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Abstract: To estimate and compensate disturbances effectively, disturbance observer (DOB)
has been widely employed in industrial field. This paper is dedicated to designing DOB by
directly utilizing frequency response data. By transforming all the non-convex constraints into
convex form, the bandwidth of DOB is maximized through iterative convex optimization process.
Simulation results have verified the effectiveness of the proposed method.
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1. INTRODUCTION

Unavoidable disturbances deteriorate the performance of
industrial control systems, especially in high precision
positioning system (Endo et al. (1996)). To reject the
effects of disturbance, disturbance observer (DOB) was
proposed in Ohishi et al. (1983). In ideal disturbance
observer configuration as shown in Fig. 1, nominal plant
inversion (P−1

n ) is utilized to reproduce plant (Pr) input

(up = d + u) and the estimated disturbance (d̂ = ûp − u)
is fed back to compensate disturbance (d) influences. In
practical applications, low pass filter (Q filter) is necessary
to guarantee the causality of system and high bandwidth
of the said filter is desired to ensure good disturbance
rejection performance.
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Fig. 1. Block diagram of ideal and realistic disturbance
observers

However, the bandwidth of Q filter is limited by unmod-
eled plant dynamics and noises (Chen et al. (2010), Wang
et al. (2004), Choi et al. (2003)). Moreover, in case of
a non-minimum phase plant, whose inversion is unstable,

⋆ The work presented in this paper is supported by JSPS KAKENHI
Grant Number 18H05902 and the Telecommunications Advancement
Foundation.

internal instability and sensitivity function limitation due
to unstable zeros set additional limitations for Q filter
design (Sariyildiz et al. (2013), Sariyildiz et al. (2014),
and Chen et al. (2004)).

Previous research on Q filter design employed parametric
model (transfer function or state space representation) to
represent real plant. The fitting process from frequency
response data (FRD) to parametric model introduces
unmolded plant dynamics which adds the conservatism in
shaping Q filter response. To mitigate the influences of
unmolded plant dynamics, the direct utilization of FRD
information in shaping Q filter response is necessary to be
investigated.

Previous frequency response data-based studies mainly
focused on designing linearly parameterized fixed order
feedback controller while optimizing specifications of con-
trol system, such as integrator gain, etc (Karimi et al.
(2010), Hast et al. (2013), Nakamura et al. (2016), Galdos
et al. (2010)). In regard to aforementioned works, we
integrated the frequency response data-based method into
DOB optimization design. Second order Q filter design
has been investigated in our previous study (Wang et al.
(2019)) while this paper focused on arbitrary order Q filter
design in which the stability of high order Q filter should
be maintained during optimization process.

(1) Systematic method of designing Q filter by FRD is
derived. The parameters ofQ filter are properly tuned
to maximize the bandwidth of DOB and provide
satisfactory disturbance attenuation performance.

(2) General derivation process from non-convex con-
straints to convex constraints in DOB design has been
developed. Iterative convex optimization process is
established to solve the problem.

(3) No limitations on nominal plant or the Q filter order
is required in the proposal.
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The outline of the paper is as follows: In section 2, nec-
essary mathematical preliminaries is provided. Problem
formulation is developed in Section 3 in which non-convex
constraints are derived. The mathematical transformation
process from non-convex constraints to convex constraints
is shown in Section 4. Based on the proposal, case study
results are shown in Section 5. This paper ends by pre-
senting concluding remarks in Section 6.

2. PRELIMINARIES

A convex optimization problem is one in which the ob-
jective and constraint functions are convex, which means
they satisfy the inequality:

f(αx+ βy) ≤ αf(x) + βf(y). (1)

for all x, y ∈ Rn and all α, β ∈ Rn with α + β = 1, α ≥
0, β ≥ 0 (Boyd et al. (2004)).

A Linear Matrix Inequality (LMI) has the following form

F (x) = F0 +

m∑
i=1

xiFi > 0, (2)

in which x ∈ Rm is the variable and the symmetric
matrices Fi = FT

i ∈ Rn×n, i = 0, ...,m are given (Boyd et
al. (1994)).

Schur Complement (Boyd et al. (1994)) will be used
throughout the paper which is introduced as follows.[

Q(x) S(x)
(S(x))T R(x)

]
> 0, (3)

where Q(x) = Q(x)T , R(x) = R(x)T and S(x) depends
affinely on x, is equivalent to

Q(x) > 0, R(x)− S(x)Q(x)−1S(x)T > 0. (4)

Beside these, linear approximation is extensively em-
ployed. The basic concept is to estimate the value of a
function, f(x), near a point x0 = [x0(1), x0(2), ..., x0(n)]

T ,
using the following formula.

f(x) ≈ f(x0) +∇f(x0)(x− x0). (5)

in which ∇ denotes vector differential operator and

∇f(x0) =

[
∂f(x0)

∂x0(1)
,
∂f(x0)

∂x0(2)
, ...,

∂f(x0)

∂x0(n)

]
.

Additionally, |A| denotes the magnitude of A and jωk

means sequential frequency points in which j is the imag-
inary unit while ωk represents for frequency ([rad/s]) and
k means index.

3. PROBLEM FORMULATION

In the disturbance observer control system as shown in Fig.
2, Pr and Pn denote real plant and nominal plant, defined
by FRD and transfer function, respectively. Q represents

the to-be-designed low pass filter. d, d̂, ua, y are external
disturbance input, estimated disturbance, control input
and output, respectively.
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Fig. 2. Block diagram of disturbance observer system
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plot

In this paper, Q is selected as follows in which a ≜
[a1, a2, ..., an]

T is the parameter vector to be decided and
the order n is selected by designer.

Q =
1

ansn + ...+ a2s2 + a1s+ 1
≜ QN

QD
, (6)

the following equations are obtained for Fig. 2.

L = P−1
n Q(1−Q)−1Pr(jωk)

=
Pr(jωk)P

−1
n

(ansn + ...+ a2s2 + a1s)
≜ N

D
, (7a)

S =
1

1 + (1−Q)−1QP−1
n Pr(jωk)

≜ D

D +N
, (7b)

y

d
=

Pr(jωk)

1 + (1−Q)−1QP−1
n Pr(jωk)

= SPr(jωk), (7c)

d̂

d
=

(1−Q)−1QP−1
n Pr(jωk)

1 + (1−Q)−1QP−1
n Pr(jωk)

= 1− S = T, (7d)

in which N = Pr(jωk)P
−1
n , D = ans

n+ ...+a2s
2+a1s and

L, S, T represent the open loop function, sensitivity func-
tion and complementary sensitivity function, respectively.

Several constraints are designed to obtain satisfactory
disturbance rejection performance. Firstly, the circle con-
dition (Nakamura et al. (2016)) which is shown in Fig. 3
should be met to guarantee the desired gain margin gm
and phase margin ϕm. The circle condition is represented
by using the following mathematical inequality.

|σ + L(jωk)| − rm ≥ 0, (8)

in which L is the open loop function while center point
(−σ, 0) and radius rm of circle Cs are calculated based on
the following equations.

σ =
g2m − 1

2gm(gm cosϕm − 1)
, (9a)

rm =
(gm − 1)2 + 2gm(1− cosϕm)

2gm(gm cosϕm − 1)
. (9b)

Secondly, selecting weighting function Wp and Wm as
mentioned in (10a) and (10b) for S and T respectively,
the constraints for sensitivity function and complemen-
tary sensitivity function are established as shown in Fig.
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Fig. 6. Explanation of Q filter stability constraint

4 and Fig. 5. ωp is selected as the optimization objec-
tive. ωt together with a = [a1, a2, ...an]

T are optimiza-
tion variables. When the optimal point ωp(opt) is found,

a = [a1, a2, ..., an]
T is obtained simultaneously. These two

constraints are common in conventional H∞ theory but
obtainable Q is of high order whereas Q has fixed form in
this paper.

Wp =
ωp

s
, |WpS| ≤ 1, (10a)

Wm =
s+ ωt

1.25ωt
, |WmT | ≤ 1, (Mt = 1.25). (10b)

Thirdly, the stability of Q filter is guaranteed when the
encirclements of the origin by vector loci QD and by
initial stable Q filter denominator QD(init) are the same
during the optimization process (Shinoda et al. (2016)).
The mathematical interpretation is given as (12f) and
the meaning of it is QD(jωk, ai) (current value) and
QD(jωk, ai−1) (previous iteration value) are on the same

side of the normal line of vector
−−−→
OQD(jωk, ai−1) at all

frequency points as shown in Fig. 6.

ℜ(QD(jωk, ai−1))ℜ(QD(jωk), ai)

+ ℑ(QD(jωk, ai−1))ℑ(QD(jωk, ai))

= ℜ(QD(jωk, ai−1))QD(jωk, ai)) ≥ 0. (11)

In summary, the Q filter design is formulated into the
following optimization problem.

Maximize
a1,a2,··· ,an,ωt

ωp (12a)

Subject to 0 < a1, a2, · · · , an, 0 < ωp < ωt, (12b)

|L(jωk) + σ| ≥ rm, (12c)

|Wp(jωk, ωp)S(jωk)| ≤ 1, (12d)

|Wm(jωk, ωt)T (jωk)| ≤ 1, (12e)

ℜ(QD(jωk, ai−1)QD(jωk, ai)) ≥ 0.(12f)

4. CONVEX CONSTRAINTS DERIVATION

In this section, the above-listed non-convex constraints
are all transformed into linear functions or LMI form
of variables ωp, ωt, a = [a1, a2, · · · , an]T . The derived
constraints are sufficient condition of original constraints
which implies that if the newly-obtained constraints are
satisfied, the original constraints hold undoubtedly.

4.1 Constraint in (12c)

In this subsection, (12c) is converted to convex constraint
in following way.

|L(jωk, ai) + σ| − rm =

∣∣∣∣ N(jωk)

D(jωk, ai)
+ σ

∣∣∣∣− rm ≥ 0,

⇔ |N(jωk) +D(jωk, ai)σ| ≥ rm |D(jωk, ai)| ,
≜ F (jωk, ai) ≥ rm |D(jωk, ai)| ,
⇐ Ψ ≥ rm |D(jωk, ai)| .

(13)

where

Ψ = F (jωk, ai−1) +∇F (jωk, ai−1)(ai − ai−1),

∇F (jωk, ai−1) =


∂(|N(jωk) +D(jωk, ai−1)σ|)

∂a1(i−1)

...
∂(|N(jωk) +D(jωk, ai−1)σ|)

∂an(i−1)



T

.
(14)

4.2 Constraint in (12d)

For the sensitivity function constraint, the following
method is used to obtain LMI form.∣∣Wp(jωk, ωp(i))S(jωk, ai)

∣∣ ≤ 1

⇔
∣∣∣∣ωp(i)

jωk
D(jωk, ai)

∣∣∣∣ ≤ |D(jωk, ai) +N(jωk)| .
(15)

Squaring the both sides of (15) and turning this inequality
into matrix inequality form by using Schur Complement.∣∣∣∣ωp(i)

jωk

∣∣∣∣2 |D(jωk, ai)|2 ≤ |D(jωk, ai) +N(jωk)|2 ,

⇔

 ∣∣∣∣ ωk

ωp(i)

∣∣∣∣2 D(jωk, ai)

(D(jωk, ai))
∗ |D(jωk, ai) +N(jωk)|2


≜

[
S11 S12

(S12)
∗ S22

]
≥ 0.

(16)
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To obtain the sufficient condition of original constraint, the

lower bound of S11 and S22 are required. For S11 =
(ωk)

2

ω2
p(i)

,

the lower bound of ω−2
p(i) is obtained by using the following

technique (Shinoda et al. (2016)).

(ω−2
p(i) − ω−2

p(i−1))(ω
−2
p(i) − ω−2

p(i−1)) ≥ 0,

⇔ ω−4
p(i) ≥ 2ω−2

p(i−1)ω
−2
p(i) − ω−4

p(i−1),

⇔ ω−2
p(i) ≥ 2ω−2

p(i−1) − ω−4
p(i−1)w

2
p(i) ≥ ϕ1(i) > 0.

(17)

in which ϕ1(i) is newly-introduced variable and constraints
for it can be expressed in the following form:[

2ω2
p(i−1) − ϕ1ω

4
p(i−1) ωp(i)

ωpi 1

]
> 0, ϕ1(i) > 0. (18)

In conclusion, S11 =
ω2

k

ω2
p(i)

≥ ω2
kϕ1(i).

As for S22, the linear approximation is employed.

S22 = |D(jωk, ai) +N(jωk)|2 ≜ (M(jωk, ai))
2

≥ (M(jωk, ai−1))
2 +∇(M(jωk, ai−1))

2(ai − ai−1) = Φ,
(19)

in which

∇(M(jωk, ai−1))
2 =


∂(|N(jωk) +D(jωk, ai−1)|2)

∂a1(i−1)

...

∂(|N(jωk) +D(jωk, ai−1)|2)
∂an(i−1)



T

.(20)

In summary, the original nonlinear constraint (12d) is
transformed into the following LMIs by combining (16),
(18) and (19).[

ω2
kϕ1(i) D(jωk, ai)

(D(jωk, ai))
∗ Φ

]
≥ 0, ϕ1(i) > 0, (21a)[

2ω2
p(i−1) − ϕ1(i)ω

4
p(i−1) ωp(i)

ωp(i) 1

]
> 0. (21b)

4.3 Constraint in (12e)

Following the similar process as used in dealing with (12d),
the complementary sensitivity function constraint (12e) is
changed into the following form.∣∣Wm(jωk, ωt(i))T (jωk, ai)

∣∣ ≤ 1,

⇔
∣∣∣∣ s+ ωt(i)

1.25ωt(i)

∣∣∣∣2 ≤
∣∣∣∣D(jωk, ai) +N(jωk)

N(jωk)

∣∣∣∣2 ,
⇔

 ω2
t(i)

|N(jωk)|(s+ ωt(i))

1.25
|N(jωk)|(s+ ωt(i))

∗

1.25
|D(jωk, ai) +N(jωk)|2

 ≥ 0,

≜
[

T11 T12

(T12)
∗ T22

]
≥ 0.

(22)

As before, T11 and T22 needs transformation. Since T22 =
S22, this part is omitted due to the repetition. For T11,

ω2
t(i) ≥ 2ωt(i−1)ωt(i) − ω2

t(i−1). (23)

By combining (19), (22) and (23), the original non-convex
constraint is changed into2ωt(i−1)ωt(i) − ω2

t(i−1)

|N(jωk)|(s+ ωt(i))

1.25
|N(jωk)|(s+ ωt(i))

∗

1.25
Φ

 ≥ 0. (24)

4.4 Problem Reformulation

After finishing all the process mentioned above, the origi-
nal problem is reformulated as follows.

Maximize ωp

Subject to 0 < a1(i), · · · , an(i), (25a)

0 < wp(i) < wt(i), 0 < ϕ1(i), (25b)

Ψ− rmD(jωk, ai) ≥ 0, (25c)

ℜ(QD(jωk, ai−1)QD(jωk, ai)) ≥ 0, (25d)[
ω2
kϕ1(i) D(jωk, ai)

(D(jωk, ai))
∗ Φ

]
≥ 0, (25e)[

2ω2
p(i−1) − ϕ1(i)ω

4
p(i−1) ωp(i)

ωp(i) 1

]
≥ 0, (25f)[

2ωt(i−1)ωt(i) − ω2
t(i−1)

|N(jωk)|(jωk+ωt(i))

1.25
|N(jωk)|(jωk+ωt(i))

∗

1.25 Φ

]
≥ 0.

(25g)

The new optimization problem is a convex optimization
problem and can be solved by commercial solvers.

5. CASE STUDY

5.1 Plant and simulation condition

The simplified model of simulation plant is shown in Fig.
7. The linear motor (actuator) provides actuation force
(input, F ) and moves table towards predefined position.
The position of table (output or control target x) is
recorded by table side linear encoder. Input disturbances
are taken into account, e.g. friction of linear motor side.

x

Actuator

Table
lenc

F

Fig. 7. Simplified model of the simulated plant

The real plant and nominal plant are represented by
FRD (Pr(jωk)) and transfer function (Pn), respectively.
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Fig. 8. Bode plots of plant FRD (Pr (FRD)) and nominal
plant (Pn)

Nominal plant Pn is selected as a fourth order non-
minimum phase one as represented in (26). Bode plots of
Pr(FRD) and Pn are shown in Fig. 8.

Pn =
−206.68(s− 125.6)(s+ 120)

s(s+ 2.101)(s2 + 10.89s+ 3.665× 104)
. (26)

Since the inversion of nominal plant is unstable, zero phase
error approximation (Tomizuka (1987)) of nominal plant
inversion is employed and Q is selected as a fourth order
filter to guarantee the causality of system.

P̄−1
n =

s(s+ 2.101)(s+ 125.6)(s2 + 10.89s+ 3.665× 104)

3.2614× 106(s+ 120)
,

(27a)

Q =
1

a4s4 + a3s3 + a2s2 + a1s+ 1
. (27b)

The corresponding L, S and T are obtained.

L =
Pr(jωk)P̄

−1
n

a4s4 + a3s3 + a2s2 + a1s
, (28a)

S =
a4s

4 + a3s
3 + a2s

2 + a1s

a4s4 + a3s3 + a2s2 + a1s+ Pr(jωk)P̄
−1
n

, (28b)

T =
Pr(jω)P̄

−1
n

a4s4 + a3s3 + a2s2 + a1s+ Pr(jωk)P̄
−1
n

. (28c)

During the simulation, desired gain margin and phase
margin are 6dB and 30◦. According to (9a) and (9b),
σ = 1.03, rm = 0.525.

The initial condition for optimization is a1 = 0.0838, a2 =
1.76×10−3, a3 = 5.668×10−7, a4 = 3.343×10−9, ωp = 9.9
[rad/s]. The criterion for selecting initial condition is to
satisfy the constraints. The convex constraints are estab-
lished using our proposed method, followed by optimiza-
tion of the said problem using off the shelf toolboxes,
Yalmip ( Löfberg (2004)) and Mosek (Mosek (2019)) in
Matlab.

5.2 Simulation result

After optimization, ωp(opt) = 41.46 [rad/s] (6.60 [Hz]) and

a1 = 0.019, a2 = 2.99 × 10−4, a3 = 3.62 × 10−7, a4 =
1.169 × 10−9. Tuned Q filter’s bandwidth is 11.86 [Hz].
The resultant Nyquist plots of open loop function, before
and after optimization are shown in Fig. 9. Dashed black
line represents unit circle and dotted black line is a circle
whose center is located at (−σ,0), i.e. (−1.03, 0) and the
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Fig. 9. Nyquist plots of before and after optimization
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Fig. 11. Block diagram of disturbance compensation based
on DOB

radius (rm) is 0.525. The stability margin constraint, (12c),
holds successfully as the Nyquist plot has no intersection
with the dotted circle. With the stability margin constraint
satisfied, the peak value of sensitivity function is limited
because the closest distance from Nyquist plot to critical
point (−1, 0) is the inverse of the peak value of the sen-
sitivity function. Finally, proposed optimization method
forces the Nyquist plot to be tangent to the dotted circle
which implies that the bandwidth of open loop function
is maximized under the limitation of constraints. The
constraints for S and T are satisfied as |WpS| and |WmT |
are always under 0 dB in Fig. 10.

5.3 Disturbance Rejection Performance

Simulations have been conducted to test the disturbance
rejection performance of above-designed Q filter by using
Fig. 11. Pr is a well-identified 8th order transfer function
(tf) which is shown with the feedback controller Cfb as
follows.

Pr =
164.38(s+ 1089)(s− 878)(s− 125.6)

s(s+ 2.101)(s2 + 10.89s+ 3.665× 104)

× (s+ 120)(s2 + 185.5s+ 1.447× 106)

(s2 + 45.4s+ 3.139× 105)(s2 + 262.2s+ 3.507× 106)
,

(29)

Cfb = 1.36 +
3.64

s
+

0.261s

0.0249s+ 1
. (30)
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result

By making reference input as zero and injecting unit step
disturbance to the system, three different output responses
are obtained for comparison.

(1) Only feedback controller Cfb works in the system.
(2) Selected initial disturbance observer plus feedback

controller Cfb work in the system together.
(3) Optimized disturbance observer plus feedback con-

troller Cfb work in the system together.

The proposed Q filter design outperforms the initial design
and the disturbance rejection performance has been im-
proved as illustrated in Fig. 12. The maximum deviation
from reference position has been decreased by 59.1% as
compared to initial DOB and by 82.8% as compared to
feedback controller only case.

6. CONCLUSION

This paper has proposed a general design method for
maximizing bandwidth of disturbance observer directly
based on frequency response data. Moreover, all the non-
convex constraints have been transformed into convex
form which are solved by convex optimization method. The
numerical case study validated the proposed method.
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