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Abstract: In this paper, we develop the Koopman operator theory for dynamical systems with symmetry.
In particular, we investigate how the Koopman operator and eigenfunctions behave under the action of
the symmetry group of the underlying dynamical system. Further, exploring the underlying symmetry,
we propose an algorithm to construct a global Koopman operator from local Koopman operators. In
particular, we show, by exploiting the symmetry, data from all the invariant sets are not required for
constructing the global Koopman operator; that is, local knowledge of the system is enough to infer the
global dynamics.
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1. INTRODUCTION

Dynamical systems theory is one of the most important
branches of mathematics in the sense that it has applications in
almost all fields of science and engineering. Any system which
changes with time is a dynamical system and hence, they are
ubiquitous in nature. As such, both theoretical and numerical
analysis of dynamical systems is important. An important class
of dynamical systems are the ones which have a symmetry in
the sense that there exists some transformations on the state
space which carries one solution of the dynamical system to
another solution of the dynamical system Field (1970); Field
(1980); Golubitsky et al. (2012) and the symmetries mani-
fest themselves in asymptotic dynamics, bifurcation, attractor
structures etc. Chossat and Golubitsky (1988); Sparrow (2012);
Mesbahi et al. (2019); Salova et al. (2019). Moreover, sym-
metries play an important role in synchronization, pattern for-
mation, quantum systems, etc. Mathematically, symmetry is
specified by the action of some group on the state space and
hence, for studying symmetric dynamical systems, elements of
group theory and representation theory are used.

Traditionally, theoretical analysis of dynamical systems is per-
formed by studying the evolution of trajectories in the phase
space. However, more recently a different technique is being
increasingly used to study dynamical systems, where instead
of studying the trajectories in the phase space, the focus is,
using transfer operators like Perron-Frobenius operator (P-F)
and Koopman operator, on studying the evolution of measures
or functions defined on the phase space Lasota and Mackey
(1994); Vaidya and Mehta (2008); Mezić (2005); Budisic et al.
(2012).
? This work was supported by a Defense Advanced Research Projects Agency
(DARPA) Grant No. DEAC0576RL01830 and an Institute of Collaborative
Biotechnologies Grant. The Pacific Northwest National Laboratory (PNNL) is
operated by Battelle for the U.S. Department of Energy under Contract DE-
AC05-76RL01830.

The main advantage of this approach is the fact that the
evolution of measures or functions is linear in the infinite-
dimensional space. Moreover, the evolution of functions, which
is governed by the Koopman operator, is tailor-made for data-
driven analysis of dynamical systems. This is especially useful
for analysis of higher dimensional systems like power net-
works, building systems, biological networks, etc. However,
one drawback of using transfer operators is that these are
typically infinite-dimensional operators. Hence, for data-driven
analysis researchers have developed many different methods
for computing the finite-dimensional approximations of these
transfer operators and using the developed framework for anal-
ysis and control of dynamical systems Dellnitz and Junge
(1999); Mezic and Banaszuk (2000); Mezić (2005); Vaidya and
Mehta (2008); Raghunathan and Vaidya (2014); Budisic et al.
(2012); Mauroy and Mezic (2013); Yeung et al. (2018); Yeung
et al. (2017); Sinha et al. (2019b); Johnson and Yeung (2018);
Sinha et al. (2018b); Sinha et al. (2018a); Sinha et al. (2019a).

In this paper, we use the Koopman operator framework to study
dynamical systems with symmetry. In particular, we analyze
some basic properties of symmetric dynamical systems and
their symmetry group and investigate how these properties are
reflected on the infinite-dimensional Koopman operator for the
corresponding symmetric dynamical systems. In particular, we
analyze how the symmetry of the underlying system affects
the evolution of functions in the function space under the ac-
tion of the Koopman operator. Moreover, as mentioned before,
Koopman operator techniques facilitate the data-driven analysis
of dynamical systems. To this end, in this paper, we use the
construction technique proposed in Nandanoori et al. (2019) to
provide a method for constructing the global Koopman operator
(defined on the entire phase space) from local Koopman oper-
ators (defined on locally invariant sets). In particular, we show
that using the symmetry of the underlying system, one does not
need to train the local Koopman operators on all the different
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invariant spaces and hence, one does not need the data from all
the invariant subspaces for constructing the global operator.

2. PRELIMINARIES

In this section, we discuss the preliminaries of equivariant
systems and transfer operators.

2.1 Equivariant Dynamical Systems

Consider a dynamical system ẋ = f(x), where x ∈ M ⊆ Rn
and f : M → M is assumed to be at least C1. A symmetry of
the dynamical system is a transformation that maps solutions
of the system to other solutions of the system. A dynamical
system with such a transformation is known as an equivariant
dynamical system and is defined as follows:
Definition 1. (Equivariant Dynamical System). Consider the dy-
namical system ẋ = f(x) and let G be a group acting on M .
The system is called G-equivariant if

f(g · x) = g · f(x), for g ∈ G, x ∈M.

The definition for an equivariant discrete-time dynamical sys-
tem xt+1 = T (xt) is defined analogously. In particular, a
discrete-time dynamical system xt+1 = T (xt) isG-equivariant
if

T (g · x) = g · T (x) for g ∈ G.
Example 1. Consider the Lorenz system given by

ẋ = σ(y − x); ẏ = x(ρ− z)− y; ż = xy − βz (1)
where σ, ρ and β are constants. The system equations remain
invariant under the transformation (x, y, z) 7→ (−x,−y, z) and
hence the Lorenz system is invariant under the transformation
matrix γ = diag(−1,−1, 1).

In this paper, we assume G to be a finite subgroup of O(n)
and M ⊂ Rn to be a compact G-invariant set. In general, a
symmetry group can be any subgroup of the group of isometries
of the Euclidean space En, but in this work, we consider finite
subgroups of the group of point symmetries of En. Further, we
consider discrete-time systems of the form xt+1 = T (xt).

Remark 1. We consider discrete-time systems because Koop-
man operators are tailor-made for data-driven analysis of dy-
namical systems and data (from a simulation or from an exper-
iment) is always in the form of a discrete time-series.

Also, given an abstract group G, let Γ be the n-dimensional
representation of the group G in Rn, such that g 7→ γg , where
g ∈ G and γg ∈ Γ. Note that, γg has the matrix representation
γg ∈ Rn×n and the action of the abstract group G on the state
space Rn is specified by the action of the representation group
Γ acting on Rn, where the action is by matrix multiplication ∗ .
Definition 2. (Isotropy Set). Let x0(t) be a solution (trajectory)
of G-equivariant dynamical system from the initial condition
x0. Then the isotropy set is defined as

Σx0(t) = {g ∈ G|g · x0(t) = x0(t)}.

With the notion of isotropy set, we have the following.
Lemma 1. The isotropy set corresponding to a solution x0(t) is
a subgroup of the symmetry group G.
∗ For notational convenience we will use g throughout the paper. However, it
should be kept in mind that the action of g is through appropriate representa-
tions of G on the concerned spaces.

Proof. Proof is omitted due to space constraints. For proof see
Sinha et al. (2020).
Proposition 1. Let Σx0(t) and Σgx0(t) be the isotropy groups of
x0(t) and gx0(t) respectively. Then we have

Σgx0(t) = gΣx0(t)g
−1.

Proof. Proof is omitted due to space constraints. For proof see
Sinha et al. (2020).

2.2 Transfer Operators

In this subsection, we briefly discuss the transfer operators,
namely the Perron-Frobenius (P-F) and Koopman operator.
Consider a discrete-time dynamical system

xt+1 = T (xt) (2)

where T : M ⊂ RN → M is assumed to be at least C1. As-
sociated with the dynamical system (2) is the Borel-σ algebra
B(M) on M and the vector spaceM(X) of bounded complex
valued measures onM . With this, two linear operators, namely,
Perron-Frobenius (P-F) and Koopman operator, can be defined
as follows Lasota and Mackey (1994):
Definition 3. The P-F operator P : M(X) → M(X) is given
by

[Pµ](A) =

∫
M

δT (x)(A)dµ(x) = µ(T−1(A))

δT (x)(A) is stochastic transition function which measure the
probability that point x will reach the set A in one time step
under the system mapping T .
Definition 4. Given any h ∈ F , the Koopman operator U :
F → F is defined as [Uh](x) = h(T (x)), where F is the
space of functions (observables) invariant under the action of
the Koopman operator.

Both the Perron-Frobenius and the Koopman operators are
linear operators, even if the underlying system is nonlinear.
But while analysis is made tractable by linearity, the trade-
off is that these operators are typically infinite-dimensional.
In particular, the P-F operator and Koopman operator often
will lift a dynamical system from a finite-dimensional space to
generate an infinite-dimensional linear system.

3. KOOPMAN OPERATOR AND EQUIVARIANT
DYNAMICAL SYSTEMS

We begin this section with the analysis of group action on a
Koopman operator.

3.1 Group Action and Koopman Operator

Suppose
xt+1 = T (xt) (3)

be a dynamical system defined on the state space M ⊂ Rn,
which is symmetric with respect to a group G and let U be the
associated Koopman operator. The Koopman operator, U is a
linear operator on the space of functions (F(M)) on M . We
define a map

ϕ :G×F(M)→ F(M)

(g ? f)(x) 7→ f(g−1 · x).
(4)

Lemma 2. The map ϕ, defined in Eq. (4) defines a group action
on the space F(M).
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Proof. The proof is omitted for space constraints. For proof see
Sinha et al. (2020).

From the action of the symmetry group G on F(M), we have
the following theorem.
Theorem 1. Let U be the Koopman operator associated with a
G-equivariant system xt+1 = T (xt). Then

[g ? (Uf)](x) = [U(g ? f)](x). (5)
for all g ∈ G and f ∈ F(M).

Proof. For the dynamical system xt+1 = T (xt) and any
function f ∈ F(M), the Koopman operator U is defined as
[Uf ](x) = f(T (x)). Hence, for g ∈ G we have,
g ? (Uf)(x) = g ? f(T (x)) = f(g−1 · T (x))

= f(T (g−1 · x)) = Uf(g−1 · x) = [U(g ? f)](x),

where the third equality follows from the definition of G-
equivariant systems.

The above theorem essentially says that the Koopman operator
commutes with the elements of the symmetry group G.

Associated with a Koopman operator is its eigenspectrum, that
is, the eigenvalues λ, and their corresponding eigenfunctions
φλ(x), such that [Uφλ](x) = λφλ(x). and the eigenspectrum
(especially eigenfunctions corresponding to dominant eigen-
values) of a Koopman operator dictates the evolution of the
functions f ∈ F(M), under the map T (refer Eq. 3).
Definition 5. Let U be a Koopman operator and let φiλ(x) be
eigenfunctions of U corresponding to the eigenvalue λ, that
is, Uφiλ(x) = λφiλ(x). Then the eigenspace Eλ is defined as
Eλ = span{φiλ(x)}.

The following result establishes that the eigenspace is left
invariant under group action.
Proposition 2. Let Eq. (3) be a G-equivariant discrete-time
dynamical system and U be the associated Koopman operator.
If λ is an eigenvalue of the Koopman operator U and Eλ
is the corresponding eigenspace, then the eigenspace remains
invariant under the action of the symmetry group G.

Proof. Proof is omitted due to space constraints. For proof see
Sinha et al. (2020).

Note that a Koopman operator is a linear operator which gives
the evolution of functions which are defined on the state space.
Let x ∈ M and g · x ∈ M for a G-equivariant system and let
f ∈ L2(M). Let f̂ = g ? f . Then the following proposition
relates the representation (analogous to a matrix representation
of a linear transformation) of the Koopman operator when the
functions f and f̂ are evaluated at x and g · x respectively.
Proposition 3. Let (3) be a G-equivariant dynamical system
and its associated Koopman operator be U : F(M) → F(M).
Suppose f ∈ F(M) and let Uf be the representation of U
with respect to f . For g ∈ G, let f̂ = g ? f and Uf̂ be the

representation of U with respect to f̂ . Then for x ∈ M , we
have

Uf̂ f̂(g · x) = Uff(x) (6)

Proof. We have
Uf̂ f̂(g · x) =f̂(T (g · x)) = f̂(g · T (x)) = g−1 ? f̂(T (x))

=f(T (x)) = Uff(x).

3.2 Group Action and Invariant Spaces

Definition 6. For a dynamical system xt+1 = T (xt), defined
on M ⊆ Rn, a subsetM ⊂ M is an invariant set if for every
trajectory x0(t),

x0(t) ∈M =⇒ x0(τ) ∈M,∀τ ≥ t. (7)

Note that an orbit from an initial condition x0 is an invariant
set.

For a measure preserving transformation T , all the eigenvalues
of the associated Koopman operator U lie on the unit circle
Budisic et al. (2012). Moreover, when T is an ergodic trans-
formation, then all eigenvalues of U are simple Petersen (1989);
Budisic et al. (2012). However, if T is not ergodic, then the state
space can be partitioned into subsets Mi (minimal invariant
subspaces) such that the restriction T |Mi

: Mi → Mi is
ergodic. A partition of the state space into invariant sets is
called an ergodic partition or stationary partition. Hence, for
any transformation T , defined on M ⊆ Rn, the state space M
can be expressed as

M = ∪mi=1Mi (modulo measure zero sets), (8)
where eachMi is an invariant set andMi andMj are disjoint
for i 6= j. Hence, all ergodic partitions are disjoint and they
support mutually singular functions from L2(M) Budisic et al.
(2012). Therefore, the number of linearly independent eigen-
functions of U corresponding to an eigenvalue λ is bounded
above by the number of ergodic sets in the state space Budisic
et al. (2012). The dynamics of the system dictates the number
of ergodic partitions (invariant sets) in the state space.
Definition 7. Let Mi be an invariant set of the G-equivariant
dynamical system (3). Then for g ∈ G, define the set g ·Mi as

g · Mi := {x̃ ∈M |x̃ = g · x for x ∈Mi}
Proposition 4. If Mi is an invariant set for a G-equivariant
dynamical system xt+1 = T (xt), then g·Mi is also an invariant
set for g ∈ G.

Proof. The proof is omitted for space constraints. For proof see
Sinha et al. (2020).
Corollary 1. For any invariant set Mi, G · Mi is invariant,
where

G · Mi = {x̃ ∈M |x̃ = g · x, for x ∈Mi and g ∈ G}.

4. GLOBAL PHASE SPACE RECONSTRUCTION FROM
DATA

In this section, we develop the data-driven tools for analysis of
equivariant dynamical systems.

4.1 Finite Dimensional Approximation of Koopman Operator

Let
Xp = [x1, x2, . . . , xM ], Xf = [y1, y2, . . . , yM ] (9)

be snapshots of data obtained from simulating a dynamical
system x 7→ T (x), or from an experiment, where xi ∈ M
and yi ∈ M , M ⊂ Rn. The two pairs of data sets are
assumed to be two consecutive snapshots i.e., yi = T (xi).
Let D = {ψ1, ψ2, . . . , ψK} be the set of observables, where
ψi : M → R and ψi ∈ L2(M). Let GD denote the span of D.
Let Ψ : X → RK be a vector valued function, such that

Ψ(x) := [ψ1(x) ψ2(x) · · · ψK(x)]
>
.
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Here Ψ is the mapping from physical space to feature space.
The finite dimensional approximate Koopman operator K ∈
RK×K is computed as:

K = YfYp
† (10)

where
Yp = Ψ(Xp) =[Ψ(x1),Ψ(x2), · · · ,Ψ(xM )] (11)
Yf = Ψ(Xf ) =[Ψ(y1),Ψ(y2), · · · ,Ψ(yM )], (12)

and Yp† is the pseudo-inverse of matrix Yp. DMD is a special
case of EDMD algorithm with Ψ(x) = x.

4.2 Global Koopman Operator from Local Koopman Operators

As mentioned earlier, any phase space M can be decomposed
into disjoint invariant setsMi. Let

Ψi = {ψi1, ψi2, · · · , ψiKi
} (13)

be the dictionary functions (observables) on each Mi and let
Ki be the corresponding Koopman operator onMi. Note that,
in general, on each Mi, the dictionary functions are different
and hence, the finite-dimensional matrix representation of each
of the local Koopman operators Ki is different. This is because
given any linear transformation O : V → W , where V and
W are vector spaces, the matrix representation of O depends
on the choice of the basis vectors of V and W . For the self-
containment of the paper, in this subsection, we briefly review
the results of Nandanoori et al. (2019) where we had proposed
a systematic method to construct the global Koopman operator
K, which describes the evolution of the system on the entire
phase space M , from the local Koopman operators Ki.

Let Ψi be the dictionary functions on each invariant set Mi,
i = 1, 2, · · · ,m and let Ki be the corresponding Koopman
operator which describes the evolution of the system in each
Mi. We define the set of dictionary functions on the entire state
space M as Ψ =

⊔m
i=1 Ψi. Then if K is the global Koopman

operator on the entire state space M with dictionary function
Ψ, then K can be expressed as

K = diag(K1,K2, · · · ,Km). (14)

4.3 Global Koopman Operator for Equivariant Systems

Consider the G-equivariant system (3), defined on the state
space M ∈ Rn with disjoint invariant setsMi, as in Eq. (8).

From proposition 4 we have that g ·Mi is also invariant for all
g ∈ G. Hence, g · Mi ⊂Mj for some j ∈ {1, 2, · · · ,m}.
Assumption 1. We assume there exists some g ∈ G, such that
g · Mi ⊂Mj and i 6= j.

Let Ψi be the dictionary functions defined on Mi and let Ki

be the local Koopman operator onMi. Let
X = [x1, x2, · · · , xM+1]

be points inMi, such that xk+1 = T (xk) and thus
[KiΨi](xk) = Ψi(xk+1). (15)

Now, Kj governs the evolution of dictionary functions onMj

and the goal is to compute Kj . Since in computing Ki, Ψi(xk)
are already computed, we would like to use this information for
computation of Kj . This can be done in two different ways.

Case I. We use the same dictionary function Ψi onMj , that is
Ψj = Ψi.

Theorem 2. Let Mi be an invariant set of the G-equivariant
system (3) and let Ki ∈ RKi×Ki be the local Koopman
operator onMi with dictionary function Ψi(x), x ∈ Mi. Let,
for g ∈ G, g · Mi ⊂ Mj . Let Kj be the local Koopman
operator onMj with dictionary functions Ψj = Ψi. Then

Ki = γKjγ
−1,

where g 7→ γ ∈ Γ and Γ is the Ki dimensional matrix
representation of G in RKi .

Proof. Since Ψj = Ψi, Kj ∈ RKi×Ki . Now consider xk ∈
Mi and g · xk ∈ Mj . Then we have, KjΨi(g · xk) = Ψi(g ·
xk+1) = γ−1Ψi(xk+1) = γ−1KiΨi(xk).. Again, KjΨi(g ·
xk) = Kjγ

−1Ψi(xk). Hence,

KiΨi(xk) = γKjγ
−1Ψi(xk). (16)

Since Eq. (16) is true for all xk ∈Mi, we obtain
Ki = γKjγ

−1.

Corollary 2. Let x0(t) be a trajectory of a G-equivariant sys-
tem xt+1 = T (xt) and let g · x0(t) be the image of x0(t)
under the action of g ∈ G. Let Ψ ∈ L2(M) be a set of
dictionary functions of cardinalityK. Let Kx0 and Kg·x0 be the
finite-dimensional representation of Koopman operator which
governs the evolution of Ψ on x0(t) and g · x0(t) respectively.
Then

Kx0
= γKg·x0

γ−1, (17)

where g 7→ γ ∈ Γ and Γ is the K dimensional matrix
representation of G in RK .

Proof. Similar to the proof in theorem 2.

Note that the local Koopman operators obtained using the DMD
algorithm satisfy theorem 2.

Case II. We define the dictionary function on g ·Mi and hence
onMj , j 6= i as

Ψj = g ?Ψi.

In this case, from proposition 3, we have
Ki = Kj .

Hence, starting with an invariant setMi, with a local Koopman
operator Ki, if gj · Mi ⊂ Mj for j ∈ {1, 2, · · · ,m},
j 6= i, we can obtain all the local Koopman operators Kj , j =
1, 2, · · · ,m. Hence, using the procedure of Nandanoori et al.
(2019), we can obtain the global Koopman operator, defined on
the entire state space M for the G-equivariant system (3).

5. SIMULATION RESULTS

In this section, by applying the symmetry in the system, we
identify the global Koopman operator starting from an invariant
subspace. We begin with the discussion on systems with reflec-
tive symmetry. In all the examples, we use the same dictionary
functions on two different invariant spaces (or two different
trajectories), which are related by the symmetry group (as in
theorem 2).

5.1 Reflection Symmetry: Bistable Toggle Switch

Consider the bistable toggle switch system, first introduced in
Gardner et al. (2000). The governing equations of motion are:

ẋ1 =
α1

1 + xβ2
− κ1x1; ẋ2 =

α2

1 + xθ1
− κ2x2 (18)
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where the states x1 ∈ R and x2 ∈ R indicate the concentration
of the repressor 1 and 2; the effective rate of synthesis of
repressor 1 and 2 are denoted by α1 and α2; the self decay rates
of concentration of repressor 1 and 2 are given by κ1 > 0 and
κ2 > 0; the cooperativity of repression of promoter 2 and 1 are
respectively denoted by β and θ. The system has two invariant
sets and the line x1 = x2 is the separatrix that separates the two
invariant sets. The phase portrait of this system is shown in Fig.
1.

Fig. 1. Phase portrait of bistable toggle switch.

With the given values of the parameters, the system equations
are symmetric under Z2-action, where the action is given by
the transformation (x1, x2)>

γ7−→ (x2, x1)>. In the phase space,
this corresponds to a reflection about the x1 = x2 line and the
2-dimensional representation of the non-identity element of the

symmetry group is γ =

(
0 1
1 0

)
.

The goal is to construct the global Koopman operator using
only the time-series data from any one of the invariant sets. To
demonstrate the proposed framework, we collected time-series
data from only the invariant given by the region x1 > x2. The
local Koopman operator, obtained using the DMD algorithm, is
given by

Kright =

(
0.6039 0.0313
−0.4784 1.0375

)
.

Hence, from theorem 2, the Koopman operator corresponding
to the region x2 > x1 can be identified as

Kleft =γ−1Krightγ =

(
1.0375 −0.4784
0.0313 0.6039

)
.

Hence the global Koopman operator is

Kglobal =

(
Kleft 0

0 Kright

)
.

The phase portrait corresponding to the two regions is shown in
Fig. 1. Moreover, as a verification, we computed the Koopman
operator using data from the region x2 > x1 and it was equal
to

Kx2>x1
=

(
1.0375 −0.4784
0.0313 0.6039

)
= Kleft.

5.2 Rotational Symmetry: Lorenz System

Consider the Lorenz system as shown in Eq. (1) The Lorenz
system is symmetric under Z2 action given by

(x, y, z)>
γ7−→ (−x,−y, z)>, (19)

which corresponds to a rotation of 180◦ about the z-axis and
matrix representation of γ is γ = diag(−1,−1, 1). The phase
portrait of the Lorenz system with ρ = 28, σ = 10 and

Fig. 2. Phase portrait of the Lorenz system.

β = 8/3, is shown in Fig. 2. The colours blue and magenta
correspond to the symmetric components of the strange attrac-
tor. The Koopman operator computed, using DMD algorithm,
from the blue region of the attractor is

Kblue =

(
0.076 0.709 0.042
−0.667 1.064 0.124
−0.422 0.926 0.836

)
.

Hence, from corollary 2, the Koopman on the symmetric coun-
terpart of the blue region will be

Kmagenta = γ−1Kblueγ =

(
0.076 0.709 −0.042
−0.667 1.064 −0.124
0.422 −0.926 0.836

)
which is the same Koopman operator obtained with DMD al-
gorithm with data points on the magenta region of the attractor.

5.3 Reflection and Rotational Symmetry: A Hamiltonian System

Consider a Hamiltonian system with a Hamiltonian

H(q, p) =
1

4
p4 − 9

2
p2 − 1

4
q4 +

9

2
q2.

Hence the equations of motion are

q̇ =
∂H

∂p
= p3 − 9p; ṗ = −∂H

∂q
= q3 − 9q. (20)

This system has 4 invariant sets and the corresponding phase
portrait of the system is shown in Fig. 3 and the system is
symmetric under the actions given by(

q
p

)
γ17−→
(
p
q

)
,

(
q
p

)
γ27−→
(
−q
−p
)
,

(
q
p

)
γ37−→
(
−p
−q
)
. (21)

From the action of γi’s, we have
γ21 = γ22 = γ33 = I2, and γ1γ2 = γ3.

Hence the symmetry group of the system is the Klein 4-group
Z2 × Z2, which has the presentation

Γ = 〈γ1, γ2|γ21 = γ22 = (γ1γ2)2 = I2〉.
and the matrix representation of the group elements are

γ1 =

(
0 1
1 0

)
; γ2 =

(
−1 0
0 −1

)
; γ3 =

(
0 −1
−1 0

)
.

The local Koopman operators obtained using data from each of
the invariant subspaces are

KIS−1 =

(
0.955 0.486
−0.059 0.215

)
; KIS−2 =

(
0.215 −0.059
0.486 0.955

)
KIS−3 =

(
0.957 0.511
−0.061 0.214

)
; KIS−4 =

(
0.214 −0.061
0.511 0.957

)
and it can be seen that KIS−2 = γ−11 KIS−1γ1. Similar re-
lations are found to hold true for the other local Koopman
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q
<latexit sha1_base64="kkFAvJy7jN8oVbiiXkbM2eLXDbU=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHZ9RI9ELx4hkUcCGzI7NDAyO7vOzJqQDV/gxYPGePWTvPk3DrAHBSvppFLVne6uIBZcG9f9dnIrq2vrG/nNwtb2zu5ecf+goaNEMayzSESqFVCNgkusG24EtmKFNAwENoPR7dRvPqHSPJL3ZhyjH9KB5H3OqLFS7bFbLLlldwayTLyMlCBDtVv86vQiloQoDRNU67bnxsZPqTKcCZwUOonGmLIRHWDbUklD1H46O3RCTqzSI/1I2ZKGzNTfEykNtR6Hge0MqRnqRW8q/ue1E9O/9lMu48SgZPNF/UQQE5Hp16THFTIjxpZQpri9lbAhVZQZm03BhuAtvrxMGmdl77x8WbsoVW6yOPJwBMdwCh5cQQXuoAp1YIDwDK/w5jw4L8678zFvzTnZzCH8gfP5A93hjPw=</latexit>

p
<latexit sha1_base64="YiMBp0X+QfFQDarv3Fd7cIrvbr0=">AAAB6HicbVDLSgNBEOz1GeMr6tHLYBA8hV0f6DHoxWMC5gHJEmYnvcmY2dllZlYIS77AiwdFvPpJ3vwbJ8keNLGgoajqprsrSATXxnW/nZXVtfWNzcJWcXtnd2+/dHDY1HGqGDZYLGLVDqhGwSU2DDcC24lCGgUCW8Hobuq3nlBpHssHM07Qj+hA8pAzaqxUT3qlsltxZyDLxMtJGXLUeqWvbj9maYTSMEG17nhuYvyMKsOZwEmxm2pMKBvRAXYslTRC7WezQyfk1Cp9EsbKljRkpv6eyGik9TgKbGdEzVAvelPxP6+TmvDGz7hMUoOSzReFqSAmJtOvSZ8rZEaMLaFMcXsrYUOqKDM2m6INwVt8eZk0zyveReWqflmu3uZxFOAYTuAMPLiGKtxDDRrAAOEZXuHNeXRenHfnY9664uQzR/AHzucP3F2M+w==</latexit>

Invariant

Set � 1

q > 0

|p| < q
<latexit sha1_base64="Xls9E2NTiEZ3zXv8h8TQ7G5x+yY=">AAACIXicbZBLTwIxEMe7+EJ8oR69NBKJF8muj8jBGKIXvWGUR8IS0i0FGrrdpZ0lIYSv4sWv4sWDxnAzfhkL7EHBSZr+8p+ZdubvhYJrsO0vK7G0vLK6llxPbWxube+kd/fKOogUZSUaiEBVPaKZ4JKVgINg1VAx4nuCVbzu7SRf6TOleSCfYBCyuk/akrc4JWCkRjqfxfeyTxQnErDrprL4kcGJM8Mevsb2DF3zCOAwvq9wr5HO2Dl7GngRnBgyKI5iIz12mwGNfCaBCqJ1zbFDqA+JAk4FG6XcSLOQ0C5ps5pBSXym68PphiN8ZJQmbgXKHDPoVP3dMSS+1gPfM5U+gY6ez03E/3K1CFr5+pDLMAIm6eyjViQwBHhiF25yxSiIgQFCFTezYtohilAwpqaMCc78yotQPs05Z7mLh/NM4Sa2I4kO0CE6Rg66RAV0h4qohCh6Rq/oHX1YL9ab9WmNZ6UJK+7ZR3/C+v4BfDyezA==</latexit>

Invariant Set � 4

p < 0, |q| < |p|
<latexit sha1_base64="ZWQuc5toV/7mgDTgyBYXyuRSrbw=">AAACKnicbVDLSgMxFM34tr6qLt1cLBYXWmZ8oKCLqhvdVbSt0Cklk2ZqMJMZkztCKf0eN/6KGxeKuPVDTNtZ+DoQ7uGce5PcEyRSGHTdd2dsfGJyanpmNjc3v7C4lF9eqZk41YxXWSxjfRNQw6VQvIoCJb9JNKdRIHk9uDsb+PUHro2I1TV2E96MaEeJUDCKVmrlT4pwoR6oFlShfwRXHLf3wPdzRUjgGNwtsKJvL0C4z+oxZCQZ1Va+4JbcIeAv8TJSIBkqrfyL345ZGnGFTFJjGp6bYLNHNQomeT/np4YnlN3RDm9YqmjETbM3XLUPG1ZpQxhrexTCUP0+0aORMd0osJ0RxVvz2xuI/3mNFMPDZk+oJEWu2OihMJWAMQxyg7bQnKHsWkKZFvavwG6ppgxtujkbgvd75b+ktlPydkv7l3uF8mkWxwxZI+tkk3jkgJTJOamQKmHkkTyTV/LmPDkvzrvzMWodc7KZVfIDzucXmL6jKg==</latexit>

Invariant Set � 2

p > 0, |q| < p
<latexit sha1_base64="NTgU00K8IbBEt9FPoI5/NlkKXNM=">AAACHnicbVBNSwMxEM36WetX1aOXwaJ40LKrFgVFil70VtFqoVtKNk01mM2uyWyhlP4SL/4VLx4UETzpvzGte9Dqg5DHezOTzAtiKQy67qczMjo2PjGZmcpOz8zOzecWFi9NlGjGKyySka4G1HApFK+gQMmrseY0DCS/Cm6P+/5Vm2sjInWBnZjXQ3qtREswilZq5IprcKraVAuq0N+Hc46bW+D72TWI4RDcDbCibwcg3KX3AUDcyOXdgjsA/CVeSvIkRbmRe/ebEUtCrpBJakzNc2Osd6lGwSTvZf3E8JiyW3rNa5YqGnJT7w7W68GqVZrQirQ9CmGg/uzo0tCYThjYypDijRn2+uJ/Xi3B1l69K1ScIFfs+6FWIgEj6GcFTaE5Q9mxhDIt7F+B3VBNGdpEszYEb3jlv+Ryq+BtF4pnO/nSURpHhiyTFbJOPLJLSuSElEmFMHJPHskzeXEenCfn1Xn7Lh1x0p4l8gvOxxc8YZ44</latexit>

Invariant

Set � 3

p > 0

|q| < p
<latexit sha1_base64="WuSC6OIaV3iaP+uX4gN2ECE5/iw=">AAACI3icbVDLTgIxFO3gC/GFunTTSCRuJDNK4iPGEN3oDqM8EoaQTinQ0OmM7R0SQvgXN/6KGxca4saF/2KBWSh4kqan5z567/FCwTXY9peVWFhcWl5JrqbW1jc2t9LbO2UdRIqyEg1EoKoe0UxwyUrAQbBqqBjxPcEqXvdmHK/0mNI8kI/QD1ndJ23JW5wSMFIjfZHFd7JHFCcSsOumsviBAT7CJ9NHiK+wPaWuaQP4Kb4vcdhIZ+ycPQGeJ05MMihGsZEeuc2ARj6TQAXRuubYIdQHRAGngg1TbqRZSGiXtFnNUEl8puuDyY5DfGCUJm4Fyhwz6kT9XTEgvtZ93zOZPoGOno2Nxf9itQhaZ/UBl2EETNLpR61IYAjw2DDc5IpREH1DCFXczIpphyhCwdiaMiY4syvPk/Jxzsnnzu/zmcJ1bEcS7aF9dIgcdIoK6BYVUQlR9Ixe0Tv6sF6sN2tkfU5TE1Zcs4v+wPr+AUE7nyY=</latexit>

Fig. 3. Phase portrait of the Hamiltonian system.

operators. Hence if only one local Koopman operator is com-
puted from data, all the other local Koopman operators can
be computed using the relation of theorem 2, without using
data from the other invariant subspaces and they are stitched
together to obtain the global Koopman operator as described in
Nandanoori et al. (2019).

6. CONCLUSIONS

In this paper, we developed Koopman operator theoretic based
methods to study the global phase space in equivariant dy-
namical systems. In particular, we showed that the invariant
subspaces are mapped to invariant subspaces and eigenspaces
are left invariant under the group action of the symmetry group
and established the properties of the Koopman operator for an
equivariant dynamical system under group action. Assuming
the knowledge of the type of symmetry in a dynamical system,
it is shown that the global phase space can be studied based
on data from any one invariant subspace only. The proposed
framework is demonstrated on three different systems that pos-
sess various symmetries, such as reflective, rotational, or both.
Future efforts focus on identifying the type of symmetries in a
dynamical system, given the data for the global phase space.
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