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Abstract:
A challenge in neuroscience and many other fields is the inference of a network’s structure from
observations of dynamics on the network. Understanding the relationship between network
structure and dynamics on a network can help improve methods for network inference. We
consider “process motifs” on a network as building blocks of processes on networks and propose
to distinguish process motifs and graphlets as two different types of network motifs. We
demonstrate that the analysis of process motifs can yield insights into the mechanisms by which
processes and network structure contribute to differential entropy and other information-based
properties of stochastic processes on networks, and we discuss the relationship between process
motifs and graphlets.
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1. INTRODUCTION

In neuroscience and many other fields, researchers are in-
terested in inferring the structure of a network from obser-
vations of dynamics on the network (Kramer et al., 2009).
Popular approaches to this challenge have used concepts
such as transfer entropy (Vicente et al., 2011), Granger
causality (Bressler and Seth, 2011), and information-
theoretic measures (Schaub et al., 2019), or graphical
models Pearl (2014); Koller and Friedman (2009) to in-
fer edges in a network from time series and other data.
Understanding how motifs in a network’s structure affect
measurements help identify the network structures that
one can (or cannot) infer using a given method.

The study of motifs in networks has advanced the un-
derstanding of various systems in biology (Alon, 2007),
ecology (Rip et al., 2010), economics (Takes et al., 2018),
computational social science (Hong-Lin et al., 2014), and
other areas. Traditionally, network scientists have consid-
ered graphlets (i.e., small subgraphs in a network) and
identified them as motifs in a network’s structure if empir-
ical data (Alon, 2007) or mathematical models (Kim et al.,
2008) indicate their importance to a system’s function.

We propose to consider “process motifs” (i.e., structured
sets of walks; shown in Fig. 1) on a network as building
blocks of processes on networks, and to distinguish the
notion of process motifs from the common notion of motifs
as graphlets. We define a process motif on a graph G to be
a directed weighted multigraph in which each edge corre-
sponds to a walk in G and each edge’s weight corresponds
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Fig. 1. Graphlets and process motifs. We show a
graphlet and examples of associated process motifs.
Numerical labels indicate the length of an edge in
a process motif. The process motifs with blue edges
are examples of process motifs that use each edge in
the graphlet at most once and in which each node
corresponds to a different node in the graphlet. The
process motifs with orange edges are examples of
process motifs in which two nodes correspond to the
same node in the graphlet. The process motifs with
green edges are examples of process motifs that use
edges in the graphlet more than once.

to the length of the associated walk. We demonstrate how
one can derive process motifs for a property of noisy linear
dynamics on networks using the steady-state differential
entropy of the Ornstein–Uhlenbeck process as an example,
and use the results of this derivation to identify graphlets
that contribute most to differential entropy.

2. DIFFERENTIAL ENTROPY OF THE
ORNSTEIN–UHLENBECK PROCESSES ON A

NETWORK

The Ornstein–Uhlenbeck process (Uhlenbeck and Orn-
stein, 1930) is a simple and popular model for noisy
coupled systems (Aalen and Gjessing, 2004). For example,
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it has been used as a model for the dynamics for neu-
ronal systems (Tononi et al., 1994), stock prices (Liang
et al., 2011), and gene expression (Rohlfs et al., 2013).
The differential entropy of the Ornstein–Uhlenbeck pro-
cess at steady state is the basis for several properties
of dynamical processes on networks. Examples of such
properties are neural complexity (Tononi et al., 1994),
redundancy and degeneracy (Tononi et al., 1999), and ro-
bustness to small perturbations in node states (Demetrius
and Manke, 2005). Across many domains, researchers have
linked functions of entropy and differential entropy to a
network’s ability to robustly perform a desired function
(Demetrius and Manke, 2005; West et al., 2012; Schieber
et al., 2016). Deriving process motifs that contribute to
differential entropy of the Ornstein–Uhlenbeck process at
steady state is a step towards identifying the process
motifs that contribute to steady-state transfer entropy,
redundancy, degeneracy, and other properties of processes
on networks.

3. PROCESS MOTIFS AND EMERGENCE OF
PROCESS PROPERTIES

For several properties of processes on networks, one can
calculate the contribution of a process motif to the prop-
erty. Studying the contributions of process motifs can
further understanding of processes on networks in sev-
eral ways. For example, it can help one understand how
properties of processes on networks “emerge” from the
superposition of small subprocesses. One can also calculate
a graphlet’s contribution to a property of a process from
the contributions of process motifs that can occur on the
graphlet.

In Fig. 2, we show a graphlet and examples of associ-
ated process motifs. We also show several process motifs
that contribute to steady-state differential entropy of the
Ornstein–Uhlenbeck process and the respective contribu-
tions. We find that the process motifs that contribute to
steady-state differential entropy are circular 1 . By consid-
ering different network structures, we find structures on
which cyclic process motifs contribute most to differential
entropy and structures on which acyclic process motifs
contribute most to differential entropy.

4. SUMMARY

The analysis of process motifs and their contribution to
differential entropy demonstrates that it is important to
consider processes on a network (instead of just a net-
work’s structure) as a composite entity that one can de-
compose into many small parts. Such a decomposition of
processes on networks provides a framework for studying
the mechanisms by which processes and network structure
contribute to differential entropy, transfer entropy, redun-
dancy, and other properties of processes on networks. A
knowledge of these mechanisms lead to crucial insights into
the limitations of methods for the inference of network
structure from observations of dynamical processes on
networks.

1 A circular process motif is a process motif such that if one replaces
each directed edge by an undirected edge, the resulting graph is an
undirected cycle.

Fig. 2. Process-motif contributions to differential
entropy. We show contributions of process motifs to
the steady-state differential entropy of the Ornstein–
Uhlenbeck process. Bars are light blue when the
corresponding process motif is acyclic and dark blue
when the corresponding process motif is cyclic.
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