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Abstract: Collision avoidance for multirobot systems has been studied thoroughly. Recently,
control barrier functions (CBFs) have been proposed to mediate between collision avoidance
and goal achievement for multiple robots. However, it has been noted that reactive controllers
(such as CBFs) are prone to deadlock, an equilibrium that causes the robots to stall before
reaching their goals. In this paper, we formally analyze two and three robot systems and discover
circumstances under which CBFs cause deadlocks using duality theory. For the two robot system,
we consider mutually heterogeneous robots (such as one more vigorous or closer to its goal than
the other) and prove that this heterogeneity does not help in preventing deadlock. We then
consider three robots, and conclude from these two scenarios that the geometric symmetry
resulting from robots’ initial positions and goals constrains CBFs to generate velocities that
render deadlock stable. Thus, conferring skewness to the system can help evade deadlock.

Keywords: Mobile robots, Multiagent systems, Autonomous robotic systems, Robotics
technology, Model predictive and optimization-based control

1. INTRODUCTION

Multirobot systems have been explored for many tasks,
such as environmental exploration, search and rescue and
sensor coverage (Cortes et al. (2004); Burgard et al. (2005);
Kantor et al. (2003)). Running local controllers on in-
dividual robots results in global behaviors (Olfati-Saber
et al. (2007)), that allows a team of robots to accomplish
tasks not easily achievable by a single robot. Generally,
these local controllers combine a task-based control re-
sponsible for a primary objective and a collision avoidance
controller. However, such a hand-engineered combination
can prevent satisfaction of the original task. Therefore,
we focus on a formal analysis of the performance-safety
trade-off that may result from augmenting a task-based
controller with collision avoidance constraints. One exam-
ple of such a mechanism is control barrier function (CBF)
based quadratic programs (QPs) (Ames et al. (2017)). In
the context of multirobot control (Borrmann et al. (2015)),
CBF-QPs mediate between performance and safety in
a rigorous way. They perform minimum modification to
the task-based control in a way that generates a veloc-
ity/acceleration, which by virtue of design, prevents colli-
sions of the ego robot with its neighbors. While provably
correct, these local approaches can exhibit a lack of look-
ahead, which causes robots to be trapped in deadlocks as
noted in (Petti and Fraichard (2005); O’Donnell (1989)).

Deadlock occurs when robots reach a state where conflict
becomes inevitable, i.e. a control favoring goal stabiliza-
tion will violate safety. In the context of mobile robots,
Yamaguchi (1999) identified the presence of deadlocks in
a cooperative scenario using mobile robot troops. To our
knowledge, Jager and Nebel were the first to propose
algorithms for deadlock resolution for multiple robots.
Their strategy for collision avoidance modifies planned
paths by inserting idle times and resolves deadlocks by
? This research was supported by the DARPA Cooperative Agree-
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asking the planners to plan an alternative trajectory until
deadlock is resolved. Li et al. (2005) proposed coordination
graphs to resolve deadlocks in robots navigating in corri-
dors. Rodŕıguez-Seda et al. (2016) added perturbations to
their controllers for avoiding deadlock. Wang et al. (2017)
proposed consistent perturbations to evade deadlock.

Our work, on the other hand, analytically deduces why
deadlocks occur by investigating robots’ dynamics w.r.t.
initial conditions, goal positions and controller gains using
duality theory. Our proofs for incidence of deadlock help
us to arrive at conclusions without simulations, making
the analysis general. We highlight with examples that it
is the geometric symmetry in the robots’ initial positions
and goals that constrains CBF-QPs to generate controls
in directions that render deadlock stable. Additionally, our
approach for analyzing CBF-QPs using duality can be ap-
plied to any optimization based reactive control-synthesis
methods (Wei and Liu (2019)) and guide the design of
algorithms for synthesis of bottleneck-free controllers.

The outline of this paper is as follows: in Section (2), we
review technical definitions for CBF-QPs for multirobot
control. In Section (3), we give a formal definition of
deadlock and demonstrate that KKT conditions provide a
valuable tool to explicitly analyze solutions to CBF-QPs.
In Section (4), we focus on two robots with heterogeneous
parameters and collinear initial conditions and goals, and
formally prove that this system always falls in deadlock.
In Section (5), we extend this analysis to three robots and
prove that this system also falls in deadlock. Finally, we
conclude with discussion and directions for future work.

2. AVOIDANCE CONTROL WITH CBFs: REVIEW

In this section, we review the background on CBF based
QPs, which we will use for synthesizing controllers for each
robot in the multirobot system. (See Wang et al. (2017) for
a comprehensive treatment). Assume we have N robots,
where each robot follows single-integrator dynamics
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ṗi = ui (1)

Here pi = (xi, yi) ∈ R2 is the position of robot i
and ui ∈ R2 is its velocity (i.e. control input) and
i ∈ {1, 2, · · · , N}. The problem of goal stabilization with
collision-avoidance requires that each robot i must reach a
goal position pdi while avoiding collisions with every other
robot j, ∀j ∈ {1, 2, · · · , N}\i. Assume that there is a user-
prescribed proportional controller ûi(pi) = −kpi(pi−pdi)
that generates movement towards goal. Here kpi is the
controller gain for robot i. Although this controller by itself
ensures stabilization of each robot to its goal, there is no
guarantee that the resulting trajectories of the robots will
be mutually collision free. We formulate a pairwise safety
function that maps the joint state space of robots i and j
to a real-valued safety index i.e. h : R2 × R2 −→ R:

hij =
∥∥∆pij

∥∥2 −D2
s (2)

Robots i and j are considered to be collision-free if their
positions (pi,pj) are such that hij(pi,pj) ≥ 0 (i.e. atleast
Ds distance apart). Assuming that initial positions are
collision-free i.e. hij(pi(0),pj(0)) ≥ 0, we would like to
synthesize controls ui,uj that ensure their future positions
are also collision-free i.e. hij(pi(t),pj(t)) ≥ 0, ∀t > 0.
This can be achieved by ensuring that (Ames et al. (2017))

dhij
dt
≥ −γhij , (3)

where γ > 0. Using (2) in (3), we get

−∆pTij∆uij ≤ qij , where (4)

qij =
γ

2
(
∥∥∆pij

∥∥2 −D2
s) (5)

This constraint is distributed on robots i and j as:

−∆pTijui ≤
1

2
qij and ∆pTijuj ≤

1

2
qij (6)

Therefore, any ui and uj that satisfy (6) are guaranteed
to ensure collision free trajectories for robots i and j in
the multirobot system. Note that these constraints are
linear in ui and uj for a given state (pi,pj). Therefore,
the feasible set of controls is convex. Since robot i wants to
avoid collisions with N−1 robots, there are N−1 collision
avoidance constraints. To mediate between safety and goal
stabilization objective, a QP is posed that computes a
controller closest to the prescribed control ûi(pi) and
satisfies the N − 1 constraints, as shown:

u∗i = arg min
ui

‖ui − ûi(pi)‖
2

subject to aTijui ≤ bij j ∈ {1, 2, · · · , N}\i
(7)

where using (6), we define

aij := −∆pij , bij :=
1

2
qij =

γ

4
(
∥∥∆pij

∥∥2 −D2
s) (8)

Each robot i locally solves this QP to determine its u∗i ,
which ensures collision avoidance of robot i with N − 1
robots while encouraging motion towards goal.

3. ANALYSIS USING KKT CONDITIONS

We reviewed the problem formulation of multirobot col-
lision avoidance and goal stabilization using CBF based
QPs. We will demonstrate that controls generated using
this framework can result in deadlocks. First, we give
a formal definition of deadlock by adapting from Wang

et al. (2017) (where it is defined for double-integrator
dynamics):

Definition 1. A robot i is said to be in deadlock if u∗i = 0
and ûi 6= 0 ⇐⇒ pi 6= pdi

This definition states that for a robot to be in deadlock,
the output from the QP based controller i.e. the velocity
of the robot should be zero, even though the prescribed
controller reports non-zero velocity because the robot is
not at its intended goal. To characterize situations in
which deadlock occurs, we need to analytically investigate
solutions of (7) ∀i ∈ {1, 2, · · · , N} because these solutions
govern the instantaneous dynamics of the robots. We will
use this instantaneous analysis to make deductions about
the robots’ motion in the long term.

To this end, KKT conditions provide a valuable tool to
investigate solutions to optimization problems such as the
QP in (7). They are necessary and sufficient for a global
optimum of this QP. The Lagrange dual function is

L(ui,µi) = ‖ui − ûi‖22 +
∑

j∈{1,2,··· ,N}\i

µij(a
T
ijui − bij)

Let (u∗i ,µ
∗
i ) be the optimal primal-dual solution to (7).

The KKT conditions are (Boyd and Vandenberghe (2004))

(1) Stationarity: ∇uiL(ui,µi)|(u∗i ,µ∗i ) = 0

=⇒ u∗i = ûi −
1

2

∑
j∈{1,2,··· ,N}\i

µ∗ija
T
ij . (9)

(2) Primal Feasibility

aTiju
∗
i ≤ bij ∀j ∈ {1, 2, · · · , N}\i (10)

(3) Dual Feasibility

µ∗ij ≥ 0 ∀j ∈ {1, 2, · · · , N}\i (11)

(4) Complementary Slackness

µ∗ij · (aTiju∗i − bij) = 0 ∀j ∈ {1, 2, · · · , N}\i (12)

We define the set of active and inactive constraints as

A(u∗i ) = {j ∈ {1, 2, · · · , N}\i | aTiju∗i = bij} (13)

IA(u∗i ) = {j ∈ {1, 2, · · · , N}\i | aTiju∗i < bij} (14)

Using complementary slackness from (12), we deduce

µ∗ij = 0 ∀j ∈ IA(u∗i ) (15)

Therefore, we can restrict the summation in (9) only to
the set of active constraints i.e.

u∗ = ûi −
1

2

∑
j∈A(u∗

i
)

µ∗ija
T
ij (16)

We will exploit this representation of controls to explore
scenarios in which deadlock occurs. We conducted many
simulations where multiple robots were tasked to reach
some goals using (7). We observed that the incidence of
deadlock depends on the initial positions of robots and
their goals, the gains kpi and the distances of initial
positions to goals (DGi). Therefore, next, we formally
analyze the dependence of deadlock on these parameters.

4. TWO ROBOT DEADLOCK

Firstly, we consider two robots positioned on the line con-
necting their goals at t = 0 as shown in Fig. (1). Each robot
must reach its respective goal while avoiding collisions with
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Fig. 1. Geometric configuration of two robots and their
goals. Notice that everything is collinear along êα.

the other robot. We will demonstrate that even if the
prescribed control of one robot is more aggressive than
the other, (7) will still result in deadlock because of the
collinearity of initial conditions and goals. Let pi(t) ∈ R2

denote the position of robot i ∈ {1, 2} at time t. At t = 0,

p1(0) = (x0, y0)

p2(0) = p1(0) +Dinitêα (17)

where êα is a unit vector oriented at α relative to Xw axis
and Dinit ∈ R+ is the initial distance between the robots
(see Fig. (1)). The desired goal positions are

pd1 = p1(0) +DG1 êα

pd2 = p2(0)−DG2
êα (18)

Here DGi is the distance of robot i from its goal pdi at
t = 0. We assume that DG1

, DG2
> Dinit to encourage

situations where deadlock occurs. We now formally state
the deadlock incidence result as follows

Theorem 1. Given the initial positions of robots as in
(17) and desired goals as in (18), the controls generated
by the QP in (7) will cause the robots to fall in deadlock
∀DG1 , DG2 > Dinit. and ∀kp1 , kp2 ∈ R+

We first give the general sketch of the proof to convey
the overall idea. Recall from (16) that the control input
on robot i at every time step, depends on whether the
collision avoidance constraint is active or inactive at ui =
u∗i . Therefore, to begin with, we analyze the controls
returned by (7) at t = 0. In Lemma 2, we show that
if the initial distance between the robots is greater than
a certain critical distance, then the collision avoidance
constraints of both robots are inactive, and as a result
u∗i (0) = ûi(0)∀i. We then extend this analysis to future
time t > 0 and show that there exist three sequential
phases of motion which are dependent on which robot’s
constraint is active/inactive. These phases are:

(1) Phase 1 corresponds to the duration in which the
collision avoidance constraints of both robots are
inactive. We show that this phase culminates in a
finite time and the robots move closer to each other
during this phase (Lemma 3) .

(2) Next, phase 2 begins where one robot’s constraint
becomes active while the other’s is still inactive. This
is due to the heterogeneity kp1 6= kp2 and DG1

6= DG2
.

We show that phase 2 also culminates and the robots
move closer to each other (Lemma 4).

(3) Finally, Phase 3 begins where both constraints are
active. We show that the distance between robots
converges to the safety margin Ds and the robots stop

moving (Lemma 5), while they are still away from
their goals, thus proving they have fallen in deadlock.

For the special case of two robots, the control for robot i
can be written by adapting (16),

u∗i = ûi −
1

2
µijaij (19)

where j 6= i and i ∈ {1, 2}. Recall that ûi is a user
prescribed proportional controller for robot i

ûi = −kpi(pi − pdi) (20)

In Section (3), we showed that the value of Lagrange
multiplier µij depends on whether the collision avoidance
constraint aTijui ≤ bij is active/inactive at ui = u∗i Thus,
we will have two flags for the two robots:

fij(ui) = aTijui − bi, (21)

∀i ∈ {1, 2} and j 6= i. This flag checks if control ui
prevents robot i from colliding with robot j. Note that if
fij(ûi) < 0, then µij = 0 (from complementary slackness
(12)). Therefore, from (19) it follows that u∗i = ûi.

Remark 1: fij(ûi) < 0 for j 6= i implies that ûi is a
feasible collision-avoiding controller for robot i w.r.t. j,
and since the cost in (7) penalizes deviation from ûi, the
optimum is attained with zero penalty at u∗i = ûi itself.

Next, we give conditions under which the collision avoid-
ance constraints are active/inactive. Define critical dis-
tances for robot i as (to be derived in Lemma 2)

βi+ =
2DGikpi

γ
+

√(
2DGikpi

γ

)2

+D2
s (22)

∀i ∈ {1, 2}. We now show that if the initial distance be-
tween the robots is greater than robot i’s critical distance,
then robot i has inactive constraint at t = 0.

Lemma 2. If at t = 0, Dinit. > β1
+, then u∗1(0) = û1(0).

Likewise, if Dinit. > β2
+, then u∗2(0) = û2(0)

Proof. To determine the control returned by the optimiza-
tion for robot one at t = 0, we compute the value of the
flag f12(û1(0)). Based on the initial positions and goals
from (17),(18), we have

f12(û1(0)) = aT12(0)û1(0)− b12(0)

= kp1(p1(0)− p2(0))T (p1(0)− pd1)

− γ

4
(D2

init. −D2
s)

= −γ
4
D2
init +DG1kp1Dinit +

γ

4
D2
s (23)

We define g12(Dinit.) := f12(û1(0)) to emphasize depen-
dence of this flag on Dinit., the initial distance between the
robots. Note that (23) is a quadratic polynomial in Dinit

that opens downward and has two zeros at

β1
± =

2DG1
kp1

γ
±

√(
2DG1

kp1
γ

)2

+D2
s (24)

where the subscript of β indicates the sign of β. Now, since
the graph of g12(Dinit) is a downward facing parabola,
we know that g12(Dinit) < 0 ∀ Dinit ∈ (−∞, β1

−) ∪
(β1

+,∞) =⇒ g12(Dinit) < 0 ∀ Dinit ∈ (β1
+,∞). We

call β1
+ to be the critical distance for robot 1 (as defined

in (22)). If at t = 0, the distance between the robots
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is such that Dinit > β1
+, then at t = 0, g12(Dinit.) <

0 ⇐⇒ f12(û1(0)) < 0 =⇒ u∗1(0) = û1(0). This follows
from Remark 1. Similarly, we can compute g21(Dinit.) :=
f21(û2(0)) which has roots at β2

±. Hence, if at t = 0,
Dinit > β2

+, then u∗2(0) = û2(0). �

Intuitively, this result states that if robot i is sufficiently
away from robot j 6= i (specifically more than βi+ away),
then robot i can simply use it’s prescribed controller ûi
at t = 0 and not worry about collisions at least until the
next time. Note from (22) that each robot has a unique
critical distance which solely depends on that robot’s
kpi , DGi ,which is due to the assumed heterogeneity.

Assumption 1. WLOG assume that Dinit. > β1
+ > β2

+

From assumption (1), and the result of Lemma 2, it follows
that the collision avoidance constraints of both robots are
inactive at t = 0. Thus, u∗i (0) = ûi(0) for i = {1, 2}.
If we give these velocities to robots for a small time ∆t,
the distance between the robots and the critical distance
will change. So at the next time, we will compare the
updated distance between robots with the updated critical
distances to decide whether u∗i (∆t) = ûi(∆t) and so on.
It suffices to assume that these constraints remain inactive
for finite time, which is precisely the duration of phase 1.

4.1 Phase 1

We consider phase 1 to be the period in which the collision
avoidance constraints of both robots are inactive i.e.

f12(û1(t)) = aT12(t)û1(t)− b12(t) < 0 (25)

f21(û2(t)) = aT21(t)û2(t)− b21(t) < 0 (26)

Thus, we define the duration of phase 1 to be

t1 := sup
t>0
{t|f12(û1(t)) < 0, f21(û2(t)) < 0} (27)

Lemma 3. ∃ a finite time t1 as described in Def. (27),
until which the collision avoidance constraints of both
robots are simultaneously inactive.

Proof. Let us assume that until time t1, the collision
avoidance constraints of both robots are inactive. Thus,
both robots simply use their prescribed controls ûi(t) until
t−1 . Therefore, the dynamics of the robots are

ṗi = ûi = −kpi(pi − pdi) (28)

(28) can be integrated using Eqs. (17) and (18) to give

p1(t) = pd1 −DG1
e−kp1 têα

p2(t) = pd2 +DG2
e−kp2 têα (29)

We can compute the relative positions as

∆p21(t) = (DG1
e−kp1 t +DG2

e−kp2 t −K)êα
= D(t)êα (30)

where K := DG1
+DG2

−Dinit and D(t) := (DG1
e−kp1 t +

DG2
e−kp2 t)−K. Thus, the distance between the robots is∥∥∆pd21(t)

∥∥ = |D(t)| (31)

Additionally, the controls as a function of time are

û1(t) = −kp1(p1(t)− pd1) = +kp1DG1
e−kp1 têα (32)

û2(t) = −kp2(p2(t)− pd2) = −kp2DG2e
−kp2 têα (33)

Thus, the flag for robot 1 is (25)

f12(û1(t)) = aT12(t)û1(t)− b12(t)

= −γ
4
D2(t) + kp1DG1

e−kp1 tD(t) +
γ

4
D2
s

which is a downwards facing parabola in D(t). Thus,
f12(û1(t)) < 0 for D(t) > β1

+(t) where

β1
+(t) =

2DG1kp1e
−kp1 t

γ
+

√(
2DG1kp1e

−kp1 t

γ

)2

+D2
s

(34)

and likewise we can define β2
+(t) for robot two by re-

placing kp1 , DG1
with kp2 , DG2

in (34). Note that D(t),
β1
+(t) and β2

+(t) are monotonically decreasing with time.
Additionally, recall from (17) that D(0) = Dinit. and from
from Assumption 1 that Dinit. > β1

+. However, while D(t)
converges to −(DG1 + DG2 − Dinit) < 0, β1

+(t), β2
+(t)

converge to Ds > 0. Therefore, there exists a time ta at
which D(ta) = β1

+(ta) =⇒ f12(û1(ta)) = 0 and a time tb
at which D(tb) = β2

+(tb) =⇒ f21(û2(tb)) = 0. We assume
WLOG that β1

+(t1) > β2
+(t1) =⇒ ta < tb and hence we

define:

t1 := min{ta, tb} = ta (35)

ta is the time at which the collision avoidance constraint
of robot one becomes active i.e. aT12(ta)u∗1(ta) = b12(ta)
while the collision avoidance constraint of robot two is still
inactive i.e. aT21(ta)û2(ta) < b21(ta). Thus ta is the time in
Def. 27, i.e. the maximum time until which both robots’
constraints are inactive. See Fig. (2) for an illustration of
phase 1 which ends at t = t1 when D(t) = β1

+(t). Finally,
D(t) is monotonically decreasing ∀t (30) and D(0) =
Dinit. > 0, D(t1) = β1

+(t1) > 0, therefore, D(t) > 0
∀t ∈ [0, t1). From (31) that the distance between the robots
is ‖∆p21(t)‖ := |D(t)| = D(t) ∀t ∈ [0, t1). Therefore,
‖∆p21(t)‖ is also monotonically decreasing until t1. �

Thus, phase 1 ends at time t1 when the constraint of robot
one switches from inactive to active, while that of robot
two is still inactive. This marks the beginning of phase 2.

4.2 Phase 2

Consistent with the definition of t1 (27), we define the
duration of phase 2 to be the time until which the
constraint of robot two remains inactive i.e.

t2 := sup
t>t1

{t|f21(û2(t)) < 0} (36)

Recall from phase 1 that f21(û2(t)) < 0 as long as
D(t) > β2

+(t). However, after t1, D(t) no longer follows
(30) because of the change in dynamics of robot one after
t1. Therefore, we will compute new dynamics for D(t) and
a time t2 when D(t) = β2

+(t).

Lemma 4. ∃ a finite time t2 as in Def. (36), until which
the constraint of robot two stays inactive.
Proof. Let us assume that there is a time t2 until which
the collision avoidance constraint of robot two remains in-
active. Therefore, the dynamics of robot two are governed
by the prescribed input. Thus,

ṗ2 = û2 = −kp2(p2 − pd2)

=⇒ p2(t) = pd2 +DG2
e−kp2 têα (37)

On the other hand, the control input to robot one is

u∗1 = û1 −
1

2
µ12a12 (38)
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Fig. 2. Simulation results for two-robot deadlock. Simula-
tion parameters shown in bottom right panel. Note at
t = t1, D(t) = β1

+(t) and µ12(t) switches on, similarly
at t = t2, µ21(t) switches on. Finally, D(t) −→ Ds.

Here µ12 6= 0 because the collision avoidance constraint of
robot one has switched to active at t1 i.e. aT12(t)u∗1(t) =
b12(t) ∀ t ≥ t1. We can compute µ12 as follows

µ12 = 2
aT12û1 − b12
‖a12‖2

(39)

Therefore, the dynamics of robot one ∀t ≥ t1 are

ṗ1 = û1 −
aT12û1 − b12
‖a12‖2

a12

= û1 −
aT12û1

‖a12‖2
a12︸ ︷︷ ︸

u⊥

+
b12

‖a12‖2
a12︸ ︷︷ ︸

u‖

(40)

On closer inspection, note that u⊥ ⊥ a12 ⇐⇒ u⊥ ⊥
−∆p12. It is difficult to analytically integrate (40). In-
stead, we will show via recursion that the position of robot
one can be expressed as

p1(t) = pd1 −DG1
η(t)êα (41)

for some function η(t) ∀t ≥ t1. This expression is valid
at t = t1 for η(t1) = e−kp1 t1 as shown in (29). This
representation highlights that the position of robot one
is confined along êα. We will show that this property is
maintained throughout phase 2 because the component of
velocity input to robot one perpendicular to êα will vanish
(which will become the cause of deadlock). Recall at t = t1

a12(t1) = ∆p21(t1) = D(t1)êα (42)

Therefore, u⊥(t1) = û1 −
aT12û1

‖a12‖2
a12

= kp1DG1
η(t1)êα

−
D(t1)êTα

(
kp1DG1

η(t1)êα
)

D2(t1)
(D(t1)êα)

= 0

u‖(t1) =
b12

‖a12‖2
a12

= γ
D2(t1)−D2

s

4D(t1)
êα (43)

Thus, integrating the velocity for a small time step gives

p1(t1 + ∆t) = p1(t1) + ∆t
(
u⊥(t1) + u‖(t1)

)
= pd1 −DG1

(
η(t1)−∆tγ

D2(t1)−D2
s

4DG1
D(t1)

)
êα

= pd1 −DG1η(t1 + ∆t)êα (44)

Through (44), we have demonstrated that the updated
position of robot one admits the general form given by
(41). This is because the perpendicular component of
the velocity vanishes if the robot is situated on the line
segment connecting its goals. As a result, the robot never
acquires any displacement along the perpendicular com-
ponent. Hence, the dynamics of robot one are always

ṗ1 = u‖ = γ
‖∆p21‖

2 −D2
s

4 ‖∆p21‖
2 ∆p21, (45)

∀t ≥ t1. The relative dynamics are

˙∆p21 = −γ ‖∆p21‖
2 −D2

s

4 ‖∆p21‖
2 ∆p21 − kp2(p2 − pd2) (46)

Let ∆p21(t) = D(t)êα, then we get for t ≥ t1

Ḋ(t) = −γD
2(t)−D2

s

4D(t)
− kp2DG2

e−kp2 t (47)

where D(t1) = β1
+(t1) > Ds. Note that for D(t) > Ds,

Ḋ(t) < 0 =⇒ D(t) is monotonically decreasing at least
until tc where tc := {t|D(t) = Ds}. Recall from phase
1 that the collision avoidance constraint of robot two is
inactive i.e. f21(û2(t)) < 0 as long as D(t) > β2

+(t).
Additionally, recall that β2

+(t) is monotonically decreasing
with respect to time and converges to Ds. Moreover, from
phase 1, recall that D(t1) = β1

+(t1) > β2
+(t1). Hence, there

exists a time t2 ≤ tc at which D(t) = β2
+(t). This time

t2 is precisely the time in def. (36). See Fig. (2) for an
illustration of phase 2 which ends at t = t2 when D(t) =
β2
+(t). Using the approach in Lemma 3, the distance

between robots monotonically decreases ∀t ∈ [t1, t2). This
concludes phase 2 and marks the start of phase 3. �
4.3 Phase 3

In phase three, the collision avoidance constraints of both
robots become active i.e. aT12u

∗
1 = b12 and aT21u

∗
2 = b21.

Therefore, the controls on the robots are

u∗1 = û1 −
1

2
µ12a12 , u∗2 = û2 −

1

2
µ21a21 (48)

where, µ12 = 2
aT12û1 − b12
‖a12‖2

, µ21 = 2
aT21û2 − b21
‖a21‖2

(49)

Following the approach in phase 2, we can show that the
components of velocities in u∗i perpendicular to êα vanish.
Therefore, the resulting dynamics of the robots are:

ṗ1 = +γ
‖∆p21‖

2 −D2
s

4 ‖∆p21‖
2 ∆p21

ṗ2 = −γ ‖∆p21‖
2 −D2

s

4 ‖∆p21‖
2 ∆p21 (50)

=⇒ ∆̇p21 = −γ ‖∆p21‖
2 −D2

s

2 ‖∆p21‖
2 ∆p21 (51)

Lemma 5. The distance between robots converges to the
safety margin Ds at which point they stop moving

Proof. Letting ∆p21(t) = D(t)êα in (51)
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Ḋ(t) = −γD
2(t)−D2

s

2D(t)
(52)

where D(t2) = β2
+(t2) > Ds. The solution to this is

D(t) =
√

(D2(t2)−D2
s)e
−γ(t−t2) +D2

s (53)

Therefore D(t) −→ Ds and likewise, ‖∆p12(t)‖ −→ Ds.
Therefore, the robots will be just at the verge of colliding.
Moreover, note from (50) that as ‖∆p12(t)‖ −→ Ds,
ṗ1 −→ 0, ṗ2 −→ 0, i.e. the robots stop moving. �

Proof of Theorem 1: From Lemma 3 and Lemma 4,
it follows that phase 1 and phase 2 culminate in a finite
time, so the robots enter phase 3. In phase 3, Lemma 5
shows that the robots eventually stop moving. However,
once they stop, note that limt−→∞∆p21(t) = Dsêα, yet
∆pd21 = −(DG1

+DG2
−Dinit.)êα. Therefore, the robots

are not at their goals (because the goal vector is anti-
parallel to the vector connecting the robots). Hence, we
conclude that the robots have fallen in deadlock �

Takeaway: We have demonstrated that two robots fall
in deadlock given initial conditions (17) and goals (18).
This is because the geometric arrangement of initial po-
sitions and goals prevents both û and the QP to output
velocities perpendicular to the êα direction. In phase 1,
the prescribed controllers were only along êα as noted in
(32), thus u⊥ = 0. In phase 2, we explicitly calculated
u⊥ = 0 in (43). In Phase 3, same arguments applied.
Thus, with the control always along u‖ ‖ êα, the only
way to reach the goals would involve intersection of the
robots i.e. collisions. This is why, the QP based controller
decides to prevent collisions from happening by forcing the
robots to stall, resulting in deadlock.

5. THREE-ROBOT DEADLOCK

We demonstrate another scenario prone to deadlock, which
consists of three robots positioned on the vertices of an
equilateral triangle, and required to stabilize to their
respective antipodal positions. For simplicity, we assume
that all prescribed controller gains are identical, as are the
distances of the robots’ initial positions to their goals. Let
pi(t) ∈ R2 be the position of robot i ∈ {1, 2, 3} given as

p1(0) = (x0, y0)

p2(0) = p1(0) +Dinitêα
p3(0) = p2(0) +Dinitêα+ 2π

3
(54)

Assume that the goal of each robot is diametrically oppo-
site to its initial position i.e.

pdi = pi(0) +

√
3DG

Dinit.
(c− pi(0)) (55)

for i ∈ {1, 2, 3} where c = 1
3

∑3
i=1 pi(0) is the centroid

of the equilateral triangle formed by the initial positions
and DG is the distance of each robot from it’s goal. Note
here that the positions of the robots and their goals are
not collinear as was assumed in the two-robot case. Nev-
ertheless, this scenario is still prone to deadlock, because
of (1) the geometric symmetry in the initial positions of
robots and goals and (2) identical controller gains.

Assumption 2.
√

3DG > Dinit.

We will use this assumption in Lemma 9 to establish
the inevitability of deadlock. We now formally state the
deadlock incidence result as follows.

Theorem 6. Given the initial positions of robots as in
(54) and desired goals as in (55), the controls generated by
(7) will cause the robots to fall in deadlock.

Our proof will heavily draw upon the ideas from deadlock
in the two robot case. The overall sketch is as follows:

(1) First, we analyze the controls returned by the QP
at t = 0. We show in Lemma 7 that if the initial
distance between robots is greater than a certain
critical distance, then at t = 0, the collision avoid-
ance constraints of all robots are inactive, therefore
u∗i (0) = ûi(0) ∀i ∈ {1, 2, 3}.

(2) Next, we show that the future motion of robots can
be broken into two successive phases. In phase 1,
the collision avoidance constraints of all robots stay
inactive, so they use ûi(t) ∀i ∈ {1, 2, 3}. We prove in
Lemma 8 that using û(t), the robots move on the
vertices of an equilateral triangle. Next, in Lemma 9,
we demonstrate that there exists a finite time when
phase 1 culminates. More importantly, this time is
identical for all robots because of the symmetry that
follows from Lemma 8

(3) Next, phase 2 begins during which all constraints are
active. We show in Lemma 10 that the distance
between robots converges to Ds, their velocities con-
verge to zero while the robots are still away from their
goals, thus establishing deadlock.

Recall from (16) that the control for robot i is

u∗i = ûi −
1

2

∑
j∈{1,2,3}\i

µijaij (56)

Here, the value of µij depends on whether the collision
avoidance constraint aTijui ≤ bij is active or inactive at
ui = u∗i . Therefore, we will focus on the flag fij(ui) =
aTijui − bij to decide the control for robot i. We begin
our analysis at t = 0 and show in the next lemma that if
the initial distance between the robots is greater than the
critical distance, then at t = 0, both robots have inactive
constraints. We define critical distance as follows:

β+ =

√
3DGkp
γ

+

√
3D2

Gk
2
p

γ2
+D2

s (57)

Lemma 7. If Dinit. > β+, then u∗i (0) = ûi(0) ∀i

Proof. To keep calculations brief, we compute the flag
fij(ûi(0)) for i = 1, j = 2. Using (54)-(55), we have

f12(û1(0))) = aT12(0)û1(0)− b12(0)

= −γ
4
D2
init +

√
3DGkp

2
Dinit +

γ

4
D2
s

:= g(Dinit.) (58)

We can show that fij(ûi) = g(Dinit.) ∀i ∈ {1, 2, 3}, j 6= i
because of the equilateral configuration at t = 0. g(Dinit.)
is a quadratic polynomial in Dinit. with a zero at β+
( (57)). Therefore, Dinit ∈ (β+,∞) =⇒ g(Dinit.) <
0 ⇐⇒ fij(ûi(0)) < 0 ∀i ∈ {1, 2, 3}, ∀j ∈ {1, 2, 3}\i, ⇐⇒
u∗i (0) = ûi(0) ∀ i ∈ {1, 2, 3} �
Assumption 3. WLOG assume at t = 0, Dinit. > β+.
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From assumption (3) and Lemma 7, it follows that at
t = 0, all collision avoidance constraints of all robots
are inactive. Therefore, it is safe to assume that these
constraints also remain inactive for a finite duration after
t = 0, which is precisely phase 1 as discussed before.

5.1 Phase 1

Assume that all robots continue to follow their prescribed
controls until time t1. Hence their positions are:

pi(t) = (pi(0)− pdi)e
−kpt + pdi ∀t ∈ [0, t1] (59)

Next we show that these positions evolve along the vertices
of an equilateral triangle.

Lemma 8. All robots continue to move in an equilateral
triangular configuration with centroid at c(0)

Proof. Using (59), the centroid’s position is given by

c(t) =
1

3

3∑
i=1

pi(t)

=
1

3

3∑
i=1

(pi(0)− pdi)︸ ︷︷ ︸
0

e−kpt +
1

3

3∑
i=1

pdi︸ ︷︷ ︸
c(0)

= c(0) (60)

The distance between robot i and robot j is given by∥∥∆pij(t)
∥∥ =

√√√√√∥∥∆pij(0)
∥∥2︸ ︷︷ ︸

term 1

e−2kpt +
∥∥∥∆pdij

∥∥∥2︸ ︷︷ ︸
term 2

(1− e−kpt)2+

2 ∆pTij(0)∆pdij︸ ︷︷ ︸
term 3

(e−kpt − e−2kpt) (61)

One can show that term 1, term 2 and term 3 are identical
for all i, j ∈ {1, 2, 3}, j 6= i using (54), (55). Therefore,
the distance of robot i from robot j 6= i is same for all
i ∈ {1, 2, 3}, hence the robots move along the vertices of an
equilateral triangle. A second invariant is the angle made
by the vector connecting robots i, j with the Xw axis of the
world. This can be shown by demonstrating that ∆pij(t)
remains parallel to ∆pij(0) as follows

∆pij(t)×∆pij(0) =
(
∆pij(0)×∆pij(0)

)︸ ︷︷ ︸
0

e−kpt

+
(
∆pdij ×∆pij(0)

)︸ ︷︷ ︸
term 1

(1− e−kpt)

= 0 (62)

Term 1 vanishes because ∆pdij is anti-parallel to ∆pij(0)

using (54), (55) Thus, the positions of the robots can still
be written in the form similar to (54)

p1(t) = e−kptp1(0) + (1− e−kpt)pd1
p2(t) = p1(t) + D̃(t)êα

p3(t) = p2(t) + D̃(t)êα+ 2π
3

(63)

where D̃(0) = Dinit.. Here, the angle between ∆p21 and
Xw is still α as in (54) because of (62). Thus, the robots
move along the vertices of an equliateral triangle using
ûi(t) ∀i ∈ {1, 2, 3}. This symmetry is because (1) ûi(t) has
identical gains (i.e. kp) ∀i and (2) the distance of initial
position to goal is identical for all robots (DG) �

Note that in (63), we can compute D̃(t) as follows:

D̃(t) = êTα∆p21(t)

= êTα

(
∆p21(0)e−kpt + ∆pd21(1− e−kpt)

)
= (Dinit. −

√
3DG) +

√
3DGe

−kpt (64)

Using this definition of D̃(t), we now demonstrate that
there exists a time when all the collision avoidance con-
straints will inevitably become active.

Lemma 9. There exists a time tij when fij(ûi(t)) =
aTij(t)ûi(t) − bij(t) = 0 i.e. when the collision avoidance
constraint of robot i with robot j becomes active. Further-
more, tij is identical ∀i ∈ {1, 2, 3}, j ∈ {1, 2, 3}\i

Proof. Using (59), we can find that fij(ûi(t)) (as a func-
tion of time) is identical for ∀i ∈ {1, 2, 3}, j ∈ {1, 2, 3}\i.
This is again due to the symmetry in the positions at time
t. Now, we evaluate fij(ûi) as a function of D̃. For brevity,
we evaluate this for i = 1, j = 2:

g(D̃) := f12(û1) = aT12û1 − b12

= −γ
4
D̃2(t) +

√
3

2
kpDGe

−kptD̃(t) +
γ

4
D2
s (65)

Note that g(D̃) is quadratic in D̃ with a zero at

β+(t) =

√
3DGkpe

−kpt

γ
+

√(√
3DGkpe−kpt

γ

)2

+D2
s

Therefore, if D̃(t) ≤ β+(t) =⇒ f12(û1(t)) ≥ 0 .

Now, note from (64) that D̃(t) is monotonically decreasing

with t, D̃(0) = Dinit. > β+ (from Assumption (3)).

Also, note that limt−→∞ D̃(t) = Dinit. −
√

3DG < 0
from Assumption (2). Similarly, β+(t) is monotonically
decreasing. β+(0) < Dinit. and limt−→∞ β+(t) = Ds > 0.

Therefore, there exists a time when D̃(t) intersects β+(t)

i.e. t1 = {t|D̃(t) = β+(t)}. This is equivalent to t1 =
{t|fij(ûi(t)) = 0 ∀i ∈ {1, 2, 3}, j ∈ {1, 2, 3}\i}. This is
precisely when constraints of all robots become active. �

5.2 Phase 2

Following t ≥ t1, the collision avoidance constraints of all
robots become active. Thus, the control on each robot is

u∗i = ûi −
1

2

∑
j∈{1,2,3}\i

µijaij (66)

where now, µij 6= 0 ∀i ∈ {1, 2, 3},∀j ∈ {1, 2, 3}\i. For
e.g., for robot one, collision avoidance constraints with
both robots two and three become active. Therefore, using
aT12u

∗
1 = b12 and aT13u

∗
1 = b13, we can obtain µ12 and

µ13 analytically, which will give the control u∗1. Following
the arguments in phase 3 for the two robot case, we
can incrementally compute the controls by solving for
Lagrange multipliers at t1, applying the control u∗i (t1) and
updating positions and so on for all future time. We can
demonstrate that the positions of the robots can still be
written as

p1(t) = η(t)p1(0) + (1− η(t))pd1
p2(t) = p1(t) +D(t)êα
p3(t) = p2(t) +D(t)êα+ 2π

3
(67)
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for t ≥ t1 for some function η(t) with η(t1) = e−kpt1 .
Following arguments as in phase 3 of the two robot
deadlock, dynamics of robot i ∈ {1, 2, 3} are:

ṗi =
√

3γ
D2(t)−D2

s

6D(t)
êα+(4i−3)π6 (68)

=⇒ ∆̇p12 = γ
D2(t)−D2

s

2D(t)
êα (69)

Lemma 10. The distance between the robots converges to
the safety margin Ds and the robots stop moving

Proof. Noting From (67) that ∆p12(t) = −D(t)êα and
combining with (69), we deduce that

Ḋ(t) = −γD
2(t)−D2

s

2D(t)
∀t ≥ t1

=⇒ D(t) =
√

(D2(t1)−D2
s)e
−γ(t−t1) +D2

s

=⇒ lim
t−→∞

D(t) = Ds (70)

Hence, it follows from (68) that ṗi −→ 0 ∀i ∈ {1, 2, 3} �

Proof of Theorem 6: From Lemma 9, it follows that
the robots enter phase 2 at t = t1. Once in phase 2, from
Lemma 10 it follows that the robots eventually stop mov-
ing. Additionally, note that limt−→∞∆p12(t) = −Dsêα
yet ∆pd12 = (

√
3DG − Dinit.)êα 6= −Dsêα (from (55)

and Assumption 2). Therefore, the robots are not at their
goals, and static, thus they have fallen in deadlock. �

Takeaway: Deadlock happens here because each robot’s
velocity is always pointing towards its goal and not perpen-
dicular to it. In phase 1, this velocity is along û (which by
definition is towards the goal). Likewise, we can show that
the same holds true in phase 2. Additionally, all robots
have identical speed at a given time as well. Hence, colli-
sions would be inevitable at the centroid. Therefore, CBF-
QPs cause the robots to stall which results in deadlock.

6. CONCLUSIONS

In this paper, we analyzed CBFs for synthesizing safe
controllers for multirobot systems, that also help perform
a given task such as goal stabilization. We handpicked a
combination of initial conditions and goals to show how
they fail to reach their goals in the interest of maintaining
safety. The key takeaway from the two examples we
considered, is that geometric symmetry constrains CBFs
to generate velocities in directions that render deadlock
stable. For example, for the two robot case, a velocity along
êα+π

2
could have resolved deadlock easily but neither û nor

CBFs identify such inputs, likewise in the three-robot case.
Our simulations reveal that deadlocks can also happen in
large N and asymmetric cases, for example, when goals are
not antipodal. Therefore, in future work, we will consider
general analysis for symmetric and asymmetric N robot
systems to reveal general scenarios prone to deadlock.
Secondly, we relied on duality theory to aid with this
analysis. Our approach using KKT conditions is general
and can be extended to any optimization based reactive
control synthesis method. In future, we will extend this
tool to algorithms such as velocity obstacles. Finally, we

will consider different dynamics models such as double-
integrator and nonholonomic type.
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