem and Its Variants. Intelli-
gent Information Management, 04(03), 66–74.

Murray, C.C. and Chu, A.G. (2015). The flying side-
kick traveling salesman problem: Optimization of drone-
assisted parcel delivery. Transportation Research Part
C: Emerging Technologies, 54, 86–109.

Poikonen, S. and Golden, B. (2020). Multi-visit drone
routing problem. Computers & Operations Research,
113, 104802.

Poikonen, S., Wang, X., and Golden, B. (2017). The
vehicle routing problem with drones: Extended models
and connections. Networks, 70(1), 34–43.

Salhi, S., Imran, A., and Wassan, N.A. (2014). The
multi-depot vehicle routing problem with heterogeneous
vehicle fleet: Formulation and a variable neighborhood
search implementation. Computers & Operations Re-
search, 52, 315–325.

Vielma, J.P. (2015). Mixed Integer Linear Programming
Formulation Techniques. SIAM Review, 57(1), 3–57,
publisher: Society for Industrial and Applied Mathemat-
ics.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

15467


