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Abstract: In this work, we introduce a mixed-integer linear programming (MILP) formulation
to determine the optimal production schedule of a supply chain network with production
facilities comprised of transportable modular production units. The problem is solved in a
rolling horizon fashion, which allows for rapid changes in raw material availabilities and product
demands. The effectiveness of our methodology is illustrated through the use of a circular supply
chain case study. The case study is centered in the Permian Basin and focuses on a set of
wastewater treatment facilities comprised of modular processing units. The results illustrate
the benefits of utilizing production facilities comprised of modular production units operating
in parallel, wastewater storage units, and fresh water storage units.
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1. INTRODUCTION

Traditionally, industry has relied upon an “economies of
scale” approach for the construction of production facili-
ties Arora et al. (2020). Recently, there has been a push
towards circular supply chains focusing on waste reduc-
tions, Avraamidou et al. (2020), and decentralized supply
chains with production facilities comprised of modular
production units that can rapidly be reallocated between
facilities to meet changes in feed stock availabilities and
product demands Baldea et al. (2017).

A key component in the design and operation of sup-
ply chains comprised of modular production units is the
determination of the optimal allocation of the modular
production units. Within the process systems engineering
community, Tan and Barton (2015), were the first to for-
mally address the allocation problem. Shortly thereafter,
Gao and You (2017), illustrated the benefits of modular
production units in a shale gas field; Allen et al. (2018),
put forth a multi-stage stochastic MILP formulation for
determining the optimal allocation of modular production
units given uncertain feed stock availabilities; and Chen
and Grossmann (2019), put forth a generalized disjunctive
approach to illustrate the benefits of utilizing decentralized
modular production units as opposed to centralized large-
scale production. More recently, Allman and Zhang (2020),
presented a method to decompose large scale allocation
problems through the use of “branch-and-price”. However,
to the authors knowledge there has been no work specifi-
cally focusing on real-time operational scheduling of decen-
tralized supply chains comprised of modular production
units.

Therefore, in this work we present a framework to deter-
mine in real-time the optimal production schedule of a
decentralized supply chain network comprised of modular
production units. The decentralized network includes: (i)
raw material sources that can be routed to raw material
sinks or to production facilities, (ii) production facilities,
which are comprised of transportable modular production
units operating in parallel, backlog raw material storage
units, and surplus product storage units, and (iii) sinks
whose product demands can be met by the production
facilities or external product sources. The objective is to
minimize the operational cost of the network.

The major contributions of this paper are as follows: (i) we
introduce a MILP formulation to determine the optimal
real-time production schedule of a supply chain network
comprised of transportable modular production units that
is solved in a rolling horizon framework, (ii) we illustrate
the benefits of incorporating raw material backlog and
product surplus storage units at the production facilities,
and (iii) we preform computational studies on a data set
for an unnamed waste water treatment company operating
in the Permian Basin, who treats produced water from oil
and gas wells and supplies the treated water to fracking
companies.

2. PROBLEM STATEMENT

Consider a supply chain network and a time horizon, T ,
{k, k + 1, . . . , k + |T | − 1}, where planning decisions can
be made, such that k is the current iteration in the rolling
horizon framework. The supply chain network includes raw
materials sources, A, production facilities, F , comprised
of modular production units, S, product demand sinks,
B, raw material sinks, C, external product sources, D,
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and a transportation network that allows raw material
and products to be transferred within the supply chain
network. Raw material can be transported from the source
locations to production facilities, where the production
facilities transform the raw material into products, or to
the excess raw material sinks. It should be highlighted,
that we allow for excess raw material sinks for the cases
when the effluent from the raw material sources is greater
than the combined production capacity of all the modular
units and the backlog storage capacity or when there is
a lack of product demands. The products created at the
production facilities are then transported to the demand
sinks. The demand of the sinks can also be fulfilled by
product sources. The superstructure of this supply chain
network is given in Fig. 1.
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Fig. 1. Superstructure of the Supply Chain Network

The amount of raw material for each source that must
either be transported to the production facilities or dis-
posed of at the raw material sinks for every time period

is given by, Pmaterial supply
t,a , where t ∈ T and a ∈ A. The

time invariant upper bound on the amount of material that
can be routed from a raw material source to a production

facility is given by Pmaterial capacity
a,f , where a ∈ A and

f ∈ F . It is assumed that there is no upper bound on
the amount of raw material that can be transferred to the
raw material sinks and raw material can only be routed
form one raw material source to one raw material sink.

The amount of product that must be transported to each
demand sink from either the production facilities or the
external product sources for every time period is given by,

Pproduct demand
t,b , where t ∈ T and b ∈ B. There is a time

invariant upper bound on the amount of products that can
transported from the production facilities to the demand

sinks that is represented by the parameter Pproduct capacity
f,b ,

where f ∈ F and b ∈ B. It is assumed that there is
no upper bound on the amount of products that can be
purchased from the product sources to meet the demand
requirements and product can only be purchased from one
external product source for each of the product demand
sinks.

The production facilities are comprised of modular pro-
duction units operating in parallel with fixed capacities, a
backlog storage unit, and a surplus storage unit. The max-
imum production capacity of the facility is the combined
production capacity of all the modular units, s ∈ S, that
are located at that facility. The modular production units,
s ∈ S, can be reallocated between production facilities at
discretized points in the time horizon, t ∈ T and have a
fixed maximum production capacity, Pcapacity

s .

When the material enters into the production facility it is
either routed to the modular production units or to the
backlog storage unit, where it is stored to be processed
at a later time. The initial and maximum capacity of

the backlog storage unit is given by Pinitial backlog
f and

Pbacklog capacity
f respectively, where f ∈ F . When the prod-

uct leaves the modular production units it is either routed
to the demand sinks or to the surplus storage unit, where it
can be stockpiled to be sent to the demand sinks at a later
time. The initial and maximum capacity of the surplus

storage unit is given by Pinitial surplus
f and Psurplus capacity

f

respectively, where f ∈ F . The superstructure of a pro-
duction facility is given in Fig. 2.
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Fig. 2. Superstructure of a Production Facility

The decisions variables of the problem are as follows:
(i) the amount of raw material that is transported to
the raw material sinks and to each processing facility;
(ii) the amount of raw material routed to the backlog
storage unit and modular processing units for each facility;
(iii) the amount of product produced at each modular
unit and if it is operational or nonoperational; (iv) the
amount of product that is routed to the surplus storage
unit and the demand sinks; (v) the amount of product
produced at the processing facilities and stockpiled in
the surplus storage units is transported to each demand
source; (vi) the amount of product that is purchased from
the product sources for each demand sink; and (vii) how
the modular processing units are reallocated between the
processing facilities, occurring at every time period in the
time horizon.

The objective is to minimize the cost of the aforementioned
decisions. We assume that there is perfect information re-
garding raw material availabilities and product demands.
The production scheduling problem is then resolved as new
information becomes available.

3. PROBLEM FORMULATION

3.1 MILP Formulation

The MILP formulation of the problem is given by (1).
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min J1 + J2 + J3 + J4 + J5 + J6

s.t Eqs. (1− 16)
(1)

3.2 Objective Functions

As mentioned before, the objective is to minimize the
operational cost of the network.

Equation (2) sums the fixed, Fmaterial flow
a,f , and variable,

Vmaterial flow
a,f , cost respectively to transport the raw mate-

rial from the sources, a ∈ A to the production facilities,
f ∈ F .

J1 ,
∑
t∈T

∑
a∈A

∑
f∈F

(
Fmaterial flow
a,f · ymaterial flow

t,a,f . . .

+ Vmaterial flow
a,f · xmaterial flow

t,a,f

) (2)

The binary variable, ymaterial flow
t,a,f , is equal to one if raw

material is routed from a raw material source, a ∈ A, to
a facility, f ∈ F , during a time period, t ∈ T ; otherwise,
it is equal to zero. The non-negative continuous variable,
xmaterial flow
t,a,f , indicates the quantity of raw material routed

from a raw material source, a ∈ A, to a facility, f ∈ F ,
during a time period, t ∈ T .

Equation (3) sums the fixed, Fmaterial
a , and variable,

Vmaterial
a , cost respectively to transport and dispose of raw

material, a ∈ A, to the excess raw material sinks.

J2 ,
∑
a∈A

∑
f∈F

(
Fmaterial
a · yexcess material

t,a . . .

+ Vmaterial
a · xexcess material

t,a

) (3)

The binary variable, yexcess material
t,a , is equal to one if raw

material is routed from a raw material source, a ∈ A,
to a raw material sink during a time period, t ∈ T ;
otherwise, it is equal to zero. The non-negative continu-
ous variable, xexcess material

t,a , indicates the quantity of raw
material routed from a raw material source, a ∈ A, to a
raw material sink during a time period, t ∈ T .

Equation (4) sums the fixed, Foperation
s , and variable,

Voperation
s , cost respectively for the operation of the mod-

ular production units, s ∈ S.

J3 ,
∑
s∈S

∑
(i,j)∈Es

(
Foperation
s · yoperation

s,i,j . . .

+ Voperation
s · xoperation

s,i,j

) (4)

The binary variable, yoperation
s,i,j is equal to one if the

modular unit, s ∈ S, is operational at the facility and
time period corresponding to the edge (i, j), such that
(i, j) ∈ Es, where Es, is a set of edges that spatially
and temporally track the modular unit, ∈ S; otherwise,
it is equal zero. The non-negative continuous variable,
xoperation
s,i,j , indicates the operating set of the modular unit,
s ∈ S, at the facility and time period corresponding to the
edge (i, j), such that (i, j) ∈ Es.

Equation (5) sums the transportation cost, Flocation
s,i,j , to

relocate the modular production units, s ∈ S, the supply
chain.

J4 ,
∑
s∈S

∑
(i,j)∈Es

Flocation
s,i,j · ylocation

s,i,j (5)

The binary variable ylocation
s,i,j indicates if a modular produc-

tion unit, s ∈ S, traverses the edge (i, j) ∈ Es. Practically,
ylocation
s,i,j , spatially and temporally tracks the modular unit,
∈ S, in the supply chain.

Equation (6) sums the fixed and variable cost, Fproduct flow
f,b

and Vproduct flow
f,b , to transport product from the facilities,

f ∈ F , to the demand sinks, b ∈ B.

J5 ,
∑
t∈T

∑
f∈F

∑
b∈B

(
Fproduct flow
f,b · yproduct flow

t,f,b . . .

+ Vproduct flow
f,b · xproduct flow

t,f,b

) (6)

The binary variable, yproduct flow
t,f,b , is equal to one if product

is routed from a production facility, f ∈ F , to a product
demand sink, b ∈ B, during a time period, t ∈ T ; other-
wise, it is equal to zero. The non-negative continuous vari-

able, xproduct flow
t,f,b , indicates the quantity product routed

from a production facility, f ∈ F , to a product demand
sink, b ∈ B, during a time period, t ∈ T .

Equation (7) sums the fixed, Fproduct
b , and variable,

Vproduct
b , cost respectively to purchase and transport the

product from the external product sources to the demand
sinks, b ∈ B.

J6 ,
∑
t∈T

∑
b∈B

(
Fproduct
b · yproduct purchased

t,b . . .

+ Vproduct
b · xproduct purchased

t,b

) (7)

The binary variable, yproduct purchased
t,b , is equal to one if

product is purchased from an external product source and
routed to a product demand sink, b ∈ B, during a time
period, t ∈ T ; otherwise, it is equal to zero. The non-

negative continuous variable, xproduct purchased
t,b , indicates

the quantity of product purchased from an external prod-
uct source and routed to a product demand sink, b ∈ B,
during a time period, t ∈ T .

3.3 Network Flow Constraints

The backbone of the problem formulation is the modular
production unit allocation graph, G, which can be seen in
Fig. 3.
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Fig. 3. Graph for the Allocation of a Modular Unit
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The nodes in the graph, G, are given as N , {s̄} ∪
({k − 1, k, . . . , k + |T | − 1}×F)∪{

¯
s}, where s̄ is a dummy

source node, and
¯
s is a dummy sink node. The edges in

the graph, G, illustrate how the modular units, s ∈ S can
be reallocated to different facility or remain at the same
facility in the supply chain and are given as E ⊂ {N ×N}.
For each modular production unit, s ∈ S, we define
Es , {(i, j) ∈ E | φs,i,j = 1}, where φs,i,j is a parameter
that is equal to one if there is an edge from node i to
node j in the set of edges, E , for a modular unit, s ∈ S;
otherwise, it is equal to zero. It should be noted that this
approach allows for varying the transportation time of a
modular unit between different combinations of facilities.
It also allows the problem to be resolved while the modular
unit is in transit, and therefore, reroute a modular unit
while it is in transit.

Similarly, for each modular production unit, s ∈ S, let,
Ns , {k | (i, j) ∈ Es, k ∈ {i, j}}, N−s,j , {i | (i, j) ∈ Es},
and N+

s,i , {j | (i, j) ∈ Es}.

Equation (8) allows the location of a modular unit, s ∈ S,
to be spatially tracked through the scheduling horizon.∑

i∈N−
s,j

ylocation
s,i,j =

∑
k∈N+

s,j

ylocation
s,j,k ∀s ∈ S, j ∈ Ns (8)

3.4 Production Constraints

Equation (9) is a material balance for each raw material
source and ensures that the raw material is either routed
to a production facility or to a excess raw material sink.

Pmaterial supply
t,a = xexcess material

t,a . . .

+
∑
f∈F

xmaterial flow
t,a,f ∀t ∈ T , a ∈ A (9)

Equation (10) is a raw material balance for the facilities
and ensures that the raw material routed to the facility is
either processed or stored in the backlog storage units.∑

a∈A
xmaterial flow
t,a,f = xproduction

t,f + xbacklog material
t,f . . .

−xbacklog material
t−1,f ∀t ∈ T , f ∈ F

(10)

Equation (11) ensures the product produced at the facility,
f ∈ F , during time period, t ∈ T , is equal to the
operational set point of all of the modular units located at
that facility.

xproduction
t,f =

∑
s∈S

∑
(i,j)∈Es,t,f

xoperation
s,i,j ∀t ∈ T , f ∈ F (11)

It should be noted that the edges Es,t,f is a subset of the
edges Es and correspond to the edges incident to a facility,
f ∈ F , and a time period, t ∈ T .

Equation (12) is a product balance for the facilities and
ensures that the product produced is either routed to a
demand sink or stored in the surplus storage units to be
utilized at a later time.

∑
b∈B

xproduct flow
t,f,b = xproduction

t,f − xsurplus product
t,f . . .

+xsurplus product
t−1,f ∀t ∈ T , f ∈ F

(12)

Equation (13) is a product balance at the demand sinks
and ensures that the product demands are met through
either product produced at the production facilities or
purchased from the surplus storage unit.

Pproduct demand
t,b = xproduct purchased

t,b . . .

+
∑
f∈F

xproduct flow
t,f,b ∀t ∈ T , b ∈ B (13)

Equation (14) ensures that a modular unit can only
operate at a facility if located there.

yoperation
s,i,j ≤ ylocation

s,i,j ∀s ∈ S, (i, j) ∈ Es (14)

Equation (15) ensures that the operational set point of a
modular unit, s ∈ S is less than its maximum capacity,
Pcapacity
s .

xoperation
s,i,j ≤ Pcapacity

s · yoperation
s,i,j ∀s ∈ S, (i, j) ∈ Es (15)

Equations (16) and (17) enforce an upper bound on the
flow of raw material between the raw material sources and
facilities and the flow of products between the facilities
and the demand sinks respectively.

xmaterial flow
t,a,f ≤ Pmaterial capacity

a,f · ymaterial flow
t,a,f . . .

∀t ∈ T , a ∈ A, f ∈ F (16)

xproduct flow
t,f,b ≤ Pproduct capacity

f,b · yproduct flow
t,f,b . . .

∀t ∈ T , f ∈ F , b ∈ B (17)

Equations (18) and (19) enforce an upper bound on the
amount of excess raw material routed to the raw material
sinks and the amount of product purchased respectively.

xexcess material
t,a ≤ Pmaterial supply

t,a . . .

·yexcess material
t,a ∀t ∈ T , a ∈ A (18)

xproduct purchased
t,b ≤ Pproduct demand

t,b . . .

·yproduct purchased
t,b ∀t ∈ T , b ∈ B

(19)

Equations (20) and (21) enforce an upper bound on the
storage capacity of storage units located at facilities.

xbacklog material
t,f ≤ Pbacklog capacity

f ∀t ∈ T , f ∈ F (20)

xsurplus product
t,f ≤ Psurplus capacity

f ∀t ∈ T , f ∈ F (21)

Equations (22) and (23) enforce the initial capacity of the
storage units located at the facilities.

xbacklog material
t,f = Pinitial backlog

f ∀t ∈ {0} , f ∈ F (22)

xsurplus product
t,f = Pinitial surplus

f ∀t ∈ {0} , f ∈ F (23)

4. CASE STUDY

We utilize a case study focusing on an unnamed wastew-
ater treatment company operating in the Permain Basin.
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Fig. 4. Superstructure of the Water Treatment Network

The business objectives of the wastewater treatment com-
pany is to treat the wastewater effluents from producing oil
and gas wells, so that the treated water can then be reused
in the completion phase of wells that are currently under-
going fracking. Therefore, we formulate a purely economic
objective function for the optimization problem, (1), that
is solved in a rolling horizon fashion.

The data set we have been given includes wastewater
effluent flow rates from the producing wells and water
demands for wells undergoing completion that require
fresh water for fracking. We utilize a subset of this data set
to illustrate the effectiveness of the proposed production
scheduling for a circular supply chain network comprised
of modular production units.

The superstructure of the water treatment network is
given in Fig. 4. For this case study: (i) the raw material
sources, a ∈ A, are producing oil and gas wells whose
effluents contain large amounts of wastewater, (ii) the
product sources, b ∈ B, are wells that are undergoing
completion and require water for fracking, (iii) the produc-
tion facilities, f ∈ F , are water treatment facilities that
treat the wastewater from the producing wells, (iv) the
modular production units, s ∈ S, are modular wastewater
treatment units and are mounted on the back of semi-
trailers, (v) the raw material sinks, c ∈ C, are wastewater
disposal wells that inject the wastewater into underground
reservoirs, (vi) the product sources, d ∈ D, are water wells
that are able to supply the wells undergoing completion
with fresh water in the case that the production facilities
cannot meet the water demands or they are no longer
economical, and (vii) the transportation mechanism that
moves wastewater and fresh water through the system is
a pipeline network.

5. RESULTS AND DISCUSSION

5.1 Implementation

The algebraic model of the MILP production scheduling
problem was implemented in Julia 1.1.0 utilizing JuMP
0.19.2 and solved via Gurobi 8.1.1 Bezanson et al. (2017);
Dunning et al. (2017); Gurobi Optimization, LLC (2019).
The computation studies were implemented on a machine
with a 2.8 GHz Intel Core i7 processor and 16 GB of RAM.

To increase the computational speed of the rolling horizon
problem, the problem was warm started by utilizing the
previous iterations integer solution Gurobi Optimization,
LLC (2019).

The compiled model consists of 8,561 continuous variables,
11,366 binary variables and 29,728 constraints, and was
complied and solved in 36 seconds to an optimality gap of
approximately 0.1%. The extremely short computational
time is due in large part to the warm start.

5.2 Results

As we mentioned before, we utilize a data set that includes
the wastewater effluent flow rates from producing wells and
water demands for wells undergoing completion. We solve
the optimization problem, (1), utilizing a subset of this
data in a rolling horizon fashion. The scheduling horizon
for the optimization problem, (1), is taken to be 144 time
periods in length and each time period corresponds to
one hour. We illustrate the solution of the optimization
problem, (1), at the k iteration of the rolling horizon
framework, which is taken to be the start of the third week
of the data set.

Fig. 5. Wastewater Availabilities and Fresh Water De-
mands for Producing Wells and Wells Undergoing
Completion Respectively

Figure 5 illustrates the wastewater availabilities for the 4
producing wells and the fresh water demands for the 2
wells undergoing completion, whose locations are given in
Fig. 4. It should be highlighted that at the second well, a2,
as seen Fig. 4, has not begun producing when this iteration
is solved and therefore it is not shown in Fig. 5.
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Figure 6 illustrates the production capacity, operating pro-
duction level as well as the capacity of the backlog wastew-
ater and surplus fresh water storage tanks for facilities 1,
f1, and 3, f3, respectively. It should be highlighted that
these two facilities where chosen for illustration because a
modular unit was transferred from facility 1, f1, to facility
3, f3, at the k + 75 scheduling period.

Fig. 6. Operational Schedules for Production Facilities 1,
f1, and 3, f3, Respectively

From the simultaneous inspection of Fig. 5 and Fig. 6 it
can be seen that the backlog wastewater and surplus fresh
water storage tanks fluctuate in accordance to the small
perturbations in raw material availabilities and product
demands.

6. CONCLUSION

We have introduced a MILP formulation to determine the
optimal production scheduling of supply chains comprised
of transportable modular production units, which we have
embedded into a rolling horizon framework. We illustrate
the effectiveness of our methodology through the use of
a case study centering around a wastewater treatment
company operating in the Permain Basin.

We have shown that utilizing transportable modular pro-
duction units allows a supply chain network to rapidly
adapt to dramatic changes in raw material availabilities

and product demands. We have also shown that interme-
diate raw material and product storage units located in the
middle of the supply chain network can reduce the strain
on the system brought on by small perturbations in raw
material availabilities and product demands.

Determining the optimal operation of supply chains com-
prised of modular is a challenging problem to solve as
the size of the supply chain grow; therefore, a possible
future research direction would to develop decomposition
methods and or reformulations of the problem.
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