
Least Conservative Linearized Constraint
Formulation for Real-Time Motion

Generation

Bárbara Barros Carlos ∗, Tommaso Sartor ∗∗,
Andrea Zanelli ∗∗∗, Moritz Diehl ∗∗∗, Giuseppe Oriolo ∗

∗Department of Computer, Control, and Management Engineering
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Abstract: Today robotics has shown many successful strategies to solve several navigation
problems. However, moving into a dynamic environment is still a challenging task. This paper
presents a novel method for motion generation in dynamic environments based on real-time
nonlinear model predictive control (NMPC). At the core of our approach is a least conservative
linearized constraint formulation built upon the real-time iteration (RTI) scheme with Gauss-
Newton Hessian approximation. We demonstrate that the proposed constraint formulation is
less conservative for planners based on Newton-type method than for those based on a fully
converged NMPC method. Additionally, we show the performance of our approach in simulation,
in a scenario where the Crazyflie nanoquadcopter avoids balls and reaches its desired goal in
spite of the uncertainty about when the balls will be thrown. The numerical results validate our
theoretical findings and illustrate the computational efficiency of the proposed scheme.

Keywords: nonlinear control, optimization problems, numerical methods, obstacle avoidance,
real-time tasks.

1. INTRODUCTION

Autonomous navigation in dynamic environments still
poses an important challenge for robotics research. In con-
trast to static scenarios, where global path planning strate-
gies are well-suited, in dynamic environments the decision
about motion must be based on the online perception of
the world and on the fast reaction-time behavior. Tradi-
tional motion planning methods typically rely on graph-
search methods (Dijkstra, 1959; Hart et al., 1968), com-
binatorial methods (Bhattacharya and Gavrilova, 2008),
or sampling-based methods (LaValle, 2006; Kuffner and
LaValle, 2000). Despite the effectiveness of those algo-
rithms in finding a path between two given points, the
quality of the path obtained may be far from optimal.
Thus, the research to improve the path refinement led to
a common subdivision of the problem into a global and
local planner.

The local planner accounts for the dynamic constraints
and generates sets of feasible local trajectories. Popular al-
gorithms used in this layer are dynamic window approach
(DWA) (Brock and Khatib, 1999) and timed elastic band
(TEB) (Quinlan and Khatib, 1993). More recent motion
planning methods focus, instead, on optimization-based
strategies. Benjamin et al. (2019) develop the concept
of linear interval programming functions, which is based

on multi-objective optimization. In this case, the colli-
sion avoidance constraint is defined as a shrinking convex
polygon around the obstacle. As the optimization problem
seeks the set of so-called Pareto optimal solutions – which
is rather demanding – its application in systems with
tight runtime requirements is usually not possible. An-
other approach is risk-constrained model predictive control
(Hakobyan et al., 2019), where expectation constraints
are defined within a linearly constrained mixed-integer
convex program. However, the efficiency of this method
highly depends on the tightness of the continuous linear
program relaxations. Other techniques involve manifold
trajectory optimization (Watterson et al., 2020) and con-
vex decomposition through interval allocation (Tordesillas
et al., 2019), both exploiting the inflated ellipsoids concept
for ensuring collision-free trajectories. These approaches
have obtained promising results but the solutions achieved
for local replanning often lead to optimal trajectories that
are far too conservative.

Nonlinear model predictive control (NMPC) is the corner-
stone of advanced process control and has gained increas-
ing attention in the robotics community in recent years.
It is a feedback control strategy based on the solution
of finite-horizon optimal control problems (OCP) where
nonlinear dynamics and constraints are taken into ac-
count. A great challenge associated with the employment
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of NMPC-based trajectory optimizers as local planners
has been the availability of fast and reliable algorithms
for online implementations. The advances in optimization
strategies have enabled the development of a mature class
of optimization algorithms such as sequential quadratic
programming (SQP) and interior point (IP) methods.
However, the real-time dilemma lies in the fact that while
the SQP/IP iterations are being performed, the physical
system evolves, and the information used to compute the
state estimate becomes outdated (Gros et al., 2020). To
tackle this issue, the real-time iteration (RTI) scheme is
proposed in Diehl et al. (2005) which trades speed for accu-
racy while incorporating “globalization features” (Sathya
et al., 2018).

This paper presents a novel approach for real-time mo-
tion generation for robotic systems. More precisely, we
exploit the algorithmic ideas of the RTI scheme with
inexact Hessian to formulate a least conservative linearized
collision avoidance constraint. We provide a theoretical
analysis proving that the proposed constraint formulation
is less conservative for planners based on Newton-type
method than for those based on a fully converged NMPC
approach. This analysis is further leveraged to overcome
the numerical difficulties associated with the (local) fea-
sibility of the optimization problem. Our framework uses
the implementation of the RTI strategy by means of the
high-performance software package acados (Verschueren
et al., 2019). The quadratic program (QP) solver is HPIPM,
which relies on the hardware-tailored linear algebra library
BLASFEO (Frison et al., 2018). Furthermore, we use the
Crazyflie nanoquadcopter as a relevant example in order
to assess the performance and implementability of our real-
time planner.

With respect to the challenges at hand, the main contri-
butions of our work are twofold:

• An NMPC-based algorithmic framework for real-time
motion generation that is reliable and guarantees less
conservative optimal trajectories for robotic systems.
• A numerical validation that shows the efficiency of

the proposed approach.

This paper is outlined as follows: in Section 2 preliminary
concepts on NMPC and the RTI scheme are presented. In
Section 3, the proposed real-time planner is introduced.
The general planner problem formulation is tailored to the
Crazyflie nanoquadcopter example, and the generation of
the global trajectories are described in Section 4. Section
5 reports the results of the closed-loop simulations and the
discussion of our approach. In Section 6, the conclusions
are summarized.

2. PRELIMINARIES

2.1 Nonlinear Model Predictive Control

NMPC is an optimization-based control technique that has
gradually become known in the robotics community over
the past few years. In order to use NMPC to control a
system, one has to solve a nonlinear nonconvex optimal
control problem (OCP). Throughout this paper, let us
consider the following general NMPC tracking formulation
as the OCP that needs to be solved numerically:

min
ξ0,...,ξN ,
u0,...,uN−1

1

2

N−1∑
i=0

‖η(ξi, ui)− η̃‖2W +
1

2
‖ηN (ξN )− η̃N‖2WN

(1a)
s.t.

ξ0 − ξ̄0 = 0, (1b)

ξi+1 − F (ξi, ui) = 0, i = 0, . . . , N − 1, (1c)

g(ξi, ui) ≤ 0, i = 0, . . . , N − 1, (1d)

gN (ξN ) ≤ 0, (1e)

where ξ ∈ Rnξ and u ∈ Rnu denote the state and input
trajectories of the discrete-time system whose dynamics
are described by F : Rnξ × Rnu → Rnξ . The functions in
the Lagrange and Mayer least-squares terms are denoted
by η : Rnξ × Rnu → R and ηN : Rnξ → R, and will be
weighted by the symmetric positive-definite matrices W
and WN , respectively. Variables η̃ : Rnξ × Rnu → R and
η̃N : Rnξ → R denote the time-varying references. The
functions g : Rnξ × Rnu −→ Rnc and gN : Rnξ −→ Rnc,N
define the path and terminal constraints. Finally, N and
ξ̄0 denote the horizon length and the current state of the
system, respectively.

Problem (1) can be solved by a state-of-the-art opti-
mization algorithm. Among others, two main classes of
approaches stand out: SQP and IP methods. In our work,
we use a variant of SQP for NMPC embedded applications,
the RTI scheme. An explanation of the algorithm’s main
idea is presented in the next subsection.

2.2 The Real-Time Iteration Scheme

In real-time NMPC applications, the nonlinear program
(NLP) (1) needs to be solved at every sampling instant
under the available computational time. To that end, Diehl
et al. (2005) propose an efficient Newton-type scheme that
allows us to approximately solve the OCPs during the
runtime of the real process, the so-called RTI scheme.
In this strategy, only a single linearization and dense QP
solve are carried out per sampling instant, leading to an
approximate feedback control policy. Our approach uses
the implementation of the RTI scheme by means of the
high-performance software package acados. Thus, after
linearization, the obtained QP for problem (1) used in
acados reads as follows:

min
ξ0,...,ξN ,

u0,...,uN−1,
s0,...,sN

1

2

N−1∑
i=0

[
ξi
ui

]T Hi︷ ︸︸ ︷[
Qi Si
Si Ri

] [
ξi
ui

]
+

[
qi
ri

]T [
ξi
ui

]

+
1

2
(ξTNQNξN ) + qTNξN

+
1

2

N∑
i=0

(sTi Pisi) + pTi si

(2a)

s.t.

ξ0 − ξ̄0 = 0, (2b)

ξi+1 −Aiξi −Biui − ci = 0, i = 0, . . . , N − 1, (2c)

si +Gξi ξi +Gui ui ≤ 0, i = 0, . . . , N − 1, (2d)

sN +GξNξN ≤ 0, (2e)

0 ≤ si, i = 0, . . . , N. (2f)
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The linearized dynamics and inequality constraints use the
following matrices:

Ai := ∇ξF (ξki , u
k
i )T , Bi := ∇uF (ξki , u

k
i )T ,

Gξi := ∇ξg(ξki , u
k
i )T , Gui := ∇ug(ξki , u

k
i )T ,

GξN := ∇ξgN (ξkN )T ,

ci := F (ξki , u
k
i )−Aiξki −Biuki ,

si := g(ξki , u
k
i )−Gξi ξki −Gui uki ,

sN := gN (ξkN )−GξNξkN ,
where the superscript k denotes the linearization point
for the states and inputs obtained at the previous QP
iteration. The quadratic cost uses the exact gradients
qi, ri, qN , the Gauss-Newton Hessian approximation Hi,
both as defined in (Zanelli et al., 2018). The Hessian
and the gradient with respect to the slack variables si
are denoted by Pi and pi, respectively. In acados, the
slack variables are introduced and associated with the soft
constraints on the outputs.

3. LEAST CONSERVATIVE REAL-TIME PLANNER

In this section, we detail and discuss the reformulations
and parametrizations of QP (2) that are used in this paper.

3.1 Collision Avoidance Constraint and Physical Limits

To ensure kinodynamically feasible and collision-free tra-
jectories, we consider a constrained OCP. Having the dy-
namic model of the robot as a constraint provides kin-
odynamically feasible state trajectories. Collision avoid-
ance, on the other hand, is granted by constraining the
robot’s distance with respect to an obstacle o ∈ Rn in
the workspace W ∈ Rn to be larger than the clearance
dC ∈ R+. The obstacles, here considered dynamic, are
described as point-mass models. Furthermore, we assume
a single-body robot, which can be well approximated by a
point if one defines the clearance so as take into account:
i) the actual size of the robot, ii) the actual size of the ob-
stacle, iii) a safety margin between them. When extending
our approach to a multi-body robot system, one needs to
consider the enlargement of the clearance. Ultimately, in
our method, for each obstacle present in the workspace, an
additional collision avoidance constraint must be included
in the OCP.

To formulate the collision avoidance constraint, we will
consider the distance function to be the Euclidean distance
between the robot and an obstacle in the workspace dO :
W −→ R. It can be formally defined as the following:

Definition 1. (Distance Function). Let us define the dis-
tance function for an arbitrary point p ∈ W with respect
to an obstacle as

dO(p) = dO(p; o) = ‖p− o‖2,
and consider bounds, i.e. dC ≤ dO(p) and ∃ dM such that
dO(p) ≤ dM∀p ∈ W.

Based on the aforementioned definition, the obstacle
avoidance constraint can be concisely written as

dC ≤ ‖p− o‖2. (3)

Note that (3) is not differentiable at p = o because we
can get different limits by choosing different paths to the

origin. Hence, to tackle this problem, one can square both
sides of the inequality,

d2
C ≤ ‖p− o‖22, (4)

and recover the desirable property of being continuously
differentiable everywhere. However, depending on the op-
timization algorithm behind the planner at hand, one
constraint formulation can be more advantageous than the
other.

For a planner whose optimization algorithm is based on
a Newton-type method, e.g. with acados, note that only
one system linearization and one QP (2) are performed
per sampling time. Each QP corresponds to a linear ap-
proximation of the original NLP along a time-varying
trajectory. In this configuration, squaring the Euclidean
norm, as in (4), provides local trajectories that are over-
conservative. In a case where the linearization points are
far away from the boundaries of the linearized feasible
set of the original NLP, the use of (3) leads to linear
constraints that are “least” conservative. We will formalize
this statement in Proposition 2. In contrast, for a planner
whose optimization algorithm is based on a fully converged
NMPC method, e.g. with IPOPT (Wächter and Biegler,
2006), in general, no constraint formulation has a distinct
advantage over the other. As in this case, the iterations
continue until convergence or a certain termination condi-
tions are reached, the feasible sets for (3) and (4) are the
same.

Thus, in view of the algorithmic ideas of the RTI scheme,
our main theoretical result for Least Conservative Lin-
earized (LCL) constraint formulation is the following:

Proposition 2. Let H1(p̄) := {p : c1(p̄) + ∇pc1(p̄)T (p −
p̄) ≥ 0} and H2(p̄) := {p : c2(p̄) +∇pc2(p̄)T (p − p̄) ≥ 0},
where c1(p) := ‖p − o‖2 − d and c2(p) := ‖p − o‖22 − d2,
denote the half-spaces defined by the linearization of the
constraints c1(p) ≥ 0 and c2(p) ≥ 0 at any feasible point p̄,
respectively. Moreover, let S := {p : c1(p) ≥ 0} denote the
set defined by the original nonlinear constraints. Then,
H1(p) ⊂ S and H2(p) ⊂ S. Moreover, we have that
H2(p) ⊆ H1(p).

Proof. Define c1,lin(p̄, p) := c1(p̄) + ∂c1
∂p (p − p̄) and

c2,lin(p̄, p) := c2(p̄) + ∂c2
∂p (p− p̄). Due to convexity of c1(p)

and c2(p), we have that, for any p̄ we have that

0 ≤ c1,lin(p̄, p) ≤ c1(p)

and

0 ≤ c2,lin(p̄, p) ≤ c2(p)

such that p ∈ H1(p̄) =⇒ p ∈ S and p ∈ H2(p̄) =⇒
p ∈ S, which proves the first statement. In order to prove
that H2(p) ⊆ H1(p), we proceed as follows. Define the
auxiliary functions ĉ2, ĉ1 : R → R as ĉ2(v) := v2 − d2

and ĉ1(v) := v − d. Moreover, define their linearizations
ĉ1,lin(v̄, v) = ĉ1(v̄) + ∂ĉ1

∂v (v − v̄) and ĉ2,lin(v̄, v) = ĉ2(v̄) +
∂ĉ2
∂v (v− v̄). Due to convexity in v of ĉ1,lin and affinity in v

of ĉ2,lin we have that, for any d, and any v̄, the following
holds:

min
v≥d

ĉ1,lin(v̄, v) = min
v≥d

ĉ1(v) = 0

and

min
v≥d

ĉ2,lin(v̄, v) ≤ min
v≥d

ĉ2(v) = 0.
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Fig. 1. Boundaries of the linearized feasible set – com-
parison between constraint formulations: linearization
points p? are represented as ?, in red the clearance
around an obstacle marked by ×, ‖·‖22 in dashed line
and ‖·‖2 in solid line. The contour lines at zero are
shown for half-spaces H1(p̄) and H2(p̄).

Define r(p) := ‖p− o‖. Then, we can state the following:

min
p∈H1(p)

c2,lin(p̄, p) = min
p

c2,lin(p̄, p)
s.t c1,lin(p̄,p)≥0

= min
p
ĉ2,lin(r(p̄), r(p̄) +

∂r

∂p
(p− p̄))

s.t ĉ1,lin(r(p̄),r(p̄)+ ∂r
∂p (p−p̄))≥0

.

Introducing the change of variables v = r(p̄) + ∂r
∂p (p − p̄),

and using the fact that ĉ1,lin(r(p̄), r(p̄) + ∂r
∂p (p− p̄)) ≥ 0 if

and only if v ≥ d, we obtain

min
p∈H1(p)

c2,lin(p̄, p) = min
v≥d

ĉ2,lin(r(p̄), v) ≤ min
v≥d

ĉ2(v) = 0.

This last inequality shows that H2(p̄) ⊆ H1(p̄) concluding
the proof. �

The boundaries of the linearized feasible set, considering
three distinct regular points p?, for constraint formulations
(3) and (4) can be seen in Fig. 1. We notice that the
linearized constraint formulation defined by (3) provides
a solution that is closer to the lower bound dC .

Moreover, in order to account for the limits on the actua-
tor, we additionally impose box constraints on the control
input of the form U := {u ∈ Rnu : umin ≤ u ≤ umax}.

3.2 Constraints Violation

The constraint presented in (3) guarantees collision avoid-
ance instantaneously since its evaluation occurs only at ti
and ti+1. This, however, does not ensure that there is no
collision in-between shooting nodes, which may result in
constraint violation. As a result, the predicted trajectory
between time points may be seen penetrating the obstacle.

This issue can be addressed by expanding the obstacle,
in all directions, by the maximum incursion distance
(Kuwata, 2003), or by using the hyperplane separation
theorem as in (Brossette and Wieber, 2017). In this paper,
we do not use any special method to ensure collision-
free trajectories in-between successive positions of the

robot, as it comes with a higher computational burden.
Therefore, we rely on a reasonable choice for the size of
the discretization time step.

3.3 Feasibility and Soft Constraints

One major drawback regarding the use of hard constraints
is that they may render the optimization problem infeasi-
ble: this is especially true in the case of state constraints
(Frison and Jørgensen, 2015), such as the one in (3). In
a case where the input constraints represent a physical
limitation, they have to be enforced all the time. State
constraints, instead, are only often desired – although are
not always physically necessary – and hence should be
satisfied whenever possible.

A more systematic approach for dealing with infeasibility
is to modify the cost function to include a penalization on
the violation of the collision avoidance constraint. This is
usually achieved by introducing slack variables associated
with the soft constraint, and heavily penalizing them.
The optimization algorithm searches for a solution that
minimizes the original cost function while keeping the slack
variables equal to zero whenever possible.

Scokaert and Rawlings (1999) discuss the inclusion of a
`1-norm µ||ε||1 penalization term of the slack in order
to obtain an exact penalty function – i.e. the controller
violates the constraints only when it is necessary. A hazard
with `1 penalty functions is their inherent non-smoothness
at optimal points which may degrade the final solution
accuracy. On the other hand, the `22-norm µ||ε||22 benefits
of being smooth and having “simple” derivatives. A major
drawback to the `22 penalty function is the uneven way
that it penalizes constraints, such that µ has to be very
large to enforce asymptotic feasibility (Griffin and Kolda,
2010). In this work, the use of a `1-norm is preferred as a
means to obtain an exact penalty function.

4. MOTION GENERATION BENCHMARK

4.1 System Model

Let {B} be the body-fixed frame located at the center of
mass (CoM) of the nanoquadcopter which is aligned with
the North-West-Up (NWU) inertial frame {I}.

Table 1. Quadrotor state variables.

p := (x, y, z) Position vector of the nanoquadrotor in
{I} and described in R3.

q := (qw, qx, qy , qz) Set of attitude unit quaternions described
in H.

vb := (vx, vy , vz) Linear velocities in {B} and described in
R3.

ω := (ωx, ωy , ωz) Angular rates described in R3.

Given a nonlinear dynamic model for a quadcopter in the
form of

ξ̇ = f(ξ, u), (5)

let us then define a state vector such as

ξ := (p, q, vb, ω)T ∈ R13,

where the state variable vectors are presented in Table 1.
The dynamics can be described using the Newton-Euler
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formulation as in (Luis and Ny, 2016), leading to the
dynamic system used in this paper. Furthermore, assuming
that the rotor inertia is considerably small such that it
is possible to change the propeller’s rotational speed Ωi
instantaneously, we consider their collection as the control
inputs of our system

u := (Ω1,Ω2,Ω3,Ω4)T ∈ R4.

4.2 Tailored Problem Formulation

In this section, we tailor the NMPC formulation (1)
into the following soft-constrained problem with LCL
constraint formulation:

min
ξ0,...,ξN ,

u0,...,uN−1,
ε0,...,εN

1

2

N−1∑
i=0

‖η(ξi, ui)‖2W +
1

2
‖ηN (ξN )‖2WN

+

µ

2

N∑
i=0

‖εi‖1 (6a)

s.t.

ξ0 − ξ̄0 = 0, (6b)

ξi+1 − F (ξi, ui) = 0, i = 0, . . . , N − 1, (6c)

ui ∈ U , i = 0, . . . , N − 1, (6d)

εi + dO(pi) ≥ dC , i = 0, . . . , N, (6e)

εi ≥ 0, i = 0, . . . , N, (6f)

where ε ∈ Rnε is a vector that contains all slack variables
over the horizon ε := (ε0, . . . , εN )T , and µ is the penalty
weight.

Remark 3. In our approach, for each obstacle in the
workspace, we explicitly add new constraints (6e)-(6f)
to the NLP. In this paper, two dynamic obstacles are
considered, thus nε = 2×N .

We consider a sampling time of ts = 15 ms, and N = 50
shooting nodes. To discretize the dynamics (5), we use
an explicit Runge Kutta of 4th order (ERK4) integration
by means of the automatic differentiation and modeling
framework CasADi (Andersson et al., 2012). Moreover, the
residuals of the least-squares cost are described as

η(ξ, u) :=

[
ξi − ξri
ui − uri

]
, ηN (ξN ) := ξN − ξrN , (7)

where the quantities in (7) with the r superscript stand
for the precomputed desired references. The gradient with
respect to the lower (µl) and upper (µu) slack penalty
values, and weighting matrices are

µl := (14.5 · 103, 14.5 · 103),

µu := (14.2 · 103, 14.2 · 103),

W := blkdiag(30 · I2, 60, 1 · 10−1 · I4, 2, 3, 5,
3 · I3, 5 · 10−2 · I4),

WN := blkdiag(30 · I2, 60, 1 · 10−1 · I4, 2, 3, 5,
3 · I3).

(8)

The model parameters of this benchmark correspond to
the parameters of the real Crazyflie which were obtained
from the study in (Luis and Ny, 2016). The Crazyflie
is an open-source off-the-shelf platform for research and
education in robotics developed by the Swedish company
Bitcraze 1 . For this robotic system, the imposed input
1 https://www.bitcraze.io

bounds on the speed of the propellers are umin = 0,
umax = 22 krpm, while the bounds for the slack variables
are εmin = 0, εmax = 100×103. Finally, the bounds for the
collision avoidance constraint are dC = 0.2 m, dM = 100×
103 m.

4.3 Reference Trajectory Generation

Two different global reference trajectories for the Crazyflie
are considered. They have been generated offline by solving
the OCP (1) for system (5) considering constraint (1d) of
the form U using CasADi. We assume a prediction horizon
of T = 3 s, N = 200 shooting nodes, discretizing the
dynamics via ERK4 integration method. The resulting
NLPs provide the optimal trajectories that drive the
nanoquadcopter from the hovering state at p := (0, 0, 0.4)T

to the final desired positions: pd1 := (1,−1, 1)T and pd2 :=
(0.5,−0.5, 1)T . We regulate for qd := (1, 0, 0, 0)T , so that
the geodesic arc can be approximated by a straight line
without major problems. As the obstacles are dynamic,
the global references are unaware of them. Finally, we
make use of the interior-point solver IPOPT, exploiting the
just-in-time compiling function evaluations, to solve this
optimization problem.

5. NUMERICAL SIMULATIONS AND DISCUSSION

5.1 Implementation Details

We make use of acados Python template-based interface
to generate a library which implements our tailored prob-
lem formulation (6). The QPs arising in this NMPC formu-
lation are solved using the high-performance interior-point
method (HPIPM) solver that is built on top of the linear
algebra package BLASFEO. The major difference between
existing high-performance implementations of BLAS– and
LAPACK–like routines for embedded applications and
BLASFEO is that the last is optimized for small to medium
scale matrices (Frison et al., 2018). The NLPs results
were obtained on an Intel Core i5 @2.6 GHz running
macOS Catalina. The X64 INTEL HASWELL implementation
of BLASFEO package has been used, which exploits a set of
vectorized instructions for the target CPU. Additionally,
for the NMPC solution, we use partial condensing HPIPM-
based technique. This approach reformulates the large and
sparse Hessian of problem (6) into a small and dense one
which has a more suitable form for the QP solver.

5.2 Performance Evaluation

To evaluate the trajectory conservativeness introduced
by the constraint approximation, we perform simulations
comparing our real-time planner with LCL constraint
formulation to its counterpart, a planner where constraint
(6e) is defined by ‖·‖22. The values of the slack penalties
and weighting matrices used in both cases are those defined
in (8). In simulation, the Crazyflie must travel from a
hovering configuration to another while avoiding balls
thrown at it. We assume that the obstacle’s movement
between two shooting nodes is ballistic. The results of our
simulations are presented in Fig. 2 and Fig. 3.

As expected, the planner with LCL constraint formula-
tion generates trajectories that are significantly closer to

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

9523



x (m)

y
(m

)

z
(m

)

t = 0.5 s t = 1.2 s t = 3.0 s

(a) Final desired position pd1

x (m)

y
(m

)

z
(m

)

t = 0.5 s t = 1.2 s t = 3.0 s

(b) Final desired position pd2

Fig. 2. Generated trajectories among moving balls (red): real-time planner with LCL constraint formulation (orange),
real-time planner with ‖·‖22 constraint formulation (blue); reference trajectory is dashed. The ? is the final goal.

the minimum clearance dC , as compared to its counter-
part. In addition, we note that there is no violation of
the constraints. However, the effort required to tune the
slack penalties directly impacts the amount of constraint
violation. Much of the difficulty exists because, in this
particular problem, the optimal solution will frequently lie
on the boundary of the feasible set. Therefore, imposing
very strict penalties – in the case of soft constraints –
increases the difficulty in driving the solution towards
the optimum while distancing the local trajectories from
the lower bound. Conversely, if the penalty is not strict
enough, then the search will tend to stall outside the feasi-
ble region and thereby violate the constraint. Although the
tuning considered in this work has provided a remarkable
closed-loop performance for both real-time planners – with
no constraint violation – there is no guarantee that the
violation will not occur. This is especially true in a real-
world scenario, where the state estimation deals effectively
with the uncertainty due to noisy sensor data and, to some
extent, with random external factors, i.e. wind. One way
to avoid this shortcoming and, therefore, recover feasibility
is to retune the slack penalties of the soft-constrained
problem.

To assess the computational complexity of the planner’s
algorithm, the average computational effort has been gath-
ered. The values for final desired positions pd1 and pd2 are
4.76 ms and 7.97 ms, respectively. These results show the
computational efficiency of the proposed scheme.

This paper is accompanied by a video showcasing the
simulations: https://youtu.be/ZRbGyikvsxw.

6. CONCLUSION

In this work, a new scheme for real-time motion generation
for robotic systems has been presented. The key concepts
that contribute to the effectiveness of our method stem
from the algorithmic ideas tied to the RTI scheme to for-
mulate a least conservative linearized constraint. We have
shown a reformulation that guarantees less conservative
trajectories for planners whose optimization algorithm is
based on Newton-type method. Strategies to ensure both
constraint satisfaction and feasibility of the optimization
problem have also been discussed. Finally, our approach
was tested in simulation, on a challenging example involv-
ing a high-dimensional quadcopter system, showing effi-
cient computational performance. Future work will focus
on real-world implementation.

REFERENCES

Andersson, J., Åkesson, J., and Diehl, M. (2012). CasADi:
A symbolic package for automatic differentiation and
optimal control. In Recent advances in algorithmic
differentiation, 297–307. Springer.

Benjamin, M.R., Defilippo, M., Robinette, P., and
Novitzky, M. (2019). Obstacle avoidance using multiob-
jective optimization and a dynamic obstacle manager.
IEEE Journal of Oceanic Engineering, 44(2), 331–342.

Bhattacharya, P. and Gavrilova, M.L. (2008). Roadmap-
based path planning-using the voronoi diagram for a
clearance-based shortest path. IEEE Robotics & Au-
tomation Magazine, 15(2), 58–66.

Brock, O. and Khatib, O. (1999). High-speed navigation
using the global dynamic window approach. In IEEE

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

9524



0 1 2 3

t (s)

0

5

10

15

20

25

30

35
D
is
ta
n
ce

(m
)

0.2 0.4 0.6
0.15

0.20

0.25

0.30

0.35

0.40

||p− b1||2
||p− b2||2
||p− b1||22
||p− b2||22

(a) Final desired position pd1

0 1 2 3

t (s)

0

5

10

15

20

25

30

35

D
is
ta
n
ce

(m
)

0.25 0.50 0.75

0.2

0.3

0.4

0.5

0.6

||p− b1||2
||p− b2||2
||p− b1||22
||p− b2||22

(b) Final desired position pd2

Fig. 3. Distance between the Crazyflie and the balls bi with
LCL constraint formulation (orange), and with ‖·‖22
constraint formulation (blue). Inset shows the time
instant of closest proximity to the minimum clearance.

International Conference on Robotics and Automation,
volume 1, 341–346.

Brossette, S. and Wieber, P.B. (2017). Collision avoidance
based on separating planes for feet trajectory genera-
tion. In IEEE-RAS 17th International Conference on
Humanoid Robotics, 509–514.

Diehl, M., Bock, H.G., and Schlöder, J.P. (2005). A
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