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Abstract: In this paper, we consider the privacy-preserving problem in collaborative com-
puting. Based on a two-step average computation framework, we propose three privacy-aware
schemes, all of which achieve different levels of privacy protections depending on data servers’
trust degrees. Further, by carefully designing noises injected to the distributed computing
process, we obtain dynamic privacy-preserving schemes, whose privacy preserving levels are
measured by Kullback-Leibler differential privacy. In addition, we prove that the proposed
schemes achieve convergence in different senses. Numerical experiments are finally conducted to
verify the obtained privacy properties and convergence guarantees.
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1. INTRODUCTION

With the popularity of smart devices, zettabytes of data
is generated by people, machines and things every day
(Cisco (2018)). To efficiently deal with such large-scale
data, collaborative computing (Smith et al. (2017)) has
been proposed by using the computation and communica-
tion resources of multiple servers (or clusters). However,
when the generated data is related to people’s daily lives,
e.g., medical records (Fredrikson et al. (2014)), power con-
sumption (Asghar et al. (2017)) and social relationships
(Qin et al. (2017)), privacy has to be attached significant
attention during the conduction of computation tasks.

One reasonable idea to mitigate privacy disclosure is to
assign some protection control rights to data contributors
(DCs), as claimed by Wang et al. (2019b). In this case,
even when the data servers (DSs) are completely com-
promised by adversaries, the disclosed data is the version
under privacy processing by DCs. On the other hand, in
collaborative computing, different DSs are given diverse
trust degrees by a DC. Considering the locations and
network authorities, a DC usually reports his/her data to
a DS (or DS cluster) and views that DS as a more trust-
worthy party. On the contrary, other DSs having no direct
connection with him/her are given lower trust degrees. It
is required by the setting of diverse trust degrees that the
communicated information about DCs’ data should pro-
vide stronger privacy guarantee when DSs collaboratively
execute a computation task through interactions.
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In the literature, a series of privacy-aware schemes have
been proposed for distributed algorithms in recent years.
For the computation of average value of DCs’ data, noise
obfuscation based preservation approaches can be found in
Huang et al. (2012), Mo and Murray (2017), Nozari et al.
(2017) and He et al. (2019). In particular, the schemes in
Huang et al. (2012) and Nozari et al. (2017) were proved
to be differentially private, which is one of the current
data privacy standards (Dwork (2008)). Similarly, through
carefully-designed noise injection, Duan et al. (2015) and
Wang et al. (2019a) proposed privacy-preserving maxi-
mum consensus mechanisms, and the privacy-aware dis-
tributed optimization schemes can be found in Hsieh et al.
(2017) and Gade and Vaidya (2018). In addition, by utiliz-
ing homomorphic encryption methods, Ruan et al. (2019)
achieves average consensus under untrustworthy servers
setting. However, in these works, DCs report their original
data to DSs, causing that the privacy protection is con-
trolled by only DSs. Moreover, there exists an assumption
that all the participating DSs have the same trust degrees.
Under this assumption, the requirement for different levels
of privacy protections may not be satisfied with these
existing schemes.

In this paper, we consider a heterogeneous privacy-
preserving problem in collaborative computing by follow-
ing the framework first proposed by Wang et al. (2019b);
this approach was further extended to distributed classifi-
cation problems in (Wang et al. (2019c)). Here, we focus on
the effects brought by dynamic characteristics of the dis-
tributed algorithm for privacy protection. This aspect was
not analyzed before since Wang et al. (2019b) gave only an
upper bound of the privacy loss when the algorithm con-
verges. Since most existing distributed algorithms run in
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an iterative manner (Bullo (2019)), the information about
DC’s sensitive data is released in each iteration. Thus, it
is critical to study novel privacy-aware schemes, where the
privacy loss changes dynamically as iterative release of
private information. This problem will be referred to as
the dynamic privacy-preserving collaborative computing
problem. Particularly, how to guarantee the privacy loss
in each iteration to be controllable and quantifiable is the
most challenging issue in the problem.

In particular, based on the two-step computation frame-
work proposed by Wang et al. (2019b), we further design
different noise-injection based approaches for the distribut-
ed average computing process. By employing Kullback-
Leibler differential privacy (KLDP) (Cuff and Yu (2016)),
we analyze the dynamic privacy properties of the proposed
schemes, and give their privacy preserving levels (PPLs)
in different iterations. In addition, the convergence per-
formance analysis about these privacy-aware schemes is
established. We find that there exists a tradeoff between
privacy preservation and convergence guarantee.

The main contributions of this paper are threefold: i) We
propose three privacy-preserving schemes, which achieve
different privacy protections and convergence guarantees;
ii) we prove that all the proposed schemes preserve KLDP,
and derive their theoretical PPLs; iii) we further prove that
the three schemes achieve convergence in distinct senses
with respect to the average value of all DCs’ reported data.

The remainder of this paper is organized as follows. Section
2 formulates the considered problem. Section 3 presents
the main results, and the performance evaluation is shown
in Section 4. Finally, Section 5 concludes the paper.

2. PROBLEM FORMULATION

2.1 Computation framework

We use the two-step collaborative computing framework
to compute the average value of large-scale data, which
is first proposed by Wang et al. (2019b). Two parties
participate in the framework: Data contributors (DCs) and
data servers (DSs). The main workflow is that DSs first
collect data from different DCs and then compute their
average value in a fully distributed way, which is denoted
by Step 1 and Step 2, respectively.

Network Model. An undirected and connected graph
G = (V, E) is used to describe the interaction network
between DSs, where V is the set of n ≥ 2 DSs and E ⊆ V×
V denotes the set of edges linking different DSs. An edge
(i, l) ∈ E implies that DSs i and l can communicate with
each other. For a DS i ∈ V, the set of its neighbor DSs is
denoted by Ni, i.e., Ni = {l ∈ V | (i, l) ∈ E}.
All DCs are partitioned into n disjoint groups in terms
of their locations, and the data of each group is collected
by a DS. Denote the group of DCs reporting data to DS
i as Ui, and mi = |Ui| is the number of such DCs. We
consider that DC j ∈ Ui,∀i, j, has private data xi,j ∈ R.
The average value of all DCs’ data is

x =
1∑n

i=1mi

n∑
i=1

mi∑
j=1

xi,j . (1)

Then, we introduce how to use the framework to compute
the average value.

First, in Step 1, all DCs report their private data to
corresponding DSs. Suppose that the end time of Step 1
is t = T0, which is also the beginning time of Step 2. We
denote the state of DS i at time t as yi(t). At time T0, DS
i aggregates the received data and sets its initial state as

yi(T0) =
n∑n

i=1mi

mi∑
j=1

xi,j .

Next, all DSs compute the average value iteratively by
communicating their collected data. An average consensus
algorithm is used to update the states of DSs. At time
t > T0, DS i computes its state as

yi(t+ 1) = wiiyi(t) +
∑
l∈Ni

wilyl(t), (2)

where wii and wil are the weights. Here, we adopt the
Metropolis weights (Xiao et al. (2005)) defined as

wil =


1

1 + max{|Ni|, |Nl|}
, if (i, l) ∈ E ,

1−
∑
k∈Ni

wik, if i = l,

0, otherwise.

(3)

It is proved by Xiao et al. (2005) that under the weights
in (3), the states of all DSs asymptotically converge to the
average value in (1), i.e., limt→∞ yi(t) = x, ∀i ∈ V.

2.2 Privacy-preserving issue

We consider that DCs’ data xi,j ,∀i, j, is privacy-sensitive,
whose original value should not be disclosed to any DSs.
Here, all DSs are untrustworthy, but different DSs are
given diverse trust degrees by each DC. Specifically, for
a DC j ∈ Ui, the DSs are divided into two categories of
potential privacy eavesdroppers: DS i is the first category
while other DSs l ∈ V, l 6= i, are the second type. The
first type is given higher trust degrees than the second
type. This implies that a DC’s information disclosed to
the second type should provide stronger protection.

Privacy metric. To measure the privacy guarantee,
we use the Kullback-Leibler differential privacy (KLDP)
proposed by Cuff and Yu (2016). We define a privacy-
preserving mechanism M : Rd → R, which takes a private
vector q ∈ Rd with any dimension d ≥ 1 as input and
outputs a randomized message about q. For two inputs,
KLDP describes the similarity between the distribution-
s of their outputs under M . Obviously, the higher the
similarity, the more difficult it is for the eavesdropper
to identify the difference in the inputs. Now, we give
the formal definition of KLDP. In the definition, we use
DKL(·‖·) to denote the Kullback-Leibler divergence. For
two distributions P and S, we define their Kullback-Leibler
divergence as

DKL(P‖S) =

∫ ∞
−∞

p(z) log
p(z)

s(z)
dz,

where p(z) and s(z) are the probability density functions
(PDFs) of P and S, respectively.

Definition 1. (ε-KLDP). Given a scalar ε > 0, a privacy-
preserving mechanism M preserves ε-KLDP if for any two
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vectors q,q′ ∈ Rd satisfying with k0 ∈ {1, 2, · · · , d} and
α > 0, |qk0 − q′k0 | ≤ α and |qk − q′k| = 0,∀k 6= k0, it holds

DKL

[
PM(q)‖PM(q′)

]
+DKL

[
PM(q′)‖PM(q)

]
2

≤ ε, (4)

where PM(·) is the distribution of M(·).

In Definition 1, ε denotes the privacy-preserving level
(PPL). A smaller ε indicates higher similarity between
PM(q) and PM(q′), that is, stronger privacy protection. The
difference between the two similar inputs is described by
parameter α, called the adjacent distance. The objective of
introducing M is to guarantee that the adjacent distance
is reflected in the outputs as little as possible. It is more
difficult to obfuscate the effect of α when it is larger.
Specifically, for two adjacent distances α1 and α2 satisfying
α1 ≥ α2, if the same PPL is required, then M should
introduce more uncertainties for α1.

Private information inference. When the DSs receive
information about DCs’ private data, they will make
inference by the help of side information. For the first
type of privacy eavesdroppers, the data reported by DCs
in Step 1 is directly leveraged for inference. The DSs
in the second type conduct privacy inference by mainly
utilizing the information communicated with other DSs.
In addition, various side information will be combined to
assist the inference. We have the following assumption.

Assumption 1. The weights wil,∀l in (2) are known to
DS i’s neighbors. At time t, the information set Ii(t) =
{yl(t) | l ∈ Ni

⋃
{i}} is available for other DSs to make

privacy inference.

2.3 Problem setup

In this paper, we will propose novel privacy-preserving
schemes, which further achieve dynamic privacy guarantee
in Step 2 on the basis of heterogeneous protections. Since
all DSs are untrustworthy, in Step 1, DCs first obfuscate
the original data in their local devices as

x̃i,j = xi,j + ηi,j , j ∈ Ui, (5)

where ηi,j ∼ N (0, σ2
i,j) is a zero-mean Gaussian noise.

Then, the noisy version x̃i,j , instead of xi,j , will be
reported to DS i. The obfuscation in (5) is also the private
mechanism M1 : R → R used in Step 1. For the property
of M1, we have the following lemma (Wang et al. (2019b)).

Lemma 1. Given α > 0, the mechanism M1 preserves
α2

2σ2
i,j

-KLDP under (5).

In Step 2, to provide stronger privacy guarantee, DSs will
further introduce some randomization into the messages
before communicating with neighbors. At time t ≥ T0,
after updating yi(t) by (2), DS i perturbs yi(t) as

ỹi(t) = yi(t) + θi(t), (6)

where θi(t) is the noise to be designed to meet different
privacy requirements. It is noted that θi(t) can be 0,
implying no noise perturbation. The perturbed state ỹi(t)
will be sent to neighbors and further used for state update.
That is, (2) is replaced by

yi(t+1) = wii (yi(t) + θi(t))+
∑
l∈Ni

wil (yl(t) + θl(t)) . (7)

Obviously, the added noises θi(t),∀i, also affect the conver-
gence performance of the framework and the accuracy of
the computed average value. Hence, the goal of this paper
is to design θi(t), which can satisfy diverse requirements
for privacy protection in Step 2 and achieve different
convergence guarantees.

3. MAIN RESULTS

In this section, we will design three forms of θi(t), and
analyze their corresponding privacy protections and con-
vergence performances.

Before designing θi(t), we first analyze the computed
results under the reported noisy data x̃i,j ,∀i, j. If all DCs
obfuscate their private data using (5), then with (2), the
computed average value is given by

x̂ =
1∑n

i=1mi

n∑
i=1

mi∑
j=1

x̃i,j . (8)

For the computation accuracy of x̂, we have the following
lemma (Wang et al. (2019b)).

Lemma 2. x̂ is an unbiased estimate of x, that is,
E{ηi,j}[x̂] = x. For δ ∈ (0, 1), the distance |x̂− x| satisfies
with probability at least 1− δ

|x̂− x| ≤ 1∑n
i=1mi

√√√√1

δ

n∑
i=1

mi∑
j=1

σ2
i,j . (9)

Note that x̂ is computed without perturbation in Step 2.
Since the noises ηi,j ,∀i, j, are unknown to DSs, θi(t) added
in Step 2 cannot be used to reduce the uncertainty in the
reported data. Thus, x̂ can be viewed as the best computed
results based on DCs’ reported data, and then is used as
the reference average value. For the performance analysis
in Step 2, we will investigate the relations between the
computed results under θi(t)-perturbation and x̂.

3.1 Scheme 1: Initial state perturbation

With Assumption 1, we find that the updated states yi(t+
1), t ≥ T0, can be inferred, causing the added noise θi(t+
1), t ≥ T0, to be computed directly. In this case, the extra
noises added at time t ≥ T0 + 1 are meaningless from
the perspective of privacy protection. Thus, we first adopt
the idea of initial state perturbation, where only yi(T0) is
obfuscated by a noise. From (2), we know that when there
is no noise perturbation at t ≥ T0 + 1, yi(t) is a linear
combination of DSs’ initial states. It is noted that linear
combination does not change uncertainties of independent
random variables. This implies the privacy guarantee in
Step 2 is determined by ỹi(T0) and does not change with
iterations. In this paper, we select a zero-mean Gaussian
noise θi(T0) ∼ N (0, σ2

i ) to perturb yi(T0). Now, we give
the form of the noise θi(t) as

θi(t) =

{
θi(T0), t = T0,

0, otherwise.
(10)

Also, (10) can be viewed as the privacy-aware mechanism
M1

2 used in Step 2, where the superscript 1 indicates that
the current mechanism is Scheme 1. Different from M1,
the input of M1

2 is an mi-dimensional vector aggregating
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the data reported by the DCs in Ui. Thus, we have M1
2 :

Rmi → R, where the output in each iteration is a scalar
ỹi(t). The following theorem gives the privacy-preserving
property of M1

2 .

Theorem 1. Given α > 0, the mechanism M1
2 preserves

α2

2
∑mi

j=1
σ2
i,j

+2(
∑n

i=1
mi/n)

2
σ2
i

-KLDP.

It is noted that for DC j ∈ Ui, the PPL does not decrease
in subsequent iterations, and all DCs in Ui obtain the
same privacy guarantee. In addition, the protection will
be stronger if DS i makes the perturbation using a noise
with larger variance.

Next, we analyze the convergence performance.

Lemma 3. If all DSs use (7) to update states, where the
noises θi(t),∀i, are set by (10), then the states of DSs
converge to x̂ in the sense of expectation, i.e.,

lim
t→∞

E{θi(t)} [ỹi(t)− x̂] = 0,∀i. (11)

3.2 Scheme 2: Zero-sum noises perturbation

From Lemma 3, we know that Scheme 1 only achieves
convergence in expectation, which is a relatively weak
guarantee. In Scheme 2, we will use multi-iteration noise
perturbation to explore a stronger convergence guarantee.
To this end, the uncertainty brought by θi(T0) should
be reduced, which simultaneously weakens the privacy
protection. Nevertheless, if each iteration brings a control-
lable degree of privacy decrease and the time when the
uncertainty completely vanishes is costly, the protection is
also accepted.

In Scheme 2, at time t ≥ T0, DS i first generates a
zero-mean Gaussian noise ϕi(t) ∼ N (0, ρt−T0σ2

i ), where
0 < ρ < 1. When t = T0, yi(T0) is perturbed by ϕi(T0),
that is, θi(T0) = ϕi(T0). At time t ≥ T0 + 1, noise θi(t) is
constructed as

θi(t) = ϕi(t)− ϕi(t− 1),∀t ≥ T0 + 1. (12)

After deriving θi(t), DS i perturbs the updated state
yi(t) using (6). Note that the noises in {θi(t),∀t ≥ T0}
are correlated. When a new state ỹi(t) is published, the
uncertainty in ỹi(T0) may change, leading to the variation
of privacy protections in Step 2.

Similarly, we use M2
2 : Rmi → R to denote the privacy-

preserving mechanism introduced by (12). Different from
M1

2 , M2
2 provides time-varying privacy protections in

Step 2, which is shown in the following theorem.

Theorem 2. Given α > 0, at time t ≥ T0, the mechanism

M2
2 preserves α2

2
∑mi

j=1
σ2
i,j

+2(
∑n

i=1
mi/n)

2
ρt−T0σ2

i

-KLDP.

From the theorem, we observe that the PPL provided
by M2

2 increases with iterations. Recall that a larger
PPL indicates weaker privacy guarantee. This also implies
that the uncertainty in ỹi(T0) is reduced due to multiple
releases of ỹi(t). In particular, taking limitation on the
PPL, we derive

lim
t→∞

ε22(t) =
α2

2
∑mi

j=1 σ
2
i,j

. (13)

Such kind of time-varying protection is satisfying since
it takes a long time for eavesdroppers to make accurate

inference and the final inferred result still contains strong
privacy guarantee. It is easy to check that the PPL in (13)
is still smaller than that of Step 1 (given in Lemma 1)
if mi ≥ 2. Thus, in Step 2, DCs obtain stronger privacy
protections in all iterations than those with Step 1.

Lemma 4 to be stated below gives the convergence proper-
ty of Scheme 2. Here, we define some notations, which will
be used in the lemma. First, we introduce vectors aggregat-
ing variables related to DSs. Let y(t) := [y1(t) · · · yn(t)]T,
θ(t) := [θ1(t) · · · θn(t)]T, ϕ(t) := [ϕ1(t) · · ·ϕn(t)]T, and
x̃ := x̃ · 1n. Also, we use a matrix W with dimension
n × n to aggregate all DSs’ weights defined in (3), i.e.,
W := [wil]. For weight matrixW , we denote its eigenvalues
as λ1, · · · , λn. Under (3), there is only one eigenvalue equal
to 1 while others are less than 1 in magnitude. Without loss
of generality, we assume λ1 = 1, and thus, λi < 1,∀i 6= 1.
In addition, the maximum variance of noises θi(T0),∀i, is
denoted by σ2

max, namely, σ2
max := maxi∈V σ

2
i . We also use

tr[·] to denote the trace of a matrix.

Lemma 4. If all DSs use (7) to update states, where the
noises θi(t),∀i, are set by (12), then the states of DSs
converge to x̂ in the mean-square sense, i.e.,

lim
t→∞

E{θ(t)}‖y(t)− x̂‖22 = 0. (14)

We can also deduce that Scheme 2 achieves convergence
in expectation. Mean-square convergence is stronger than
the former one though the expense is that the provided
privacy protection becomes weaker.

3.3 Scheme 3: Zero-sum bounded noises perturbation

In this subsection, we will introduce yet another approach,
called Scheme 3. This one achieves asymptotic conver-
gence, i.e., limt→∞ yi(t) = x̂, ∀i. We also adopt the idea
of zero-sum noises perturbation, but the used noises are
bounded. Denote the bound of initial noise ϕ(T0) as a,
that is, ‖ϕ(T0)‖∞ ≤ a. Also, there exists a decaying rate
ρ ∈ (0, 1) such that ‖ϕ(t)‖∞ ≤ aρt−T0 ,∀t ≥ T0. Then,
θi(t) is constructed as

θi(t) =

{
ϕi(T0), t = T0,

ϕi(t)− ϕi(t− 1), t > T0.
(15)

For example, ϕi(t), t ≥ T0, can be set as ϕi(t) ∼
U [−aρt−T0 , aρt−T0 ], where U [·] denotes the uniform dis-
tribution. In this paper, we only require that the noises in
(15) are zero-sum and their bounds decay with iterations,
but do not specify the distributions. Thus, the analysis
about privacy and convergence will be conducted without
using the noise distributions.

The scheme in (15) is also denoted by a privacy-preserving
mechanism M3

2 : Rmi → R. The following lemma shows
its privacy protection.

Lemma 5. Given α > 0, the mechanism M3
2 preserves

α2

2
∑mi

j=1
σ2
i,j

-KLDP when t→∞.

Remark 1. The PPL ε32(t) provided by M3
2 also increases

with iterations and finally converges to α2/2
∑mi

j=1 σ
2
i,j .

Since the distribution of the noises added in Scheme 3
is not specified, we do not give the closed-form PPLs
in each iteration. Lemma 5 provides the upper bound of
these PPLs, which is the same with that of Scheme 2.
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Nevertheless, Scheme 2 provides stronger protection in
each iteration than Scheme 3 since the latter adopts
bounded noises for perturbation.

Theorem 3 to be stated below presents the convergence
property of Scheme 3. Before giving the theorem, we first
introduce a lemma from Seneta (2006), which will be used
for the proof. In what follows, for a vector x, we use
max(x) and min(x) to denote its maximum and minimum
elements, respectively. Then, let V (x) := max(x)−min(x).

Lemma 6. For a stochastic matrix W ∈ Rn×n and a
vector x ∈ Rn, it holds

V (Wx) ≤

(
1

2
max
i,j

n∑
l=1

∣∣[W ]il − [W ]jl
∣∣)V (x).

For simplicity, let χ := 1
2 maxi,j

∑n
l=1

∣∣[W ]il − [W ]jl
∣∣.

According to (3), we know χ ∈ (0, 1).

Theorem 3. If all DSs use (7) to update their states,
where the noises θi(t),∀i, are set by (15), then the states
of DSs asymptotically converge to x̂, i.e.,

lim
t→∞

y(t) = x̂. (16)

Theorem 3 states that Scheme 3 achieves asymptotic
convergence in a deterministic sense, which is the strongest
convergence guarantee among the three schemes.

3.4 Discussions

The idea of zero-sum noises perturbation is also adopted
by Mo and Murray (2017) and He et al. (2019), where the
data reporting process of DCs is not considered, leading to
the failure for achieving heterogeneous privacy guarantee.
Moreover, we analyze the privacy properties using KLDP,
whose PPL is measured by the similarity of distributions
of published information, not in the sense of estimation
probabilities considered in the literature. KLDP gives an
inherent limit on these estimation probabilities, and the
closed-form of PPL can be derived once the noises for
perturbation are chosen. In this paper, we analyze the
dynamic characteristics of privacy loss and provide the
theoretical PPL in each iteration, which is also a new
contribution compared with existing works.

There exists a tradeoff between privacy preservation and
convergence guarantee. That is, a private mechanism with
stronger protection achieves weaker convergence guaran-
tee. The schemes proposed in this paper achieve different
privacy and convergence performances, providing DCs and
DSs diverse choices for collaborative computing. We give
more details regarding these aspects below.

Privacy preservation. First, the three schemes provide
DCs with the same privacy guarantee in Step 1 since they
use a common perturbation approach there. However, they
offer different protections in Step 2. Specifically, Scheme 1
protects the strongest privacy, and the guarantee does not
vary with iterations. In contrast, Schemes 2 and 3 achieve
time-varying protections, and their final PPLs are the
same. Since the noises for perturbation are unbounded,
Scheme 2 provides stronger preservation than Scheme 3 in
each iteration. It is emphasized that whichever of the three
mechanisms is used, the PPLs in Step 2 are less than that
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Fig. 1. Convergence guarantees of different schemes.

in Step 1. This implies heterogeneous privacy guarantee is
successfully achieved by all three schemes.

Convergence guarantee. By the three schemes, DSs’
states converge to the average value of all reported data,
i.e., x̂. Though the convergence is with respect to x̂, their
convergence guarantees are distinct. Scheme 1 achieves
convergence in the sense of expectation, which is the
weakest among the three schemes. Actually, if the average
of ỹi(T0) is set as the reference value, Scheme 1 achieves
asymptotic convergence. Mean-square convergence guar-
antee is offered by Scheme 2 while under Scheme 3, DSs’
states converge to x̂ for sure. Therefore, Schemes 1, 2 and 3
achieve convergence guarantees from weak to strong.

4. EVALUATION

System settings We use a connected network of n = 20
DSs as the underlying communication topology. Each DS
is assumed to collect data from a group of mi = 100 DCs.
The private data of a DC is set to an integer, which is
randomly sampled from [1, 100]. After these settings, we
can compute the true average value of all DCs’ data as
x = 50.45. Suppose that in Step 1 all DCs have the same
PPL, and we set it as ε1 = 0.5. For the adjacent distance
α, considering the distribution of the original data, we set
it to 2. Then, we have σ2

i,j = 4,∀i, j. Let all DCs use (5) to
obfuscate their data, and then the average value computed
by the three schemes is x̂ = 50.41.

In Step 2, all three schemes adopt the same variance for
initial noise θi(T0) and set it to 9, i.e., σ2

i = 9,∀i. The
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decaying rate ρ used in Schemes 2 and 3 is chosen as
0.8. For the bounded noises leveraged in Scheme 3, we
utilize uniform distribution shown in Section 3.3. In the
simulations, each scheme was run for 5,000 times.

Simulation results We compare the convergence prop-
erties of the three schemes. Fig. 1(a) illustrates the max-
imum distances between arbitrary two DSs’ states when
different privacy-aware schemes are applied. We find that
all the distances converge to 0, which implies that states
consensus is achieved by all three schemes. However, con-
cerning the final values, we observe distinct convergence
guarantees, as shown in Fig. 1(b). Under Scheme 1, there
exists a non-zero gap between DSs’ final value and x̂,
since this scheme only achieves convergence in expectation.
In contrast, such a gap is not present when the other
two schemes are used. Hence, in the sense of convergence
guarantee, Schemes 2 and 3 are better than Scheme 1,
which reconciles with our theoretical results.

5. CONCLUSION

In this paper, we have proposed three different privacy-
aware schemes for a collaborative computing framework.
On the basis of heterogeneous protections, the proposed
schemes have been proved to preserve dynamic privacy as
iterations proceed. Further, their PPLs in different iter-
ations have been derived. Moreover, we have proved that
all three schemes achieve convergence, but their guarantees
are different, which are related to the strength of privacy
protections. Finally, the obtained theoretical results have
been validated by a numerical example. For future works,
we intend to extend our privacy-aware schemes to statis-
tical analysis of real-time streaming data.
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