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Abstract: In this paper, a novel Multivariable Adaptive Super-Twisting Algorithm is proposed.
The adaptation scheme is based on a dual-layer structure and does not require the knowledge
of upper bounds for the matched disturbances. By exploiting information extracted from the
equivalent control, it is possible to adapt both gains to enforce a second-order sliding mode
while avoiding a conservative overestimation of the disturbance, which is important to mitigate
the undesirable effects of chattering.
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1. INTRODUCTION

Sliding Mode Control is a powerful method for robust con-
trol of uncertain systems subject to matched disturbances.
One main obstacle for its practical implementation is the
appearance of undesirable oscillations caused by the high-
frequency switching control action. This phenomenon is
referred to as chattering and can lead to a system perfor-
mance degradation (Utkin, 1992; Shtessel et al., 2014).

Although several techniques were already available for
chattering attenuation, the introduction of controllers
based on the so-called higher-order sliding modes (HOSM)
(Levant, 1993) seemed a breakthrough, since this innova-
tive approach preserves the main sliding-mode features,
and also can eliminate chattering under ideal situations.
However, in real systems, non-idealities are always present,
and consequentially this approach can only mitigate the
chattering effect (Boiko and Fridman, 2005).

Among all second-order sliding mode approaches, the
Super-Twisting Algorithm (STA) gained considerable at-
tention from the SMC community due to its distinctive
advantage of not requiring the sliding variable derivative
to be implemented (Levant, 2003). Recently, the useful
Lyapunov function approach introduced by (Moreno and
Osorio, 2008) has stirred new developments for the STA
with particular interest to adaptive schemes.

Several authors considered adaptive laws to increase the
gains of the STA so as to ensure the realization of second-
order sliding modes (Plestan et al., 2010; Shtessel et al.,
2012; Alwi and Edwards, 2013; Bartolini et al., 2013).
However, in these works, the gains are non-decreasing, re-
sulting in some conservatism, which in turn can compound
the chattering problem. To address this issue, (Utkin and
Poznyak, 2013) proposed an adaptive scheme that uses
information about the disturbance/uncertainty extracted
from the equivalent control to enforce the sliding motion
while reducing the control action magnitude. However, in
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this approach, only one gain is adapted while the other is
assumed sufficiently large.

Following in the same direction, (Edwards and Shtessel,
2016) proposed a modification to the usual super-twisting
algorithm structure together with the use of a dual-layer
adaptive scheme allowing the adaptation of both gains.
The adaptive scheme is also based on the knowledge of
the equivalent control and tries to obtain the minimum
possible values for the gains preserving the sliding mode.
However, as in (Utkin and Poznyak, 2013), the scheme pro-
posed in (Edwards and Shtessel, 2016) was also restricted
to SISO systems.

In (Zhao et al., 2019), a fault-tolerant control strategy
is developed to achieve a finite-time and precise attitude
tracking for rigid spacecraft. A double-layer adaptive al-
gorithm based on equivalent control is proposed combined
with a multivariable super-twisting algorithm. However,
as in (Utkin and Poznyak, 2013), the proposed strategy
adapts only one gain, and the other is set sufficiently large.

The main contribution of this paper is to propose a
new multivariable non-decoupled super-twisting algorithm
with adaptive gains. Although a generalized formalism is
used to present the algorithm, the detailed development is
restricted to a particular case closer to the SISO version
proposed in (Edwards and Shtessel, 2016). To facilitate
a possible generalization for a class of super-twisting-like
algorithms, we introduce an additional parameter in the
dual-layer adaptive scheme. Both gains are adapted using
information extracted from the equivalent control so as to
sustain the sliding motion while avoiding a conservative
overestimation for their values, mitigating the chattering
problem. Global finite-time convergence is guaranteed by
a Lyapunov approach. The proposed method is applied to
the problem of the detection and reconstruction of cyber-
attacks in a bus power system. The theoretical findings are
illustrated by numerical simulations.

Preliminaries: The euclidean norm of a vector y and the
corresponding induced norm of a matrix A are denoted by
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||y|| and ||A||, respectively. The maximum and minimum
eigenvalues of a matrix A are denoted by λmax(A) and
λmin(A), respectively. Consider that A, B, C, and D
are matrices with compatible dimensions. Therefore from
(Bernstein, 2009) the following Kronecker properties hold:

(P1). (A⊗B) (C ⊗D) = AC ⊗BD
(P2). A⊗C +B ⊗C = (A+B)⊗C
(P3). (A⊗B)

T
= AT ⊗BT

Here, Fillipov’s definition for the solutions of discontinuous
differential equations is assumed (Filippov, 1964).

2. MULTIVARIABLE ADAPTIVE SUPER-TWISTING
ALGORITHM (MASTA)

Consider the following multivariable algorithm based on a
variation of the Super-Twisting Algorithm:

σ̇(t) = −α(t)φ1(σ) + Φ(t,φ1) + z(t)

ż(t) = −β(t)φ2(σ) + d(σ, t),
(1)

α(t) = α0

√
L(t), β(t) = β0L(t),

Φ(t,φ1) = − L̇

2L

(
dφ1

dσ

)−1
φ1(σ),

(2)

where σ(t), z(t) ∈ Rn are the sliding variables, L(t) ∈ R is
an adaptive gain to be defined later, α0 and β0 are positive
constants and d(σ, t) ∈ Rn is an input disturbance. The
functions φ1(σ) and φ2(σ) are defined such that the
following property holds

φ2(σ) =
dφ1

dσ
φ1(σ), ∀σ(t) 6= 0 (3)

In order to closely represent a multivariable version of the

algorithm proposed in (Edwards and Shtessel, 2016), these
functions are chosen as

φ1(σ) =
σ

||σ|| 12
, φ2(σ) =

1

2

σ

||σ||
(4)

In this case, the jacobian matrix φ′
1(σ)∈Rn×n is given by

φ′
1(σ) =

dφ1(σ)

dσ
=

1

||σ|| 12
In −

σσT

2||σ|| 52
(5)

Furthermore, the quadratic form associated with φ′
1(σ) is

given by

vT
dφ1(σ)

dσ
v =

||v||2

||σ|| 12
−
(
vTσ

)2
2||σ|| 52

(6)

where, for every σ(t) 6= 0, the minimum value is reached
at the maximum value of vTσ. From the Cauchy-Schwarz
inequality for inner products, one has that vTσ ≤ ||v|| ·
||σ||. Therefore, the following property holds for n ≥ 2

vTφ′
1(σ)v ≥ λmin (φ′

1(σ)) ||v||2, ∀v ∈ Rn (7)

λmin (φ′
1(σ)) =

1

2||σ(t)|| 12
. (8)

Therefore, ∀σ(t) 6= 0, φ′
1(σ) is a Symmetric and Positive

Definite (S.P.D.) matrix. The equality in (7) holds when v

is linearly dependent of σ. The maximum value of the
quadratic form occurs when v is orthogonal to σ, i.e.,
σTv = 0. Thus, the following inequality is satisfied for
every σ(t) 6= 0

vTφ′
1(σ)v ≤ λmax (φ′

1(σ)) ||v||2, ∀v ∈ Rn (9)

||φ′
1(σ)|| = λmax (φ′

1(σ)) =
1

||σ(t)|| 12
. (10)

Note that, for n = 1 and for every σ 6= 0, φ′1(σ) = 1

|σ|
1
2

is

a scalar. From (4) and (8), it can be verified that

φ2(σ) = λmin (φ′
1(σ))φ1(σ),∀σ(t) 6= 0 (11)

It is worth noting that properties (3), (7), (9) and (11)
hold for other variations of the Super-Twisting algorithm,
as can be seen in (Vidal et al., 2017). Thus, it seems that
the results obtained here may be extended to a generalized
class of Multivariable Super-Twisting based algorithms.

The strategy proposed here is divided into two parts: First,
we show that, if L(t) > ||d(σ, t)||, then the sliding mode
is achieved with a proper choice of α0 and β0. Thus, for
the time being, we consider the following assumption:

Assumption 1: The function L(t) is differentiable and
satisfies L(t) > max(||d(σ, t)||, l0),∀t, where l0 > 0 ∈ R.

Later on, we consider an adaptation law to guarantee
that Assumption 1 is satisfied and also to ensure non-
overestimated values for the gains.

The stability properties of the proposed multivariable
version of the STA are stated in the following Theorem.

Theorem 1. Consider the system (1) and suppose that
Assumption 1 holds. Then, a second order sliding mode
occurs making σ̇ = σ = 0 in finite time if the gains α0

and β0 are chosen such that

α2
0β

2
0

α2
0 + β0 + 2

>
κ2

κ− 1
, (12)

where κ > 1 is a design parameter.

Proof. Consider the following Lyapunov function candi-
date for the system (1):

V (t,σ, z) = p1||σ||L(t)− 2p2
σTz

||σ|| 12
L(t)

1
2 + p3||z||2 (13)

where p1, p2 and p3 are positive constants which ensures
that the symmetric matrix

P =

[
p1 −p2
−p2 p3

]
> 0.

Now, considering the following notation

ζ =
[
ζT1 ζT2

]T
=

[
σT
√
L(t)

||σ|| 12
zT

]T
(14)

the Lyapunov function (13) can be rewritten as

V = ζTPnζ, Pn = P ⊗ In (15)

Since L(t) > 0, and Pn = P T
n > 0, it follows that

V (t,σ, z) is a positive definite, continuous and radially
unbounded function with respect to (σ, z), and its deriva-

tive can be described in terms of ζ̇ as follows
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V̇ = ζTPnζ̇ + ζ̇TPnζ (16)

From (1), on subspace S = {(σ,v) ∈ <2n|σ 6= 0} it follows

that:

ζ̇1 =
L̇

2
√
L
φ1 +

√
Lφ′

1(σ)σ̇

ζ̇1 =
L̇

2
√
L
φ1 +

√
Lφ′

1(σ) (−αφ1 + z + Φ)

ζ̇1 =

(
L̇

2
√
L
φ1 +

√
Lφ′

1(σ)Φ

)
+
√
Lφ′

1(σ) (−αφ1 + z)

Selecting Φ(t,φ1) and α(t) as in (2), and using the

notation proposed in (14), it follows that

ζ̇1 =
√
L

(
−α0φ

′
1(σ)ζ1 +

dφ1

dσ
ζ2

)
(17)

From (3), and (2), since ζ2(t) = z(t), it can be verified

ζ̇2 =
√
L

(
−β0φ′

1(σ)φ1(σ)
√
L+

d(σ, t)√
L

)
(18)

Rewriting (18), using (14), one has that

ζ̇2 =
√
L (−β0φ′

1(σ)ζ1 + ∆) (19)

where

∆ =
d(σ, t)√

L
. (20)

Note that (17) and (19) can be written in a concise form

ζ̇ =
√
L(Ā0ζ + B̄0∆) (21)

where Ā0 = A0 ⊗ φ′
1(σ) and B̄0 = B0 ⊗ In with

A0 =

[
−α0 1
−β0 0

]
, B0 =

[
0
1

]
(22)

Rewriting (16) with (21), it follows that

V̇ =
√
L
(
ζT
(
PnĀ0 + ĀT0 Pn

)
ζ + 2ζTPnB̄0∆

)
(23)

Defining Q̄ = PnĀ0 + ĀT0 Pn and invoking the Kronecker
properties (P1),(P2), and (P3), it can be shown that

Q̄ =(PA0)⊗ (Inφ
′
1(σ)) + (AT0 P )⊗ (Inφ

′
1(σ))

Q̄ =Q⊗ φ′
1(σ),

(24)

where Q = PA0+AT0 P ∈ R2×2. To simplify the analysis,
choosing p1 = −α0p2 + β0p3, it follows that

Q =

[
2((β0 + α2

0)p2 − α0β0p3) 0
0 −2p2

]
If p3 is chosen such that

p3 >
β0 + α2

0

α0β0
, (25)

then Q becomes negative definite. In this case, from (7),
the quadratic term ζT Q̄ζ can be upper bounded by

ζT Q̄ζ ≤2((β0 + α2
0)p2 − α0β0p3)||ζ1||2 − 2p2||ζ2||2

2||σ(t)|| 12

ζT Q̄ζ ≤ 1

2||σ(t)|| 12
ζ̄TQζ̄

(26)

where ζ̄T = [||ζ1|| ||ζ2||]T ∈ R2, Q = QT < 0.

From (15), (20) and (21), the term 2ζTPnB̄0∆ can be
upper bounded as

2ζTPnB̄0∆ ≤ 2p2|ζT1 d|√
L

+
2p3|ζT2 d|√

L
(27)

which can be further upper bounded by

2ζTPnB̄0∆ ≤ 1

2||σ|| 12
(4p2||ζ1||+ 4p3||ζ2||)

||σ|| 12 ||d||√
L

From (14), ||ζ1|| =
√
L||σ|| 12 , and since L(t) > ||d(σ, t)||,

according to Assumption 1, it is possible to conclude that

2ζTPnB̄0∆ ≤ 1

2||σ|| 12
(
4p2||ζ1||2+4p3||ζ2|| ||ζ1||

)
(28)

Using (26) and (28), the function V̇ can be upper bounded
as follows

V̇ ≤−
√
L

2||σ(t)|| 12

(
ζ̄T
[
2(α0β0p3−p2(α2

0+β0+2))−2p3
−2p3 2p2

]
ζ̄

)
=−

√
L

2||σ(t)|| 12
(
ζ̄TWζ̄

)
(29)

Note that by defining p3 = κp2
α0β0

(
α2
0 + β0 + 2

)
and α0

and β0 satisfying (12), the matrix W becomes positive
definite. In addition, this choice of p3 also satisfies in-
equality (25). Therefore, on subspace S = {(σ, z) ∈
<2n|σ 6= 0}, V̇ is negative definite, which ensures the
boundedness of the sliding variables. From Rayleigh’s
inequality, it follows that λmin(W )||ζ̄||2 ≤ ζ̄TWζ̄ and
V ≤ λmax(Pn)||ζ||2 = λmax(Pn)||ζ̄||2. Thus, the function

V̇ can be upper bounded by

V̇ ≤ −
√
L

1

2||σ(t)|| 12
λmin(W )

λmax(Pn)
V (30)

From (15) and since ||ζ|| ≥ ||ζ1|| =
√
L||σ|| 12 , it follows

that
√
λmin(Pn)||ζ1||=

√
λmin(Pn)

√
L||σ|| 12≤

√
V . Thus,

from Assumption 1, the following result can be obtained

V̇ ≤ −L
2

λmin(W )
√
λmin(Pn)

λmax(Pn)

√
V ≤ −κ

√
V , (31)

where κ= l0
2

λmin(W )
√
λmin(Pn)

λmax(Pn) > 0 is a known constant.

Note that V (t,σ, z) defined in (13) is continuous and
differentiable on the set S = {(σ, z) ∈ <2n|σ 6= 0}.
On the complementary set S̄ = {(σ, z) ∈ <2n|σ = 0},
the trajectories of (1) cannot stay on S̄/{0}, since z 6=
0 =⇒ σ̇ 6= 0. Thus, V is a continuously decreasing
function and from the results obtained in (Deimling, 1992)
for differential inclusions, the equilibrium point (σ, z) = 0
is reached in finite time. From (1), if σ = z = 0, then it
can be verified that σ̇(t) = 0 in finite time.

To complete the analysis, we must ensure that Assump-
tion 1 is valid. Therefore, the problem becomes selecting
an appropriate adaptation law for L(t). The adaptation
considered here is a small variation of the one proposed in
(Edwards and Shtessel, 2016), where the concept of equiv-
alent control is considered, allowing L(t) to be designed as
a non-overestimated “upper-bound” function for d(σ, t).

To this end, the discontinuous signal β(t)2
σ(t)
||σ(t)|| is used.

During the sliding mode, σ = 0 and σ̇ = z = 0, which
implies that

β(t)

2

σ(t)

||σ(t)||

∣∣∣∣
eq

= d(σ, t) (32)

where β(t)
2

σ(t)
||σ(t)||

∣∣∣
eq

is an equivalent continuous signal

which can replace β(t)
2

σ(t)
||σ(t)|| ,and yet still maintain the slid-
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ing motion. For further comprehension about the equiva-
lent control concept, please refer to (Utkin, 1992, 2013).
Although this concept is an abstraction, its theoretical
value can be approximated in real-time by using a low-
pass filter

˙̄ueq(t) = diag

{
1

τi

}(
−ūeq(t) + β(t)

2
σ(t)
||σ(t)||

)
(33)

where ūeq ∈ Rn, and τi > 0 ∈ R, i= 1, . . . , n are (small)
constants.

Therefore, during the sliding mode, d(σ, t) can be esti-
mated in real time through ūeq. Although ūeq(t) only
approximates the equivalent control after the sliding mode
takes place, this filtered signal will still be employed in the
adaptation scheme during the reaching phase.

Remark 1: Note that, during the sliding mode, the dif-
ference between ūeq(t) and the real equivalent control,
ueq(t), can be reduced by making τi smaller. However, as
τi becomes smaller, higher frequencies will pass through
the filter, making ūeq(t) noisier.

Consider the following scalar variable

δ(t) = L(t)− b

aβ0
||ūeq(t)|| − ε (34)

where ε > 0 ∈ R, a > 0 ∈ R, and b ≥ 1 ∈ R are design
variables and a is chosen such that aβ0 < 1. The scalar
variable b must be chosen such that, for every σ(t) 6= 0,
b||φ2(σ)|| ≥ 1. Note that, unlike the scheme proposed in
(Edwards and Shtessel, 2016), we introduce an additional
parameter b into the definition of the auxiliar variable (34)
so as to cope with possibly different values for the norm
of φ2(σ). Thus, δ(t) can be modified to allow different
choices for φ2(σ), facilitating a possible generalization for
a broader class of Super-Twisting based algorithms. As
in the original scheme, the other design variables a and ε
should be interpreted as safety margins ensuring that

b

aβ0
||ūeq||+ ε ≥ 1

aβ0
||ūeq||+ ε > ||ueq|| (35)

The adaptive function L(t) is defined as

L(t) = l(t) + l0 (36)

where l0 > 0 ∈ R is a constant design parameter, and l(t)
is a scalar function with time derivative given by

l̇(t) = −ρ(t)sign(δ(t)), (37)

with ρ(t) = r0 + r(t) and

ṙ(t) = γ|δ(t)|, (38)

where γ, r0 > 0 ∈ R. Given the dual-layer scheme, we can
state the second result of this paper.

Theorem 2. Consider the system (1) subject to the in-
put disturbance d(σ, t) which satisfies the constraint

||ḋ(σ, t)|| < a1, where the positive constant a1 is finite but
unknown. Then, the dual-layer adaptation scheme (33),
(34), (36)–(38) ensures L(t) > ||d(σ, t)|| in finite time.

Proof. The proof follows closely the same steps of the
proof of (Edwards and Shtessel, 2016, Proposition 3.2).

Consider the following auxiliary variable

e(t) =
bqa1
aβ0

− r(t), (39)

where q > 1 represents a safety margin and is used to

ensure that
∣∣ d
dt ||ūeq(t)||

∣∣ ≤ || ˙̄ueq(t)|| < qa1. From (38),
the time derivative of (39) is given by

ė(t) = −γ|δ(t)| (40)

From (34), it follows that

δ̇(t) = l̇(t)− b

aβ0

d

dt
||ūeq(t)||. (41)

Given the dynamics of δ(t) and e(t), the following Lya-
punov function candidate will be used to analyze the
boundedness of these variables.

V (δ, e) =
δ2(t)

2
+
e2(t)

2γ
(42)

As in (Edwards and Shtessel, 2016), from (40) and (41),
it is possible to conclude that δ(t) and e(t) are bounded
signals. Moreover, since r(t) is also bounded, it can be veri-
fied from Barbalat’s Lemma (Khalil, 2002) the asymptotic
convergence of δ(t) to zero, ensuring that Assumption 1 is
satisfied in finite time.

Remark 2: Theorem 2 imposes only a constraint on the
time derivative of the input disturbance. It is important
to stress that the adaptive scheme can cope with a class
of unbounded disturbances at the expense of allowing un-
bounded gains as well. This result extends the applicability
of the dual-layer scheme proposed in (Edwards and Shtes-
sel, 2016) to a broader class of disturbances/uncertainties.
Note that regardless of the unboundedness of L(t), the
sliding variables σ(t) and σ̇(t) remain bounded, according
to Theorem 1. On the other hand, if the disturbance is
bounded, it is straightforward to conclude that L(t) is also
bounded in this case.

Combining Theorems 1 and 2, the main result of this paper
is achieved. Note that the sliding mode occurs in finite time
in spite of the disturbance term d(σ, t). As δ(t) decreases
L(t) becomes a tighter upper-bound for ||d(σ, t)||, keeping
the sliding mode and avoiding conservative values for the
gains of the Super-Twisting algorithm described in (1).

Remark 3: During the reaching phase there is an interval

[ta, tc] where
∣∣∣∣∣∣ σ(t)

2||σ(t)||

∣∣∣∣∣∣ = 1
2 for almost all t ∈ [ta, tc].

From (33), and since τi are small constants, ūeq(t) is a high
bandwidth low-pass filtered version of β(t)/2. Moreover,
there exists a time interval [tb, tc] ⊂ [ta, tc] in which
||ūeq(t)|| > aβ(t)/2. Therefore, for almost all t ∈ [tb, tc], it
follows from (2) and (34) that

δ(t) < L(t)− abβ0L(t)

2aβ0
− ε

From (4), ||φ2(σ)|| = 1
2 , ∀σ(t) 6= 0. Thus, choosing b = 2,

it is possible to conclude that δ(t) < −ε. From (37) and
(38), and since δ is negative for almost all t ∈ [tb, tc] it

follows that L̇(t) = l̇(t) = r(t) + r0 > 0. Thus, L(t) is
monotonically increasing with an increasing rate greater
than r0. Since, in the worst case the disturbance can grow
at a fixed rate, then L(t) will increase to be larger than
the disturbance after a finite time.

Since δ(t) converges to zero assimptotically, the function
r(t) is always increasing, which could be a problem.
An alternative scheme for practical implementations is
presented in (Edwards and Shtessel, 2016).
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3. SIMULATION RESULTS

Consider the IEEE 39 bus power system with 10 generators
and 39 buses described in (Mei et al., 2011). Using the
Kron-reduction technique (Dorfler and Bullo, 2013), the
power system can be written as[

θ̇(t)
ω̇(t)

]
=

[
0 I
Ls −M−1

g Dg

][
θ(t)
ω(t)

]
+

[
0
I10

]
u(t)+B̄ff(ξ, t)

ξ̇(t) = Āξ(t) + B̄u(t) + B̄ff(ξ, t) (43)

with ξ(t)=
[
θ(t)T ω(t)T

]T
,Ls=M−1

g

(
LglL

−1
ll Llg −Lgg

)
and u(t) = M−1

g

(
Pω(t)−LglL−1ll Pθ(t)

)
, where θ(t) ∈

R10 and ω(t) ∈ R10 denote the generator rotor angles
and frequencies, respectively. The vector f(t) describe an
unknown attack and u(t) the equivalent input. The line
resistance is described by the network susceptance matrix
composed by Lll, Lgl, Llg and Lgg. The matrices Mg

and Dg describe the inertial matrix and the damping co-
efficients, respectively. Pω(t) is the known reactive power
demand of the buses and Pθ(t) is the controlled mechanical
power input for each generator. The numerical values for
the above parameters are described in (Corradini and
Cristofaro, 2017).

We consider that the system output is given by

y(t) = [I10 I10] ξ(t) (44)

Furthermore, the last ten states will be monitored, i.e.

B̄f = [0 I10]
T

(45)

After a linear change of coordinates x(t) =

[
I10 0
I10 I10

]
ξ(t),

the system described by (43), (44), and (45) can be
represented as[
ẋ1(t)
ẋ2(t)

]
=

[
A11 A12

A21 A22

] [
x1(t)
x2(t)

]
+

[
B1

B2

]
u(t) +

[
0
B

]
f(t)

y(t) =x2(t)

where A11 is a Hurwitz matrix and B is an identity
matrix. In order to reconstruct the attack vector f(t), we
consider the following state observer[

˙̂x1(t)
˙̂x2(t)

]
=

[
A11 A12

A21 A22

] [
x̂1(t)
y(t)

]
+

[
B1

B2

]
u(t) +

[
0
B

]
f̂(t)

ŷ(t) =x̂2(t)

Defining the estimation errors as e1(t) = x1(t) − x̂1(t),
and e2(t) = x2(t)− x̂2(t), it follows that[

ė1(t)
ė2(t)

]
=

[
A11

A21

]
e1(t) +

[
0
B

](
f(t)− f̂(t)

)
(46)

Note that e2(t) is a measurable signal, once y(t)−ŷ(t) =
e2(t). Since A11 is Hurwitz, it is possible to conclude that
e1(t) is a bounded signal that converges exponentially to
zero. Furthermore, defining σ(t) = e2(t) and

f̂(t) = −B−1
(
−α(t)φ1(σ) + Φ(σ, t)−

∫ t

t0

β(t)φ2(σ)dt

)
,

the output observation error can be written as (1), with

d(σ, t) =A21ė1 + Bḟ(t). Therefore, the sliding mode is
achieved in finite time for any disturbance d(σ, t) that

satisfies the constraint ||ḋ(σ, t)|| < a1, where a1 is an
unknown constant.

Note that after the sliding mode takes place (σ(t) =

σ̇(t) = 0), f̂(t) = B−1A21e1(t) + f(t). Since e1(t)

converges to zero exponentially, it follows that f̂(t) also
converges exponentially to f(t).

In order to allow a comparison between both approaches,
the same simulation parameters considered in (Corradini
and Cristofaro, 2017) were chosen here. To simplify the no-
tation, the strategy proposed in (Corradini and Cristofaro,
2017), will be referred here as Method 2.

Consider that the power system presented in (43) is
under attack by the following attack vector f(t) =[
01×10

1
2sin(0.2πt) 01×9

]T
. Defining κ=2, the STA gains

are chosen as α0 = 2 and β0 = 3.5 in order to satisfy (12).
The dual-layer parameters are defined as τi = 0.01 , i =
1, ..., 10, r0 = 0.1, l0 = 0.1, a = 0.24, ε = 0.01, and γ = 8.

Note that Method 2 requires the knowledge of an upper-
bound for f(t) and its time derivative. Thus, for imple-
mentation purposes, it is considered that the constants
ρ1 = 0.5 and ρ2 = 0.1π are known upper-bounds for
f(t) and ḟ(t), respectively. It should be emphasized that
the proposed strategy only requires that the constraint
||ḋ(σ, t)|| < a1 presented in Theorem 2 be satisfied.

Considering σ(0) = [−0.5·11×5 0.25·11×5]
T

and z(0) = 0
the simulation results are shown in the following Figures.

From Fig. 1 note that the proposed strategy ensures the
2-SM (σ(t) = z(t) = 0) in finite time and also provides
an exact reconstruction of the original attack, as can
be observed in Fig. 2. As described in (Corradini and
Cristofaro, 2017), Method 2 only ensures the boundedness

of the signals ||σ(t)|| and ||f(t) − f̂(t)||, therefore, the
attack reconstruction is not exact (see Fig. 2). Since
Method 2 is not based on second-order sliding modes, it
does not have a z variable.
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Fig. 1. Sliding variables.

From Fig. 3, the expected behaviors for the adaptive
gain L(t) and the Dual-Layer variables δ(t) and ρ(t) are
observed, since L(t) > ||d(σ, t)||, δ(t) converges to zero,
and ρ(t) becomes constant.

4. CONCLUSION

In this paper, we have proposed a non-decoupled Multi-
variable Adaptive Super-Twisting Algorithm (MASTA).
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Fig. 2. True f(t) versus estimated f̂(t) state attack using
both methods.
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Fig. 3. (a) Adaptive gain L(t) and the disturbance ||d(t)||.
(b)||Φ(t,σ)|| and the Dual-Layer variables δ(t), ρ(t).

We have provided a multivariable extension closer to the
SISO version presented in (Edwards and Shtessel, 2016),
using a generalized formulation. Besides, we have high-
lighted some key properties that may allow a generaliza-
tion to a broader class of Super-Twisting based algorithms.
Although the filtered signal used to approximate the equiv-
alent control is a vector in the multivariable case, its norm
remains a scalar. Thus, the dual-layer scheme, originally
proposed for SISO systems, can be used without major
modifications if a non-decoupled multivariable approach
is considered. The adaptive strategy does not require the
knowledge of upper bounds for the matched disturbances,
and yet is capable of rejecting bounded disturbances. As an
additional contribution, we have shown that the dual-layer
scheme can also reject a class of unbounded disturbances
if the gains are allowed to be unbounded as well.
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