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Abstract: Catalytic plate microchannel reactors (CPRs) are a promising means for modular
hydrogen/fuels production from distributed natural gas resources. However, the equipment
miniaturization presents challenges for process control, including spatially-distributed models,
limited availability of measurements, and fast process time constants. In the present paper, we
investigate the use of data-driven models—specifically, artificial neural networks (ANNs)—to
estimate temperature “hotspots” within CPRs. We prescribe nonlinear transformations of the
model inputs in the form of well-known dimensionless quantities (e.g., Reynolds number), and
we show that these engineered features can improve the prediction capability of computationally
parsimonious ANNs using a first-principles reactor model. Finally, we present a simulation case
study that demonstrates the use of a trained ANN for inferential model predictive control.
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1. INTRODUCTION

The modular manufacturing paradigm for chemical pro-
cessing involves using decentralized, flexible production
facilities to access distributed feedstocks (Baldea et al.,
2017). For instance, “stranded” natural gas resources are
located in remote areas and cannot be monetized via con-
ventional means. Rather, they require distributed, small-
scale gas-to-liquids (GTL) processes (e.g., steam-methane
reforming followed by Fischer-Tropsch synthesis). These
processes must be robust and efficient, as they are often
deployed at a distance from support personnel.

One pathway towards process technologies that exhibit
good “scale-down” performance (i.e., capital cost scales
favorably as capacity is diminished) is process intensifica-
tion, a design paradigm whereby transfer and transport
limitations are minimized, e.g., by equipment miniatur-
ization (Stankiewicz and Moulijn, 2000). In this context,
catalytic plate microchannel reactors (CPRs) have been
identified as a promising avenue for scale-down of GTL
processing facilities (Chen et al., 2017). CPRs consist
of alternating (co- or counter-current) millimeter-sized
channels, separated by catalyst-coated plates. Microchan-
nel reactors for steam-methane reforming are potentially
an important intermediary step in small-scale, Fischer-
Tropsch synthesis. In this application, the endothermic re-
forming reactions and the exothermic catalytic combustion
of methane occur in adjacent channels, thermally coupling
the two reacting spaces. Channel sizes in the order of
millimeters minimize transfer and transport limitations.
CPRs are thus an order of magnitude smaller than conven-
tional reactors of comparable capacity and use significantly
less catalyst by weight.

However, there are several control challenges for CPRs,
mostly related to flow maldistribution and localized tem-
perature maxima (known as “hotspots”). In particular,
hotspots can be present at steady state or may arise
during transient operation. They adversely affect reactor
performance and jeopardize the integrity of the catalyst
coating/support structures (Norton et al., 2006). Many lit-
erature studies have focused on design modifications that
mitigate the formation of hotspots, including distributed
fuel feed locations (Kolios et al., 2005), optimizing catalyst
coating placement (Zanfir et al., 2011), and incorporating
thermally activated flow control devices (Pattison et al.,
2015). Fewer studies have focused on temperature control
strategies, which are required to deal with fluctuations in
reforming flow, inlet compositions, etc. Here, Pattison and
Baldea (2013) investigated the insertion of phase-change
material between reactor plates as a means of distributed
temperature control, in conjunction with a higher-level
supervisory controller derived via steady-state analysis.
Odunsi et al. (2016) applied a similar hierarchical strategy
to control temperature for a Fischer-Tropsch reactor.

A major impediment in the implementation of effective
temperature/hotspot control strategies is the lack of rel-
evant measurements in CPRs. In this paper, we employ
artificial neural networks (ANNs) as reduced-order reac-
tor models to predict maximum wall temperature (i.e.,
the magnitude of the hotspot) as a function of limited
measurements. We show that performing nonlinear trans-
formations on the input variables (i.e., feature engineering)
based on dimensional analysis (in particular, using dimen-
sionless numbers) improves the accuracy of the learned
models when the goal is small model size, and thereby
computational efficiency. Finally, we use a trained ANN
for inferential model predictive control of a CPR.
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Fig. 1. Catalytic plate reactor model with counter-current
reforming and combustion flows.

2. PHYSICAL SYSTEM CONSIDERED

This work considers the steam-methane reforming CPR
system described and modeled by Zanfir et al. (2011),
corresponding to a reactor comprising a stack of channels
separated by catalytic plates. The primary model assump-
tions are: (i) end effects, or heat transfer between the
bottom/top channels with the environment, are negligible
at the stack level, and (ii) flow distribution between chan-
nels is substantially even. Given these assumptions, the
dynamics of the CPR can be well-represented by modeling
a single catalytic plate (with reforming catalyst coating on
one side and combustion catalyst coating on the other),
as well as the adjacent half-channels. The feed streams
enter the two channels in a counter-current configuration,
with nominal velocities of 4 m/s. Flow in both channels
is assumed to be laminar, with fully developed velocity
profiles (between infinite parallel plates) at all times.

2.1 Mathematical Model

The reactor is modeled in two dimensions (2-D), as shown
in Figure 1. Symmetry boundary conditions are imposed
at the centerlines of the channels. No-flux conditions are
imposed at the channel outlets, and equal-flux conditions
are imposed at the gas-solid interface. The gas phase in
each channel and the solid wall are modeled using a 2-D
geometry, while the catalyst layers are relatively thin and
modeled in one dimension only (1-D). The complete model
equations are provided in Zanfir et al. (2011).

The three reactions occurring in the reforming channel are:

CH4 + H2O ↔ CO + 3H2; ∆H = +206 kJ/mol (1)

CO + H2O ↔ CO2 + H2; ∆H = -41 kJ/mol (2)

CH4 + 2H2O ↔ CO2 + 4H2; ∆H = +164 kJ/mol (3)

with (1) being steam-methane reforming, (2) water-gas
shift, and (3) reverse methanation. Their rates are de-
scribed using the kinetic model by Xu and Froment (1989).
The (overall endothermic) reforming reactions are sup-
ported thermally by the heat from catalytic combustion
of methane in the adjacent combustion channels:

CH4 + 2O2 → CO2 + 2H2O; ∆H = -803 kJ/mol (4)

The rate of combustion (4) is modeled using a first-
order kinetic expression with respect to methane and an
activation energy of 90 kJ/mol. Furthermore, the effects

of homogeneous combustion, which has a non-negligible
contribution at high temperature, are included.

2.2 Model Implementation

The reactor design was determined by solving a steady-
state optimization problem to maximize the sum of the
conversions in both channels, defined using the amounts of
methane present at each channel inlet and outlet. Further
details can be found in Zanfir et al. (2011); Pattison
and Baldea (2013). Note that the resulting offset catalyst
distribution is optimized for its steady-state performance
and does not necessarily correspond to the reactor design
that is the most operable or controllable. The optimized
reactor design and model parameters are given in Table 1.

Table 1. CPR model parameters

Parameter Value

Reactor length (L) 0.6 m
Channel height (2R) 2.0 mm

Catalyst thickness (δcat) 20 µm
Lref 9.0 cm
Lcomb 15 cm

Inlet temperature 793.15 K
Reforming inlet composition 19.11 %CH4, 72.18% H2O,

(ωref
in ) 2.94% CO2, 0.29% H2,

5.48% N2

Combustion inlet composition 5.26% CH4, 22.09% O2

(ωcomb
in ) 72.65% N2

The model was implemented and simulated in gPROMS
(Process Systems Enterprise, 1997-2019). The axial direc-
tion was discretized using a second-order finite difference
scheme with 40 nodes in the reverse direction of flow
(backward for the reforming channel and catalyst, forward
for combustion). The solid wall plate was discretized in the
axial direction using a central finite difference approxima-
tion. Orthogonal collocation on finite elements was used to
discretize the transverse direction, motivated by the dis-
persive mass and heat transport. Third-order polynomials
were used, with three finite elements for each domain. In
total, the discretized model contains 6715 state and 29943
algebraic variables. The initial point used for dynamic
simulations corresponds to the steady-state solution given

nominal flow velocities (ucombin , urefin = 4 m/s).

3. DATA SET GENERATION

3.1 Simulation Methodology

To generate a data set with dynamic excitations, the inlet
velocities to both the reforming and combustion channels
were represented as pseudo-random multi-level sequences,
or PRMSs (Wang and Baldea, 2014), constructed based
on a frequency analysis of the nominal system. We assume
that changes in inlet velocities with higher frequencies
than the corner frequency (10−1) are filtered by the system
due to the thermal inertia of the wall (Pattison and
Baldea, 2013). Furthermore, we assume that a model-
based, feed-forward controller (e.g., Section 5) should deal
with disturbances on frequencies one order of magnitude
lower than the corner frequency. This simplified analysis
provides a range for the duration of PRMS steps, such that
(tPRMS,i+1 − tPRMS,i) ∈ [50s, 350s], i = 1, ..., N − 1.
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Fig. 2. Top: PRMS of reforming inlet velocity. Middle:
PRMS of combustion inlet velocity. Bottom: corre-
sponding response of maximum plate temperature,
with upper limit (1500 K) marked by the dashed line.

Each PRMS was then generated by sampling independent
random values between 2–6 m/s, corresponding to ±50%
deviations from the nominal 4 m/s inlet flow to each
channel. The same step durations were used for both flows:

urefin = urefPRMS,i;∀ t ∈
[
tPRMS,i, tPRMS,i+1

)
(5)

ucombin = ucombPRMS,i;∀ t ∈
[
tPRMS,i, tPRMS,i+1

)
(6)

where urefPRMS,i and ucombPRMS,i are, respectively, the randomly
sampled values of the inlet flow rate to the reforming and
combustion channels at the ith PRMS step.

Figure 2 shows the 100-level PRMS used to generate the
data set for this work. We are interested in the response
of the CPR system, in the form of the instantaneous
maximum plate temperature, max(T p). The response of

max(T p) to changes in urefin and ucombin is shown in Figure
2. The equipment limit of 1500 K is exceeded at multi-
ple points, as these data represent an open-loop system
identification experiment (no controller was imposed). A
more conservative input signal may be required for a real-
world system identification experiment (e.g., via thermal
imaging). In all, 20000 data points were generated as a
combined training and test data set. The final 10% of the
data set (plotted as dotted lines in Figure 2) was preserved
for use as test data, and was not used in model training.

3.2 Measurements and Features

We assume that the inlet velocity to each channel is mea-
sured, as well as the gas temperature at each inlet (the
temperature at each inlet changes slightly due to changes
in the plate temperature). Furthermore, we assume that
thermocouples are placed and measure the temperatures
of the wall plate at the extremity covered with catalyst
coating (z = 0 for combustion and z = L for reforming).
Finally, we assume that a thermocouple is placed at the
end of the combustion catalyst zone (z = L − Lcomb)

to provide an internal measurement. Note that this is
the only measured variable inside the reactor, owing to
manufacturing challenges of constructing a CPR outfit-
ted with internal sensors. The placement of the internal
thermocouple is physically motivated, as the extremity
of the combustion catalyst layer is where the catalytic
combustion reaction ignites, and the temperature begins
to rapidly increase in the combustion channel.

Sánchez-Maroño et al. (2005) showed the advantages of
feature extraction using dimensionless combinations of
measured variables, e.g., obtained using physical knowl-
edge or the more general Π-Theorem (Buckingham, 1914),
Furthermore, Rudolph (1997) proposed using such dimen-
sionless features as inputs to “dimensionally homogenous”
neural networks for improved accuracy and training prop-
erties. We therefore supplemented the above measure-
ments with several dimensionless engineered features.

Several common dimensionless numbers can be com-
puted easily from the CPR measurements, including the

Reynolds number Re = ρuL
µ , Prandtl number Pr =

Cpµ
κ ,

and Schmidt number Sc = µ
ρD (note that the inlet com-

positions are assumed constant). Dimensionless numbers
also often appear as coefficients when energy and material
balance equations are non-dimensionalized, and we further
used the dimensionless numbers described for a similar
system by Baldea and Daoutidis (2007): thermal Péclet
number PeT = RePr, mass Péclet number PeM = ReSc,
and Fourier number Fo. The values of these six ratios
were computed at the inlet to each channel. For each wall-
temperature measurement, the Damköhler number Daj
was computed for each reaction j (Baldea and Daoutidis,
2007). The appearance of these dimensionless ratios in
non-dimensionalized equations supports that they may in-
form dynamic models when used as inputs, although they
only involve (functions of) existing measured variables.

The full list of inputs/features is given in Table 2. The
superscripts ref , comb, and p refer respectively to the
reforming side, combustion side, and separating wall plate.

Table 2. Inputs to data-driven models

Location (z) Measured Variables Computed Variables

0 uref , T ref , Reref , Prref , Scref

T p,comb PerefT , PerefM , Foref

Daref1 , Daref2 , Daref3
L ucomb, T comb, Recomb, Prcomb, Sccomb

T p,ref Pecomb
T , Pecomb

M , Focomb

Dacomb
1

L− Lcomb T p,comb Dacomb
1

4. DATA-DRIVEN MODEL STRUCTURES FOR CPR

This section describes the training of ANNs to estimate
max(T p) using the simulated data set of measured and
engineered features. We examined two classes of neu-
ral networks that are suitable for modeling time-series
data, prioritizing models of very small size. Such reduced-
dimensional models could be deployed in, e.g., “MPC-on-
a-chip” applications, which are well-suited for fast con-
troller response in modular production scenarios. The loca-
tion of the temperature peak (and desired output variable,
max(T p)) varies during operation, and therefore measur-
ing its value requires thermal imaging, distributed internal
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Fig. 3. Architecture of a time-delay neural network
(TDNN) with a single hidden layer.

thermocouples, etc. Therefore, historical values of the out-
put variable max(T p) are typically unavailable in practice,
and autoregressive terms/models were not considered.

4.1 Time-Delay Neural Networks

The Time-Delay Neural Network (TDNN) is a simple
feedforward ANN for modeling time-series data (Waibel
et al., 1989). The units at each layer are fully connected,
and each hidden layer receives inputs from a “window”
of outputs from the layer below. Figure 3 shows the
architecture of a TDNN with a single input variable x
and a single hidden layer. The window size is p, and
each unit in the hidden layer receives the first p time-
delayed values of x as inputs. In the case of multiple
inputs, x1, ..., xn, each unit in the hidden layer receives
p×n inputs, corresponding to p time-delayed values of each
input. Position dependence is removed during training of
the network parameters (i.e., the same weights are applied
at all values of t), making the model shift invariant.

TDNNs were trained on the above data set using the
MATLAB Deep Learning Toolbox (The MathWorks, Inc.,
2018). The Levenberg-Marquardt algorithm was used with
default stopping parameters, except the maximum number
of epochs was increased to 10000 and the maximum
number of validation fails to 500 (i.e., training stops if
the validation error increases for 500 consecutive epochs).
Input and output variables were scaled to be in [−1, 1], and
tanh() activation functions were used. Prediction mean
squared error (MSE) was selected as the loss function.
The parameters were initialized using random weights, and
20 TDNNs were trained for each model configuration. All
models contained a single hidden layer, with the number
of hidden units varying from one to eight. A sample time
of 5 s was used to account for measurement time.

The performance of the 20 TDNN models in terms of
MSE is shown in Figure 4, where it can be seen that
max(T p) can be modeled accurately using fairly low-
dimensional TDNN models. Using all the variables in
Table 2 (seven measured and 17 computed) improved the
best MSE for 1–6 hidden units, compared to the case where
only the seven measured variables are used. However, this
improvement in accuracy could be attributed to increasing
the number of model parameters, from 7×p to 17×p
input-layer connections. To isolate the effect of adding
dimensionless number inputs, we trained a model with the
seven measured variables and the most important seven
computed features. The most important features were
identified as those with the largest weights in the model
with all 17 computed variables. After this feature selection
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Fig. 4. Best (top) and mean (bottom) performance of
TDNNs with varying number of hidden units.

Fig. 5. Architecture of a recurrent neural network (RNN)
with a single hidden layer. Recurrent connections are
only shown from each unit to itself for simplicity.

process, the model with p = 2 includes the same number
of input-layer connections (and trained parameters) as
a model with the seven measured variables as inputs,
and p = 4. The model with seven dimensionless inputs
outperforms the two models with only measured variables
in terms of best MSE at small model architectures (up to
four hidden units). The mean MSE is also lower for these
small models, suggesting they may also be easier to train.

4.2 Recurrent Neural Networks

The Recurrent Neural Network (RNN) is a more compli-
cated ANN architecture, with an internal state, or “mem-
ory.” An RNN includes recurrent connections, wherein the
inputs to some hidden units are the time-delayed outputs
of others, or themselves (Medsker and Jain, 1999). Figure
5 shows an RNN architecture with a single input variable
x and a single hidden layer. Each hidden unit is depicted
with a recurrent connection to only itself for simplicity. In
reality, hidden units in RNNs typically have full recurrent
connections, i.e., each hidden unit receives the previous p
outputs from all hidden units as inputs. The same weights
are again applied at all values of t during training, making
the RNN shift invariant.

RNNs were trained on the same data set using the
MATLAB Deep Learning Toolbox (The MathWorks, Inc.,
2018). The Levenberg-Marquardt algorithm was again
used with default stopping parameters, except the maxi-
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Fig. 6. Best (top) and mean (bottom) performance of
RNNs with varying number of hidden units.

mum number of epochs was increased to 5000 and the max-
imum number of validation fails to 100. These parameters
were shortened because RNNs require more computational
effort to train; however, in our computations the models
seemed to reach low MSE values quickly. tanh() activation
functions and the prediction MSE loss function were again
used. Ten RNNs were trained for each model configuration,
using a sample time of 5 s and a single hidden layer. One
to six units were considered in the hidden layer.

The performance of the 10 RNN models in terms of MSE
is shown in Figure 6. The models shown correspond to
same four input structures in Figure 4. Here, we found
the effect of introducing dimensionless engineered features
to be negligible. In other words, the prediction accuracy
of the models is not improved significantly by adding the
dimensionless numbers as inputs. This suggests that the
RNNs are capable of learning the underlying nonlinear
correlations present in the data and do not benefit from
the introduction of simple engineered features. Indeed,
the MSEs of the RNN models are lower than those of
the corresponding TDNN models. Lastly, we note that
the bulk of the connections (trained parameters) in RNN
models are recurrent connections, and additional input
variables have therefore lower relative impact on a model.

5. MODEL PREDICTIVE CONTROL OF CPR

A transient simulation study was performed to demon-
strate the application of the above models to model pre-
dictive control (MPC). The controlled variable, max(T p),
must satisfy 1000 K < max(T p) < 1500 K to avoid reactor
extinction (lower bound) and catalyst/structural damage
(upper bound). The same data set (Figure 2) was used to
perform system identification, in order to obtain models
that describe the effect of changes in the disturbance
variable, urefin , and the manipulated variable, ucomb

in , on
max(T p). A fourth-order, linear state-space model with
∼20% MSE was identified for each input.
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Fig. 7. Maximum reactor temperature during the distur-
bance sequence with model predictive control assum-
ing max(T p) is measured. The dotted line marks the
MPC setpoint.

A feedforward ratio controller, ucomb
in = R × urefin , was

selected as a benchmark. For the considered CPR, R = 1
based on the steady-state energy balance at nominal op-
eration. A linear MPC system was implemented using the
above state-space models in the MATLAB Model Predic-
tive Control Toolbox (The MathWorks, Inc., 2018), using
the default weights, a sample time of 10 s, a prediction
horizon of six time samples (i.e., 1 min), and a control
horizon of two time samples. A 70-min PRMS with the
same temporal properties as in Section 3.1 was used to

represent urefin , and a constant setpoint for max(T p) equal
to its nominal steady-state value was imposed. The per-
formances of the benchmark ratio controller and the MPC
assuming perfect max(T p) measurements are compared in
Figure 7. MPC control actions (assumed instantaneous)
were computed in 1.0± 0.3 ms (mean ± σ) on a Windows
10 system with Intel Core i7-8700 CPU at 3.20 GHz. This
scenario demonstrates the best-case MPC performance.

For the practical case where max(T p) is not measured, its
value can be instead inferred using an ANN. As TDNNs
are much simpler than RNNs to evaluate, a TDNN with
four hidden units was selected. Recall that dimensionless
features improved TDNNs with 1–4 hidden units (Figure
4). A simple inferential control configuration similar to
that of Bahar et al. (2004) was used, wherein max(T p)
is estimated—from the seven measured variables and the
seven most important engineered features—at each sample
time, and the estimate is passed to the MPC in place of a
measurement. The same MPC was used otherwise, and the
performance of this inferential MPC (denoted as IMPC)
is shown in Figure 8 for the same disturbance sequence.
The IMPC control actions (with ANN prediction) were
computed in 11.8± 0.3 ms. Estimating max(T p) with the
simple TDNN only increased MPC computational time by
∼11 ms, making the 10 s sample time feasible.

Figure 8 reveals that IMPC response is more oscillatory;
this may be attributed to inaccuracy in forecasting, lead-
ing the controller to take more aggressive actions even
when max(T p) is close to its setpoint, and could be ad-
dressed through further controller tuning. Nevertheless,
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Fig. 8. Maximum reactor temperature under IMPC.

the mean deviation of max(T p) from the nominal value
(and MPC/IMPC setpoint) of 1367.7 K was 34.5 K un-
der ratio control, 24.1 K under MPC, and 25.2 K under
IMPC. The IMPC performed remarkably similar to MPC
with perfect measurements, and both methods maintained
max(T p) much closer to its nominal value than the ratio
controller did. In turn, this has important consequences for
CPR performance: the mean deviation of reforming con-
version from its nominal value of 96.93% was respectively
1.50%, 1.29%, and 1.24% under ratio control, MPC, and
IMPC.

6. CONCLUSIONS

Microchannel reactors are a promising means for mone-
tizing distributed resources, but present control challenges
such as complex models, limited measurements, and fast
response times. With model-based control in mind, this
work studies ANN modeling techniques for predicting the
evolution of temperature “hotspots.” We prescribed non-
linear transformations of measured variables, in the form
of common dimensionless quantities (e.g., Reynolds num-
ber). These engineered features improved the prediction
accuracy for small TDNN models, a result we expect to
be relevant in embedded model-based control applications.
On the other hand, the benefit of introducing the engi-
neered features was negligible for larger data-driven model
structures, such as larger TDNN models or RNN models.
This result suggests the ability of larger or more complex
ANNs to discern and learn non-linear relationships present
in the systems underlying the data, and make accurate
output predictions. A simulated case study demonstrated
the application of a small TDNN including dimensionless
inputs to (inferential) model predictive control.
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