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Abstract: The design of gaits for underactuated robots is often unintuitive, with many results
derived from either trial and error or simplification of system structure. Recent advances in deep
reinforcement learning have yielded results for systems continuous in either states or actions,
which may extend to a variety of locomoting robots. In this work we employ reinforcement
learning to derive efficient and novel gaits for both terrestrial and aquatic multi-link snake
robots. Although such systems operate in different environments, we show that their shared
geometric structure allows us to utilize the same learning techniques in both cases to find gaits
without any human input. We present results learned and rolled out in simulation, and we
describe preliminary efforts to implement the entire learning process on a physical system.
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1. INTRODUCTION

Robot motion planning often turns to biology for in-
spiration of gaits or locomotion modes, particularly for
those systems with unusual morphologies. For example,
biological imitation is a powerful technique for enabling
snake robot locomotion, which often exhibits some form of
slithering or sidewinding motions. However, while biology
provides an ideal baseline or starting point, there is no
single prevailing method to improve or operate to begin
with when there is a lack of data and observations. To
address these challenges, we consider how many biologi-
cal organisms acquire these locomoting skills in the first
place—namely, learning.

Reinforcement learning (RL) describes a class of tech-
niques that are perhaps not too different from the learning
process that many organisms appear to follow. Actions
that produce desired results are encouraged, while actions
that are counterproductive are weeded out over time.
Genetics and innate ability notwithstanding, organisms
must learn to adapt to new environments all the time. In
the same way, one way to approach the problem of robot
locomotion is to have the system try different actions and
build up a repertoire of “good” gaits over time, rather than
the roboticist prescribing such a repertoire.

While such an approach is attractive in theory, reinforce-
ment learning has not appeared as a viable technique
for robot locomotion until recently. Real robots are non-
linear, high-dimensional, and continuous in their states
and actions (controls), and classical reinforcement learning
techniques do not scale well for such systems. This paper
describes our work in alleviating these challenges in two
complementary ways. The first is to turn to recent ad-
vances in deep reinforcement learning, which take advan-

tage of deep neural networks to approximate the complex
learned controls. For this we use established techniques in
the literature and apply them to our specific systems.

The second part of our approach is to identify a class of
locomoting robots that exhibit structural symmetries and
to exploit these symmetries to reduce system complexity
before the learning process. While we are likely not the
first to take advantage of system symmetries in reinforce-
ment learning, an extensive literature has been established
specifically for locomoting systems under the purview of
geometric mechanics, and the goal of our work is to show
how such geometric structure can be beneficial to a re-
inforcement learning approach in addition to traditional
motion planning.

Our paper is structured as follows. We first review relevant
work in geometric mechanics for locomoting robots and
deep reinforcement learning for general problems. We then
formulate the geometric models for our example systems, a
wheeled terrestrial robot and a multi-link swimming robot.
With these models, we describe the learning techniques
that we use, along with our setup of the problem of
learning simple gaits from a blank slate. Finally, we present
our simulated results and show that our formulation is well
suited for implementation on a physical system.

2. PRIOR WORK

2.1 Geometric Mechanics

In recent decades, techniques and methods from geometric
mechanics have been a popular way to model and control
mechanical systems. A key idea is that of symmetries in a
system’s configuration space, which allow for the reduction
of the equations of motion to a simpler form. This has been
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addressed for general mechanical systems by Marsden and
Ratiu (2013), as well as nonholonomic systems by Bloch
et al. (1996). For locomoting systems, geometric reduction
is often leveraged in tandem with a decomposition of
the configuration variables into actuated shape variables
and unactuated position variables. If such a splitting is
possible, then the configuration space often takes on a fiber
bundle structure, whereby a mapping called the connection
relates trajectories between each subspace. Analysis of the
connection can then give us intuition into ways to perform
motion planning and control of the system, as detailed
by Kelly and Murray (1996) and Ostrowski and Burdick
(1998). This mathematical structure also lends itself to
visualization and design tools, detailed by Hatton and
Choset (2011).

Much of the progress in the geometric mechanics of loco-
motion is predicated on the assumption that the symme-
tries of a system coincide exactly with the position degrees
of freedom. The three-link robot of Fig. 1 with actuated
joint inputs is one of the simplest examples of such a
system, and it has received considerable attention from
researchers such as Ostrowski (1999) and Shammas et al.
(2007) treating it as a kinematic system, so named because
its three constraints eliminate the need to consider second-
order dynamics when modeling its locomotion. This allows
for the treatment of the system’s locomotion, and sub-
sequent motion planning, as a result of geometric phase
(see Murray and Sastry (1993), Mukherjee and Anderson
(1993), Kelly and Murray (1995), Bullo and Lynch (2001)).

Geometric methods have also examined systems locomot-
ing in fluids. As with terrestrial systems, such a description
is most useful if the position degrees of freedom correspond
to system symmetries and the rest to internal shape. For
single bodies, motion may be achieved through temporal
deformation of the body’s shape. For articulated swimmers
like a three-link robot, deformation occurs naturally when
joints are moved relative to each other (see Melli et al.
(2006), Hatton and Choset (2013), Burton et al. (2010)),
analogous to the terrestrial version of the system.

2.2 Reinforcement Learning

Reinforcement learning (Sutton and Barto (1998)), or RL,
is a sub-field of machine learning that enables agents, such
as robots, to learn good policies for sequential decision
problems. A goal is typically quantified in the form of
a reward function, and the agent aims to maximize its
cumulative reward as it interacts with the environment.
Mathematically, the RL approach can be represented using
a Markov Decision Process (MDP): a set of states S, a
set of actions A, a transition function T : S × A → S,
and a reward function R : S × A → R. A policy π :
S → A is learned to maximize the cumulative reward∑∞
t=0 γ

tR(st, at), where 0 < γ < 1 is a discount factor.

Q-learning (Watkins (1989)) is a popular algorithmic
implementation of RL, as it does not require an explicit
model of the system (i.e., it is model-free), and it can solve
problems with stochastic transitions and rewards. The goal
of Q-learning is to learn the policy π by learning a real-
valued Q-mapping πQ : S×A→ R. The Q-value of a state-
action pairing (s, a) indicates the expected cumulative
future rewards received by taking action a at state s.

Fig. 1. A three-link nonholonomic snake robot with iden-
tical link lengths R. The coordinates (x, y, θ) denote
the SE(2) inertial configuration of the proximal link,
which also has velocities (ξx, ξy, ξθ) relative to a body-
fixed frame. The relative angles of the joints are de-
noted α = (α1, α2).

Each time a new sample (st, at, st+1, rt) is received, where
st+1 = T (st, at) and rt = R(st, at), the Bellman update
equation is used to update Q(st, at):

Qnew(st, at) =(1− α) ·Qold(st, at)

+ α · (rt + γ ·max
a

Q(st+1, a)),

where α is a tuned learning rate and γ is a discount factor.

While powerful, classical Q-learning lacks generality be-
cause it can only deal with discrete state-action pairings.
Recent advances in artificial neural networks have enabled
Q-learning to generalize to continuous spaces by combining
reinforcement learning with deep neural networks. Deep
Q-Network (Mnih et al. (2015)), or DQN, is able to solve
RL tasks with continuous state spaces and discrete action
spaces by leveraging deep neural networks to approximate
the optimal action-value function Q∗. Previous algorithms
that represented Q∗ with a nonlinear functional approxi-
mator often diverged due to instabilities caused by correla-
tions in the sequence of observations, correlations between
Qold and Qnew, and the fact that small updates to Q
may significantly change the policy and the data distri-
bution. To address these issues, DQN utilizes randomized
experience replay to remove correlations between data,
correlations in the observation sequence, and bias in the
data distribution. It also uses iterative network updates
to alleviate the effects of Q updates to the policy and
reduce Q’s correlation with its network update target.
These improvements enable DQN to effectively solve a
wide range of challenging tasks.

2.3 Motion Control of Robots

To achieve efficient snake-like movement in their robotic
counterparts, a variety of kinematics-based methods (Hi-
rose (1993), Ma (1999), Tesch et al. (2009)) have been used
to simplify parametric representations of their trajectories.
However, because these methods largely rely on parameter
tuning, they are time-consuming and have limited gait
efficiency. RL has recently been adapted to the robotic gait
generation and motor control problems, with applications
in bipedal robots (Peng et al. (2017)), quadruped robots
(Tan et al. (2018)), Minitaur legged robots (Haarnoja
et al. (2018)), and multi-fingered robotic hands (Zhu et al.
(2019)). Recent studies have attempted to apply new RL
techniques to design gaits for snake-like robots as well.
Whereas Bing et al. (2019) used RL to learn slithering
and energy-efficient gaits for a dynamics-based snake-like
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robot, Zhang et al. (2018) used RL to make an underwa-
ter gliding snake-like robot adapt to its environment and
automatically learn gliding actions.

To the authors’ knowledge no work has investigated the
application of RL to snake robot models derived from
geometric mechanics. Furthermore, most prior work in RL
and robot locomotion have limited the training phase to
simulation, as training is time-consuming in real-world set-
tings. In this work, we use insights in geometric mechanics
to both increase the efficiency of our training process and
then subsequently analyze the learned gaits, both with
an eye toward making the problem suitable for real-world
implementation.

3. KINEMATIC ROBOT MODELS

In this section we briefly develop the models of the two
representative robots in this paper: a wheeled three-link
robot and a neutrally buoyant three-link robot swimming
in a low Reynolds fluid. In doing so we will highlight the
usefulness of a geometric formulation, as well as common
visualizations that can help us better understand their
system structure.

3.1 Wheeled Snake Robot

As shown in Fig. 1, the wheeled robot consists of three
rigid links, each of length R, which can rotate relative to
one another. Its configuration is defined by q ∈ Q = G×B,
where g = (x, y, θ)T ∈ G = SE(2) specifies the position
and orientation of the first link in an inertial frame; we
measure a link’s position at the center of the link. The
joint angles α = (α1, α2)T ∈ B specify the links’ relative
orientation. We can view Q as a principal fiber bundle,
in which trajectories in the shape or base space B lift to
trajectories in the group G (Kelly and Murray (1995)).

The wheels at the centers of the links provide a set
of nonholonomic constraints that restrict the system’s
motion. Each of the constraints can be written in the form

−ẋi sin θi + ẏi cos θi = 0, (1)

where (ẋi, ẏi) is the velocity and θi is the orientation of
the ith link. These quantities can be found via the sys-
tem’s geometry and written in terms of the configuration
coordinates and velocities. We note that the constraints
are symmetric with respect to the group in that they do
not explicitly depend on where the system is positioned or
how it is oriented in space. We can rewrite the constraints
into a reduced Pfaffian form (Shammas et al. (2007)) as

ωξ(α)ξ + ωα(α)α̇ = 0, (2)

where ωξ ∈ R3×3 and ωα ∈ R3×2. The variables ξ =
(ξx, ξy, ξθ)

T give us the body velocity of the system, as
shown in Fig. 1. In SE(2), the mapping that takes body
velocities to inertial velocities is given by ġ = TeLgξ, where

TeLg =

(
cos θ − sin θ 0
sin θ cos θ 0

0 0 1

)
. (3)

Since the number of independent constraints is equal to
the dimension of the group, these equations are sufficient
to derive a kinematic connection for the system (Shammas
et al. (2007)). In other words, the constraint equations

Fig. 2. A swimming snake robot comprised of three articu-
lated slender bodies. The inertial coordinate configu-
ration, body velocity configuration, and relative joint
angles are all identical to that of the robot in Fig. 1.

fully describe the first-order dynamics of the group vari-
ables in terms of the shape variables only. Thus, Eq. (2)
can be rearranged to show this explicitly as the kinematic
reconstruction equation:

ξ = − 1

D

R2 (cosα1 + cos(α1 − α2))
R

2
(1 + cosα1)

0 0
sinα1 + sin(α1 − α2) sinα1


︸ ︷︷ ︸

A(α)

α̇,

(4)
where D = sinα1 + sin(α1 − α2) − sinα2. A(α) is called
the local connection form, a mapping that depends only
on the shape variables, in this case α1 and α2. Note that
this quantity is not well defined when α1 = α2, which
corresponds to a singular configuration of the system.

3.2 Swimming Snake Robot

The presence of singularities is a challenge for motion
planning for the nonholonomic snake robot, and a partial
treatment is detailed by Dear (2018). In this paper we
explicitly prescribe joint limits during learning to avoid
computational difficulties during simulation. Since this
also prevents the robot from using its full range of mo-
tions, we also demonstrate learning results on a swimming
version of the three-link robot, which has no singularities.
This robot, as shown in Fig. 2, is physically very similar
to the wheeled version, but the kinematic model is derived
in a different manner.

Following the treatment of Hatton and Choset (2013), we
assume that the swimmer is comprised of three slender
bodies and suspended in a planar low Reynolds number
fluid, in which viscous drag forces dominate inertial forces.
This allows us to approximate the drag forces as linear
functions of the system’s body and shape velocities ξ and
α̇; we also assume that net forces acting on the system are
zero for all time due to damping out by drag forces. Just
as with the nonholonomic robot, we can derive a Pfaffian
constraint on the swimming system’s velocities as

F = (Fx, Fy, Fθ)
T = (0, 0, 0)T = ω1(α)ξ + ω2(α)α̇, (5)

where ω1 ∈ R3×3 and ω2 ∈ R3×2 as before.

The full forms of these components can be found in
Hatton and Choset (2013). The general approach would
be to first compute local drag forces on each link, and
then combine them to find the total force components
for each of the body frame directions. In addition to the
system link length R, the kinematics also utilize the drag
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Fig. 3. Visualizations of the x and θ components of the
connection exterior derivative for the wheeled three-
link snake robot.

constant of the fluid, characterized by k. Finally, once the
Pfaffian equations are derived, a kinematic reconstruction
equation and a connection form can be written down for
the swimmer in exactly the same form as that of the
wheeled robot: ξ = −A(α)α̇.

3.3 Visualization of Kinematics

The structure of the connection form in Eq. (4) can
be visualized in order to understand the response of ξ
to input trajectories without regard to time, according
to Hatton and Choset (2011). We can first integrate
each row of Eq. (4) over time to obtain a measure of
displacement corresponding to the body frame directions.
In the world frame, this measure provides the exact
rotational displacement, i.e., θ̇ = ξθ for the third row,
and an approximation of the translational component for
the first two rows. If our input trajectories are periodic,
we can transform this “body velocity integral” into one
over the trajectory ψ : [0, T ] → B in the joint space,
since the kinematics are independent of input pacing.
Stokes’ theorem can then be applied to perform a second
transformation into an area integral over β, the region of
the joint space enclosed by ψ:

−
∫ T

0

A(α(τ))α̇(τ) dτ = −
∫
ψ

A(α) dα = −
∫
β

dA(α).

(6)
The integrand in the rightmost integral is the exterior
derivative of A, computed as the curl of A in two dimen-

sions. For example, the connection exterior derivative of
Eq. (4) has three components, one for each row i given by

dAi(α) =
∂Ai,2

∂α1
− ∂Ai,1

∂α2
, (7)

where Ai,j is the element corresponding to the ith row and
jth column of A.

The magnitudes of the connection exterior derivative over
the joint space are depicted in Fig. 3 1 , along with a
gait trajectory shown as a closed curve on the surfaces.
The area integral over the enclosed region is the geometric
phase, a measure of the expected displacement in the body
x and θ directions (the body y plot is not shown because
it is zero everywhere). The x plot is positive everywhere,
meaning that any closed loop will lead to net displacement
along the ξx direction. In particular, a trajectory that
advances in a counter-clockwise direction over time in joint
space will yield positive body-x displacement, since that
corresponds to a positive area integral; negative body x-
displacement is achieved with a clockwise trajectory. The θ
plot is anti-symmetric about α1 = −α2, meaning that gaits
symmetric about this line will yield zero net reorientation
while simultaneously moving the robot forward. Note that
the magnitudes in both plots become unbounded closer to
the singular configurations α1 = α2.

Finally, since we have derived a connection form for the
swimming robot as well, we can also visualize the exterior
derivative plots for this system. Contour versions of these
plots are shown overlapped with simulation results of
learned gaits in Fig. 5. We first note that unlike the
connection form of the wheeled robot, these plots (and
the connection form itself) are continuous over all joint
angles; no singularity region appears at any joint angle
configuration. Secondly, we see that unlike the wheeled
robot the y plot is not null; it is indeed possible for
the swimmer to move laterally to its body frame over a
complete gait cycle.

4. REINFORCEMENT LEARNING FOR
LOCOMOTION

While the derived geometric models give us an intuition
behind locomotion of robots given a gait, it may not be
easy to design an optimal or efficient gait, particularly
for robots with high-dimensional joint spaces. While the
robots presented in this paper are both low-dimensional,
our objective is to use reinforcement learning to help
the robots learn good gaits, which are then verified and
improved upon via our geometric analysis. Since our
reinforcement learning approach is model-free, it can be
easily extended to robots with higher dimensions.

We begin this section by introducing the key components
of the RL setup for our particular robots, followed by the
reinforcement learning algorithm itself. We also describe
throughout our approach of utilizing the intuition of
geometric mechanics to simplify the RL components so
as to make the problem feasible in a real-world setting.
Training in the real world, as opposed to in simulation,

1 We plot a scaled arctangent of these functions in order
to visualize the singular portions. Instead of dAi(α), we plot
1
c

arctan(cdAi(α))), where c is positive.
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may be more desirable so as to account for effects like
friction or wheel-slip.

4.1 Reinforcement Learning Setup

State Space For both the wheeled and swimming robots,
we use a three-dimensional state space S, parameterized by
(α1, α2, θ), where α1, α2 corresponds to the robot’s relative
angles of the robot’s two joints, and θ is the orientation
of the robot in the inertial frame. The first two quantities,
α1 and α2, describe the robot’s joint angle configuration,
on which the RL agent applies joint velocity “actions” to
transition into another angle configuration.

The orientation θ keeps track of the robot’s relative
orientation to the inertial frame, which is necessary if our
objectives concern locomotion relative to the inertial frame
(e.g., motion going to the right). Alternatively, one can
choose to prescribe the robot’s tasks in the body frame,
for which θ would no longer be needed. Note that in either
case, we are explicitly taking advantage of symmetries
present in the system by disregarding the need to include
x and y in the state space. While seemingly trivial, this
design decision significantly improves the efficacy of the
learning procedure and is hugely beneficial in systems with
obscure symmetries.

When necessary, the state space of the robot can be
constrained within certain values. For example, physical
snake robots typically have joint limits at −π and π
to avoid overlapping links. Moreover, we noted that the
wheeled nonholonomic snake robot has a singularity at
the α1 = α2 configuration, requiring us to avoid such a
scenario in simulation. In practice, we constrain one joint
angle to positive values and the other to negative values
to ensure that the learning agent never achieves such a
configuration.

Action Space We use a discrete two-dimensional action
space A, parameterized by (α̇1, α̇2), each of which corre-
sponds to a joint velocity of the robot. For simplicity, we
assume that each joint has the same max action magni-
tude ȧmax and action discretization interval ȧinterval. The
reason for discretizing the action space in simulation is
twofold: first, we aim to translate our simulation results
to physical robots, and the motors of the robot (shown
in Fig. 6) require discrete joint velocities inputs; second,
a discrete action space allows us to easily exploit the sys-
tem’s symmetries (see section 5.1), drastically reducing the
size of the action space. That DQN has to search a smaller
space for a good policy is crucial for achieving results
comparable to simulation when training physical robots
in the real world. Therefore, given ȧmax and ȧinterval, the
action space can be expressed as A = A1×A2, where Ai =
{ȧmax, ȧmax − ȧinterval, . . . , 0, . . . ,−ȧmax + ȧinterval, ȧmax} .
The action (0, 0) is removed from A to prevent the robot
from staying still. This last design choice also derives from
the robots’ kinematics, as we know that a null input leads
to no movement.

Reward Function The reward function of the RL agent
depends on the objective of the RL task. The advantage of
the similarity between the two robots’ kinematic models
is that if we have identical or similar objectives for both

robots, then the same reward function can be applied to
them or other variations of these robots.

To train the neural networks for moving the robot forward
and backward, we apply the reward function for executing
action a at state s

R(s, a) = c1 ·∆x− c2 · P0 + c3 ·Rθ, (8)

where c1, c2, and c3 are positive constants used to weight
each reward or penalty variable, ∆x is the robot’s x-
displacement in the desired direction (positive for forward,
negative for backward), P0 = 1 is the penalty for having
zero x-displacement, and Rθ is the reward variable for the
robot’s orientation after executing action a. Based on θnew,
the orientation of the robot after each step is defined as

Rθ =

1 if −π
4
≤ θnew ≤

π

4
,

π

4
− |θnew| otherwise.

(9)

The penalty variable P0 helps accelerate the learning
process by preventing the robot from staying still or
converging at a local minimum. The reward variable Rθ
is a positive constant when θnew is within a desired range,
otherwise a linearly increasing penalty is incurred. It is
included to encourage the robot to stay in the desired
orientation, thereby maximizing its displacement in the
laboratory frame x-direction.

To train the neural networks for reorienting the robot
left and right, we apply the reward function for executing
action a at state s

R(s, a) = c1 ·∆θ − c2 · P0, (10)

where c1, c2 are positive constants used to weight each re-
ward or penalty variable, ∆θ is the robot’s θ-displacement
in the desired direction, and P0 = 1 is the penalty for
having zero θ displacement. Again, the rationale to include
P0 is to achieve better and faster learning convergence.

Simulation Method To simulate the transition of the
robot from one state to another as a result of taking an
action, as well as to obtain the values of parameters for
associated rewards, we perform integration of ordinary
differential equations described in Eq. 4 for the wheeled
system and in Eq. 5 or the swimming system.

4.2 Reinforcement Learning Algorithm

We have chosen to use Deep Q-Network algorithm (Mnih
et al. (2015)) to train our snake robot RL agents for several
reasons: it has been proven to perform well for problems
with a discrete action space and continuous state space; it
is model-free, so we can apply our algorithm to a physical
robot without knowledge of its model; it is off-policy, so
the agent can efficiently utilize past experiences generated
by a policy different from the current one to learn, which
helps the agent to achieve high performance with fewer
samples. This is shown in Algorithm 1.

We first run Algorithm 1 with a small tinterval(number
of seconds per action) value and high number of total
iterations, which allows the robot to learn granular gaits
very slowly. Then we overlap the gaits in joint space atop
the connection exterior derivative plots described in Fig.
3 (see Fig. 5 for example). tinterval is increased based
on the periodic patterns of the plot to avoid repetitive
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actions within a single period while still maintaining
roughly the same area enclosed (and thus amount of
displacement). We verify the robots can learn faster by
increasing tinterval value accordingly and decreasing the
number of total iterations, but still achieving the same
amount of displacement in policy rollout.

Algorithm 1 Deep Q-learning for snake robots

Initialize replay memory D to capacity Nmemory

Initialize Q and Q̂ with random weights θ and θ− = θ
for episode e = 1,M do

Randomly initialize s1 ∈ S
for iterations i = 1, T do

Select an action at ∈ A by ε-greedy approach
Execute at; observe reward rt and next state st+1

Store transition (st, at, rt, st+1) in D
Sample random minibatch of Nminibatch transi-
tions (sj , aj , rj , sj+1) from D

Set yj = rj + γmaxa′ Q̂(sj+1, a
′; θ−)

Perform gradient descent step on
(yj −Q(sj , aj ; θ))

2 with respect to θ

Every Cupdate steps reset Q̂ = Q
end for

end for

4.3 Network Architecture

Our Q-network is a nonlinear function approximator for
the true action-value function Q∗. Our implementation
consists of an input layer, two fully connected hidden
layers, and an output layer. The input layer has five
dimensions, comprised of the concatenation of the state
and action. We have found that a relatively simple network
suffices for our task, with 50 ReLU units in the first
hidden layer and 10 in the second. The final output layer
uses a linear activation function, and it outputs the Q-
value associated with the inputted state-action pairing.
We employ the DQN algorithm adapted from Mnih et al.
(2015) to train the network.

4.4 Training Configuration

The training parameters for the physical and wheeled
robots are shown in Table 1. The values of all the hyper-
parameters were selected by performing a systematic grid
search on the wheeled system. The parameters are then
fixed for both systems, since the only difference between
them, structurally, is their kinematics.

5. RESULTS AND DISCUSSION

We present our results of learning gait primitives for the
tasks of moving forward and reorientation for both the
wheeled and swimming robots. Once learned, such primi-
tives can easily be combined into more sophisticated gaits
by simply querying the corresponding neural networks. We
will also show that the speed and effort of the training
process for our robot models are very efficient, which lends
well to physical implementation in future work.

Table 1. Hyperparameters used in the RL training process.

Hyperparameter Value Description

Nmemory 250 replay memory size
M 10 total number of episodes
T 500 iterations per episode
ε0 1 initial value of ε
τdecay 0.99954 rate of decay of ε
Cmemory 50 replay start size
Nminibatch 8 minibatch size
γ 0.99 discount factor
Cupdate 20 network update frequency
ȧmax π/8 maximum action magnitude
ȧinterval π/8 action discretization interval
lr 0.0002 RMSProp learning rate
c1 10 used to weight ∆x or ∆θ
c2 10 used to weight P0

c3 1 used to weight Rθ
tinterval 4 seconds per action

5.1 Gait Generation

The gaits and locomotion of our snake robot agents are
shown in Fig. 4, the wheeled robot in Fig. 4a and the
swimming robot in Fig. 4b. For each robot, we assign
four tasks in the laboratory frame: translating forward,
translating backward, rotating left, and rotating right.
From the robot’s kinematics, we know (and have verified)
that the gaits for forward and backward translation are
equal and opposite, and similarly for positive and negative
reorientation. We therefore only show results for forward
and positive reorientation.

To achieve forward locomotion, we found that about 5,000
iterations were sufficient to achieve convergence for both
robots. They are then evaluated by executing the learned
forward gaits for 200 seconds and rotation gaits for 400,
where the maximum magnitude of the action is ȧmax = π

8
radians per second. Each action takes tinterval = 4 seconds
for the swimming robot and tinterval = 2 seconds for the
wheeled robot. As shown in the plots, both robots are able
to learn gaits that are sinusoidal with various differences in
phase to achieve the different locomotion primitives. While
the swimming robot manages to minimize displacement
in components other than the desired one for all tasks,
the wheeled one does not due to limitations placed on its
joints. These results are consistent with prior analyses of
these robots’ locomotion.

5.2 Implications for Physical Experimentation

Our ultimate goal is to produce feasible learning algo-
rithms for under-actuated and high-dimensional physical
robots. Whereas the difference between thousands and
millions of iterations may be negligible in simulation, these
can mean a difference between months and days when deal-
ing with physical motors and encoders. We believe that our
results, achieved in about 5,000 learning iterations at their
best, can be realistically implemented on a physical robot,
and this is a focus of our ongoing work.

While we have already described our simplification of the
state space using geometric insights, we have found that
our specifications of the action space have a large impact
as well. Since we expect that emergent gaits will take a
periodic form and enclose areas of the connection exterior
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(a) Left: Forward and reorientation workspace trajectories of the wheeled robot. Middle and right: Corresponding joint trajectories.
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(b) Left: Forward and reorientation workspace trajectories of the swimming robot. Middle and right: Corresponding joint trajectories.

Fig. 4. Resultant gaits learned for the wheeled and swimming robots.

-2 -1 0 1 2

-2

-1

0

1

2

dAx

-2 -1 0 1 2

-2

-1

0

1

2

dAy

-2 -1 0 1 2

-2

-1

0

1

2

dAθ

Fig. 5. Two forward gaits learned on the swimming robot and overlaid atop the connection exterior derivative plots,
one after about 2M iterations (black) and the other after 5k iterations (orange).

derivative landscape of high volume (shown as blue areas
in the x contour plot of Fig. 5), given a fixed maximum
action (velocity) magnitude, we can vary the number of
seconds per action (tinterval) that the agent is able to try
in each iteration to better match the landscape.

The gait shown in black in Fig. 5 was learned in about 2M
iterations, in contrast to the gait in orange corresponding
to Fig. 4b and learned in about 5k iterations. The key
difference between the trials was the choice of tinterval, or
number of seconds per action. In the former, we chose
tinterval = 1; in the latter, tinterval = 4. The first case
gives rise to gaits that are much more granular than the
gaits actually learned, which we can also see from the
geometric plots. This results in a large number of repeated
actions and therefore a much longer learning period. In
contrast, allowing time intervals up to four times larger
allowed the robot to execute the optimal gait in fewer
overall timesteps and thus learn it much faster. Both gaits
are equally effective in maximizing displacement; while the
gaits are qualitatively different, they encircle roughly the
same x volume under the exterior derivative plots.

6. CONCLUSIONS AND FUTURE WORK

We have described our efforts in using deep reinforcement
learning (DRL) to achieve locomotion for a class of robots
modeled using geometric mechanics. DRL has been applied
successfully in a number of other fields, and recently
robotics, but challenges still remain in making it feasible
for physical systems. Systems described by the language
of geometric mechanics naturally reveal symmetries and
structure that can allow for powerful simplification of their
complexities. These two observations have motivated us to
combine contributions from the two fields to learn gaits
for snake robots using DQN, all of which also match the
geometric intuition of prior models.

The next step is to transfer our implementation onto a
physical robot. We believe that our results of reducing
the complexity of the learning process are sufficient for
a robot to learn and execute similar gaits in real time. We
have already built a prototype of a wheeled snake robot,
shown in Fig. 6, that can perform repeated gait actions
as part of a learning process, along with the necessary
sensors to detect displacement and computing power to
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Fig. 6. Prototype of a wheeled snake robot with capabili-
ties for deep reinforcement learning experimentation.

maintain and update a neural network, and we expect to
have replicated our simulation results in the short term.
Beyond that, we hope to generalize our results to greater
varieties of locomoting robots and other physical systems,
such as those with a combination of actuated and passive
joints detailed by Dear (2018).
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