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Abstract: This paper investigates the optimal transmission scheduling problem in remote
state estimation systems over an unreliable wireless channel where the channel state evolves
as a Markov chain. However, due to inaccurate observations of the channel state, the wireless
channel is modeled as a hidden Markov chain. We propose a prediction algorithm based on
the Viterbi algorithm to estimate the channel state. To save the wireless sensor’s energy, we
consider scheduling the transmission of sensor transmissions while balancing between estimation
performance and sensor energy expenditure. By jointly considering performance and energy, we
formulate the scheduling problem as a Markov decision process. We prove the existence of the
optimal transmission policy and derive a threshold structure of the optimal strategy. Finally,
the performance of the proposed method is evaluated through simulations.
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1. INTRODUCTION

Due to the rapid development of networking, communi-
cation technology, computing and modern control, cyber-
physical systems (CPS) are onto a fast track of growth
and focused by academy and industry widely (Ding et al.
(2018)). The characteristics like high flexibility, rapid de-
ployment and high fault tolerance in CPS bring many
applications including medical, aerospace, automobile, etc.
However, an increasing number of these applications de-
mand remote estimation through the unreliable wireless
network; thus, sensors need to make more flexible schedul-
ing owing to energy constraints.

In this paper, we focus on the optimal transmission policy
problem for the case where the optimal local estimation
packet can be transmitted through an unreliable channel
and the channel state is unknown. In the past decade,
the packet loss process of wireless channels in the system
has attracted considerable interest. Still, many kinds of
research have focused on the distribution of channel packet
loss conditions (Sinopoli et al. (2004)). The basic idea
is that the packet loss modeled by the independent and
identical distribution (i.i.d.) by Schenato et al. (2007) and
to consider the impact of packet loss on the system estima-
tion performance. Further, Garone et al. (2011) expanded
the case to multiple channels. In order to improve system
performance, Huang and Dey (2007) introduced Kalman
filter to decrease the impact of system error and studied
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the estimation when Markov process is adopted to model
the packet loss process. In Cao et al. (2014), the channel
estimation performance was studied by cognitive radio,
and the channel state model was proposed instead of the
packet loss state model. Then, people extended their re-
search objectives to the whole control or multiple systems.
In Lin et al. (2019), state estimation and system perfor-
mance analysis over non-acknowledgment networks with
Markovian packet dropouts were studied. Marelli et al.
(2019) considered the stability of the Kalman filter when
its measurements are randomly lost, which means the mea-
surement matrix and the measurement error covariance are
random. Xu et al. (2019) studied the consensus communi-
cation problem of multi-agent systems through Markovian
packet loss channels. Some researches are on the direction
of attacks to cause packet loss, DoS attack was intro-
duced in Qin et al. (2018) thus optimal attack scheduling
needs to be designed. In practice, the channel state can
not always be observed accurately, Barnes and Maharaj
(2011) applied the hidden Markov model to cognitive radio
to model channel occupancy, further Senthilkumar et al.
(2018) proposed a hidden Markov framework to select the
optimal channel for the users.

Motivated by the aforementioned works, we first consider
the case where the channel has the memory about the
old channel state which is very common in wireless com-
munication that the assumption of independent packet
loss not suitable. In the previous literature, the model
process and the channel state for packet loss are widely
studied such as i.i.d. or Markov process, while these can
not describe the actual application fully thus we introduce
the hidden Markov model to study the channel packet loss
process and predict the channel state. As far as the channel
state be concerned, it only exists two possibilities, being
occupied to transmit packets (busy) and not occupied
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(idle). Packet loss only occurs in the idle state where
the channel is transmitting data, which means we should
transmit packet when the channel is idle. However, our
observation channel state is not satisfactory. Thus we use
hidden Markov to model the channel state. In addition,
wireless sensors are often powered by battery or have
energy constraints, which means the number of times that
the sensor can send packets in a certain period is limited.
Not only that, for an online control system, the packet
perceived by the sensor is also time-sensitive that we need
to make the decision quickly on whether to transmit the
packet. Our purpose is to design the optimal transmission
policy to minimize energy consumption and maintain the
optimal estimation performance under our channel model.
The main contributions of this paper are summarized as
follows:

(1) We formulate an optimization problem about the sys-
tem estimation performance and transmission energy
consumption comprehensively.

(2) We model the channel state as a hidden Markov
process and formulate the sensor scheduling problem
of state estimation as a Markov decision process
(MDP) problem.

(3) We obtain the existence of the optimal transmis-
sion policy and prove that it is deterministic and
stationary. Further, we get the threshold structure
and analyze the equilibrium relationship between the
average estimation error and energy.

The reminder of this paper is organized as follows. Section
2 provides the problem formulation. In Section 3, the de-
sign of the algorithm and the main results about the MDP
are addressed. Section 4 presents a numerical example
and shows how the model parameters affect the threshold
structure and the equilibrium relationship. Finally, Section
5 shows some conclusions.

Notations: In the following, we present system model and
adopt these notations: R is the set of real numbers. Z is the
sets of integers. Rn represents the n-dimensional Euclidean
space and R

n×m represents the set of real matrices of
dimension n × m. E[·] and Pr(·) denote the expectation
and probability of a random variable, respectively. Tr(·)
and ρ(·) denote the trace and spectral radius of a square
matrix, respectively. Sn+ is the set of positive semi-definite
matrices of dimension n× n, such that X ≥ 0 if X ∈ S

n
+.

∀X,Y ∈ S
n
+, X ≥ Y if X − Y ∈ S

n
+.

2. PROBLEM SETUP

The system architecture is described in Fig. 1. The states
of physical process can be observed by a local sensor using
Kalman filter and transmitted to the remote estimator
through a wireless packet loss communication channel,
besides, the sensor can also observe the state of wireless
channels. Detailed description of the system consists of the
following.

2.1 System Models

As shown in Fig. 1, we consider the following discrete linear
time-invariant dynamic system

xk+1 = Axk + ωk (1)

Physical 

Process
Sensor

Remote

Estimator

Wireless 

Channel

state sensing

idle/busy

Fig. 1. System architecture

where k ∈ Z denotes the index of each time step, xk ∈ R
n

is the state vector, ωk ∈ R
n is the independent and

identically distributed(i.i.d.) white Gaussian noise with
zero mean and covariance Q > 0.

Besides, in Fig. 1, the system’s measurement yk ∈ R
l is

monitored by the sensor and modeled by

yk = Cxk + vk (2)

where yk ∈ R
l is the observation vector and vk is also the

i.i.d. white Gaussian noise with zero mean and covariance
R > 0.

In the above, A ∈ R
n×n, C ∈ R

l×n are all system matrices.
We assume the system is stabilizable that the pair (A,

√
Q)

is controllable and (A,C) is observable.

Channel Modeling Since the open-access wireless chan-
nel may be occupied by many other wireless devices, we
assume that the state of the unreliable wireless channel
suffers from the Markov process which includes two states,
busy and idle, respectively. At each step k, the sensor
first scans the wireless channel to judge whether its state
is busy or idle and transmits the packet. We define a
variable γk = {0, 1} to represent whether the packet is
transmitted to remote estimator successfully, specifically,
γk = 1 means the transmission of packets is successful and
γk = 0 means packet loss. The scanning time is assumed
small enough that the channel state will not change during
it. Denote sk ∈ {0, 1} and ok ∈ {0, 1} as the channel state
and the observation result, respectively, i.e., sk = 0 if
the channel is idle and sk = 1 otherwise; ok = 0 if the
channel is observed idle and ok = 1 otherwise. Define the
probability transition matrix Φ about the channel state
that Pr(sk+1 = i|sk = j)|i,j={0,1} as follows.

Proposition 1. {sk} complies with a homogeneous Markov
chain with following transition probability matrix

Φ =

[

1− α α
β 1− β

]

(3)

where α = Pr(sk = 1|sk−1 = 0) and β = Pr(sk = 0|sk−1 =
1).

Further, we assume the packet loss as an i.i.d. Bernoulli
process when the channel is idle that the packet loss rate
is denoted as ℓ that

Pr(γk = 0) =

{

ℓ, if sk = 0

1, if sk = 1
(4)

Actually, the channel state can not be accurately ob-
served thus the observation channel state has the incorrect
possibility. Therefore, the sequence {sk, ok} constitutes a
hidden Markov model. Almost no consideration has been
given in the previous literature.

Remark 2. The Markov process can be assumed that 0 <
α + β < 1, if there’s nothing about the past information
at the certain step k, Pr(γk = 0) and Pr(γk = 1) are
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always the same, specially, Pr(γ0 = 0) = β/(α + β) and
Pr(γ0 = 1) = α/(α+ β).

The sensor transmits its local estimates to the remote
estimator. The local estimate and its corresponding es-
timation error covariance matrix are denoted as x̂k and
Pk, respectively:

x̂k =E[xk|y0, · · · , yk]
Pk =E[(xk − x̂k)(xk − x̂k)

′|y0, · · · , yk]

Standard Kalman filter runs in the local estimator and the
steady-state value of {Pk} as P̄ like Li et al. (2015).

2.2 Problem Formulation

The corresponding estimation error covariance Pk is de-
scribed by the following equation due to packet loss of
channel:

Pk =

{

h(Pk−1), if γk = 0

P̄ , if γk = 1
(5)

where h(X) = AXA′ +Q.

It is apparent that the value of Pk is in the following
infinitely countable set, that is

{P̄ , h(P̄ ), h2(P̄ ), · · · } (6)

And then we adopt the expectation of Pk to describe it,

E[Pk] = Pr(γk = 1) · P̄ + Pr(γk = 0) · h(E[Pk−1]) (7)

Furthermore, we can’t ignore the energy constraint prob-
lem when the sensor prepares to transmit the packets;
otherwise we can choose to transmit the packet at each
time step regardless of whether or not the packet losses
for optimal estimation. Therefore, we need to design an
optimal transmission policy to maintain estimation perfor-
mance under energy constraints. Considering the following
cost function about estimation performance, we construct
the optimal packet transmission strategy under limited
energy such that the estimation performance and energy-
related transmission get balanced.

The average expectation of estimation error covariance can
be defined to describe the estimation performance:

J1
θ = lim sup

T→∞

1

T + 1
E

[

T
∑

k=0

Tr(Pk)

]

(8)

where θ = {θ1, θ2, · · · } is the sequence of whether the
sensor transmits the packet at each time.

The transmission energy is related to whether the sensor
chooses to send the packet or not. We assume that the
energy consumption of the packet transmitted at each time
is the same, that the total energy consumption can be
denoted by the exception of packet transmission:

J2
θ = lim sup

T→∞

1

T + 1
E

[

T
∑

k=0

ak

]

(9)

Our purpose is to find the optimal packet transmission
strategy under limited energy to minimize the balance
between the average estimation error and the total energy,
that is

Problem 3.
min
θ

J1
θ
+ ηJ2

θ
(10)

where η is the variable to measure the importance of
estimation performance and energy.

3. OPTIMAL TRANSMISSION ENERGY STRATEGY

In this section, we formulate Problem 3 as a Markov
Decision Process (MDP) problem. Some preparation works
is necessary about the system state.

3.1 The Hidden Markov Process

We can’t directly sense the state of the wireless channel,
only through the sensor to observe. The true channel state
is hidden behind the observation channel states that they
form a hidden Markov model. Nevertheless, during the
long-term operation of the system, we can obtain all the
observation states in the past and use these to predict the
possibility of the channel state at the current moment.

We need to define some extra notations as follows: Define
the correct detection and false sensing probabilities about
the wireless channel, pd, pf , respectively. Moreover, define
transition martix about the probability Pr(ok|sk) as Ψ =
[

pd 1− pd
1− pf pf

]

, where pd is the correct detection of the

idle state and pf is the correct detection of the busy state.
Define the probability about state of the wireless channel
at time T as pT for sT = 0 and 1 − pT for sT = 1,
respectively. In order to get the prediction results of the
current state, we assume that all the observation states in
the past are known, define the sequence of old observations
as Y = {y1, y2, · · · , yT} and the initial probability of state

s is Π = {π1 = β
α+β

, π2 = α
α+β
}.

Algorithm 1 describes how to calculate the possibility of
the current state of the wireless channel based on historical
information, Ui,j represents the maximum probability of
state j at time i (while after iterating, the value of Ui,j

can’t equal to probability directly). In step 11-13, we can
find the maximum likelihood of each hidden state s at time
T by iterating from the initial time 2 to the final time T .
In step 15, p calculate the current probability from Ui,j .

Algorithm 1 The predicted probability of channel state

Input: The channel state S = {s1, s2}
1: The observation channel state O = {o1, o2}
2: The initial probability of state Π = {π1, π2}
3: The sequence of old observations Y =
{y1, y2, · · · , yT }

4: The transition matrix A = Φ
5: The emission matrix B = Ψ

Output: The probability pT of hidden state sk = 0 at T
6: i← 2
7: for i← 1, 2 do
8: U(1,i) ← πi · Biy1

9: end for
10: for j ← 2 to T do
11: for i← 1, 2 do
12: U(j,i) ← maxk=1,2 U(j−1,k) ·Aki · Biyj

13: end for
14: end for
15: pT ← UT,1/

∑2
i=1 UT,i
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3.2 MDP Formulation

Firstly, We define a random variable τk to denote the time
duration from the last successful transmission time to time
k as:

τk = k −max{k∗ : γk∗ = 1, 0 ≤ k∗ ≤ k} (11)

Then according to (6), we can rewrite Pk as

Pk = hτk(P̄ ) (12)

At each step k, we denote the state of the MDP process
as sk = Pk−1, A = {0, 1} as the transmission action set
and the action of the MDP process as ak ∈ A, that is the
sensor chooses action ak = a(sk) based on the process sk.

Therefore, at time k, the one-stage reward can be written
as

r(Pk−1 , ak) = Tr[Pk−1 + ηakI] (13)

where I is identity matrix.

Remark 4. The value of state at time k is sk = Pk−1, thus
the value at time k+ 1 will have two values depending on
γk: when γk = 1, sk+1 = Pk = P̄ , otherwise, sk+1 = Pk =
h(Pk−1).

The state transition probability of the MDP can be written
as

t(Pk|Pk−1, ak) =



























(1 − ℓ) · pk, if Pk = P̄ , ak = 1

ℓ · pk, if Pk = h(Pk−1), ak = 1

0, if Pk = P̄ , ak = 0

1− pk, if Pk = h(Pk−1), ak = 0

0, otherwise

(14)

Denote the transmission strategy of the sensor as θ =
{at(sk)}k=1,··· ,T and all transmission policies as Θ, then
the following function represent the the average of the
expected sum of rewards r from the average expected cost
criterion under the strategy θ ∈ Θ and the initial state
s(1) = s ∈ S, that is

Js,θ = lim sup
T→∞

1

T + 1
E

[

T
∑

k=0

r(sk, ak)

]

(15)

and its optimal value is J∗(s) = argminθ∈Θ J(s, θ).

From the about discussion, Problem 3 can be solved by
Markov decision process. Define the following average
value function as Vθ : S→ R, thus the optimal cost J∗(s)
can be rewritten as a Bellman equation (Puterman (2014))
as follows

J∗(sk) + Vθ(sk) =min
a∈A

{

r(sk, a)

+
∑

s′
k+1

∈S

t(s′k+1|sk, ak)Vθ(s
′
k+1)

}

(16)

Therefore, the optimal transmission policy for the sensor
is given by

a∗(sk) = arg min
ak∈A

{

r(sk, ak)

+
∑

s′
k+1

∈S

t(s′k+1|sk, ak)J∗(s′k+1)

}

(17)

3.3 Structural Results for the Optimal Transmission Policy

We prove that the existence of optimal strategy, further
deduce its deterministic and stationary.

Theorem 5. The optimal deterministic and stationary pol-
icy for θ∗ ∈ Θ exists, that is

J(s, θ∗) ≥ J(s, θ) ∀s ∈ S, θ ∈ Θ (18)

The optimal value θ
∗ can be solved by Bellman equation.

The proof of Theorem 5 can be given in Appendix A based
on Sennott (1986).

According to this theorem, we can drive the optimal trans-
mission strategy of (15) from Bellman equation (16) and
this strategy is deterministic and stationary, which help
us analyze the structural characteristics of the optimal
strategy further.

And then we present some lemmas for analyzing the
structural properties of the optimal solution.

Lemma 6. (Shi et al. (2011)) If 1 ≤ τ1 ≤ τ2, then hτ1(P̄ ) ≤
hτ2(P̄ ), h(P̄ ) 6= P̄ .

Lemma 7. (Puterman (2014)) For two partially ordered
setsX,Y , define g(x, y) as a real-valued function onX×Y ,
g(x, y) is so-called superadditive when all x+ ≥ x− in X
and y+ ≥ y− in Y , that is

g(x+, y+) + g(x−, y−) ≥ g(x+, y−) + g(x−, y+) (19)

And then, we present the existence of special threshold
structure for our optimal transmission policy to reduce
our computational complexity.

Theorem 8. The optimal transmission policy a(sk) is non-
decreasing in s and has the following threshold structure:

a(sk) =

{

a1 Tr(sk) < Tr(s∗)

a2 Tr(sk) ≥ Tr(s∗)
(20)

where s∗ is the limit function which can be solved by
iterating according to specific problems.

The proof of Theorem 8 is shown in Appendix B.

The monotonic transmission policy means that we can find
a specific threshold structure to make decision according
to the specific problems, take our problem as an example,
s∗ = P ∗ likes a boundary thus if Tr(sk) > Tr(s), we choose
action a1 that we do not transmit packet.

4. NUMERICAL EXAMPLE

We present two numerical examples to show the validity
of our algorithm and illustrate the optimal transmission
policy about Problem 3.

Firstly we set some initial parameters, the transition

matrix Φ =

[

0.5 0.5
0.5 0.5

]

, the emission matrix Ψ =

[

0.9 0.1
0.2 0.8

]

and the initial state Π = {0.5, 0.5}.
We set one possible channel state sequence through the
given state transition matrix and the initial value, and
then we calculate one possible observation channel state
sequence. Next, we use our prediction algorithm to calcu-
late the possibility of the possible channel state sequence
based on the observation channel state sequence. Our
clever initial setup is used to compared easily that we only
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Fig. 2. Actual channel state and predicted probability

need to compare with 0.5. The final results are shown
in Fig. 2 and we show the comparison of the predicted
probability of busy channel state and the actual channel
state from time 50 to time 100, our prediction accuracy is
about 85%.

The simulation example above shows the reliability of our
prediction algorithm, and then we can use fixed probability
to simulate our Markov decision process. Firstly, we set
some initial parameters in Table 1.

Table 1. Some initial parameters

Q A ℓ pk α
[

0.01 0
0 0.01

] [

1.1 0.7
3.2 1.3

]

0.5 0.5 0.95

And then, we consider τk−1 to represent the state Pk−1

which is the function of it. η is used to reflect the
importance of transmission energy in the decision process.
That is the larger η is, the more energy will be consumed
during each transmission. So we can derive the optimal
action decision in case of different τk−1 and η like Fig. 3 by
applying the policy iteration algorithm in Markov decision
process toolbox of MATLAB.

2-10 2-5 0 25 210

7

6

5

4

3

2

1

0

k
-1

Transmit

Do not transmit

Fig. 3. Optimal transmission action ak of τk−1 and η

In Fig. 3 we can find some explicit conclusions. Firstly,
the figure represents the threshold structure of the policy
ak in sk intuitively which is described by Theorem 8.
Furthermore, the figure shows that the policy also has
the threshold structure in η explicitly. Secondly, when
the transmission energy consumption increases, our policy

tends to decrease the number of sending packets, another is
when consecutive loss rate increases, our policy also tends
to do nothing about sending packets to decrease the risk
of packet loss and energy consumption.

And then, we fix η = 1 to study the influence of state
prediction probability pk on decision making, the initial
parameters is like Fig. 3, the optimal transmission action
policy is shown in Fig. 4. We can find that with the increase
of probability that the system channel state is predicted
as idle, our policy tends to send packets.

0 0.2 0.4 0.6 0.8 1

p
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k
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Transmit

Do not transmit

Fig. 4. Optimal transmission action ak of τk−1 and pk

5. CONCLUSION

In this paper, we have investigated the optimal transmis-
sion policy that the sensor transmits or not under the
energy constraint and incomplete channel cognition. We
design an algorithm to predict the unreliable channel state
and apply the MDP algorithm to schedule the optimal
sensor transmission. We prove the existence of the policy
which has the characteristics of deterministic, stationary
and threshold structure. Our simulations discover that the
threshold structure exists not only in the state s of the
MDP process, but in the variable η and state prediction
probability p. Our further work is to interrupt a unified
decision probability model instead of a specific scheduling
scheme for a given problem.
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Appendix A. PROOF OF THEOREM 5

First we introduce a lemma which is important to the
following proof.

Lemma 9. (Sennott (1986)) If J∗(s) = argminθ J(s, θ) is
the infimum over all policies of the expected cost incurred
when the process starts in channel state s, then the J∗(s)
satisfies the optimality equation

J∗(s) = min
a∈A(s)

{

r(s, a) + α
∑

s∈S

t(s′|s, a)J∗(s′)

}

(A.1)

where α is the discount factor and the average cost opti-
mal policy can use discounted cost policy to expression.
Following this lemma the theorem 1 is straightforward.

According to the results in Sennott (1986), we prove this
theorem. Due to the action set A = {0, 1} is a finite set,
the state space S = {P̄ , h(P̄ ), h2(P̄ ), · · · } in our problem
is denumerable, base on the Assumption 1, 2 in Sennott
(1986), we only to verify the following two conditions:

(1) There exists a bounded solution to

|J∗(s)− J∗(0)| < N (A.2)

for all s and non-negative N .
(2) There exist a non-negative function Ms and non-

negative integers B that
∑

j∈S

t(j|s, θ)Mj < B (A.3)

(3) There exists that
∑

j∈S

t(j|s, θ)Mj + r(s, θ) ≤Ms (A.4)

First, we prove condition (1) holds. From (13), J∗(s) is ad-
ditive and r(sk, ak) is increasing, thus J

∗(s) is increasing,
the left half of (A.2) holds. In addition, we find the right
half of it is coincident with condition (2) cleverly.

Next, consider the policy θ in our transmission, define the
following function like Peng et al. (2017):

f(X) = AXA+ ϕI (A.5)

where we can find a positive constant ϕ that P̄ ≤ ϕI and
Q ≤ ϕI. Therefore, we can get

hτk(P̄ ) ≤ f τk(P̄ ) ≤ f τk(ϕI) ≤ ϕ

τk
∑

j=0

Aj(A′)j (A.6)

When k = 0, hτk(P̄ ) = P̄ ≤ ϕI, based on the idea
of the average iterated expected cost function like (15)
that the cost function V (s), the reward function r(sk, ak)
and (A.6) that Tr(hτk(P̄ ) + ηak) ≤ Tr(hτk(P̄ ) + η) ≤
ϕ
∑τk

j=0(ρ
2j(A) + η) and sk = (hτk−1(P̄ )), we can define

Ms = φ

τk−1
∑

j=0

(ρ2j(A) + η) (A.7)

where define φ > ϕ for the sake of satisfying condition (3)
formally. For τk is finite and then

∑

j∈S

t(j|s, θ)Mj =(1 − ℓ)pkφ+ ℓpkφ

τk−1+1
∑

j=0

(ρ2j(A) + η)

+ (1− pk)φ

τk−1+1
∑

j=0

(ρ2j(A) + η)

=φ((1 − pk + ℓpk)

τk−1+1
∑

j=0

ρ2j(A)

+ η(τk−1 + 1)(1− pk + ℓpk) + (1− ℓ)pk)
(A.8)

Due to ρ(A) is bounded for all matrix A thus in finite
horizon, we can find a non-negative integersB greater than
(A.8), so we finish the proof of condition (2) and the right
half of (A.2).

Then, we prove condition (3),
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∑

j∈S

t(j|s, θ)Mj + r(s, θ)−Ms

=φ(ℓpk + (1 − pk))

τk−1+1
∑

j=0

(ρ2j(A) + η)

+ Tr(hτk−1(P̄ ) + ηak)− φ

τk−1
∑

j=0

(ρ2j(A) + η)

+ (1 − ℓ)pkφ

≤(ϕ− φ(1 − (1− (1− ℓ)pk)ρ
2(A)))

τk−1
∑

j=0

(ρ2j(A) + η)

+ φ(1 − ℓ)pk (A.9)

When ρ(A) ≤ 1, (A.9) can be expressed as

(ϕ− φ(1 − ℓ)pk)k(1 + η) + φ(1 − ℓ)pk ≤ 0

therefore

φ ≥ k(1 + η)

(k(1 + η)− 1)(1− ℓ)pk
ϕ (A.10)

when k →∞, φ ≥ ϕ
(1−ℓ)pk

so as to make (A.9) nonpositive.

Otherwise, when ρ(A) > 1, (A.9) is expressed as

φ ≥ −k(ρ2k(A) + η)

(1− ℓ)pk + k(ρ2k(A) + η)((ℓpk − pk + 1)ρ2(A)− 1)
ϕ

when k → ∞, φ ≥ ϕ
1−(1−(1−ℓ)pk)ρ2(A) for the sake of

making (A.9) nonpositive.And then, we finish the proof
of condition (3).

Appendix B. PROOF OF THEOREM 8

In order to prove the existence of threshold structure, we
need to verify the following four conditions depending on
Puterman (2014).

(1) r(s, a) is nondecreasing in s for all a ∈ A.
(2)

∑

j�s′
k

t(j|sk, ak) is nondecreasing, ∀sk ∈ S in s for

all a ∈ A.
(3) r(s, a) is superadditive function on S× A.
(4)

∑

j�s′
k

t(j|sk, ak) is is superadditive function on S×A,
∀s′k ∈ S.

Firstly we prove that condition (1) and (3) exist below.

We choose the s = hτk−1(P̄ ) and j = hτk(P̄ ) at time k,
based on Lemma 6, for a = 0 and 1, r(s, a) = Tr[Pk−1 +

ηakI] =

{

Tr[hτk−1(P̄ )] ak = 0

Tr[hτk−1(P̄ )] + nη ak = 1
is nondecreasing in

s.

In addition, Lemma 6 also derive the following for τ+ ≥ τ−

hτ−

(P̄ ) ≥ hτ+

(P̄ ) (B.1)

For a+ ≥ a− and fixed a, we can get

r(s+, a+)− r(s+, a−) ≥ r(s−, a+)− r(s−, a−) (B.2)

and then r(s, a) is superadditive function, condition (2) is
satisfied.

And then we prove that condition (2) and (4) exist below.

We fix ak for all ak ∈ A and define s−k = hτk−1(P̄ ),

s+k = hτk(P̄ ), which is s−k < s+k .

Let k = 1 as an example,

• If s′k = h0(P̄ ) = P̄ , that is s′k ≤ s−k < s+k ,
∑

j�s′
k

t(j|s+k , ak) =
∑

j�s′
k

t(j|s−k , ak) = (1− ℓ)pk

• If s′k = hτk−1(P̄ ) = h(P̄ ), that is s−k < s′k ≤ s+k ,
∑

j�s′
k

t(j|s+k , ak) =
∑

j�s′
k

t(j|s−k , ak) = ℓpk

• If s′k = hτk−1(P̄ ) = h2(P̄ ), that is s−k < s+k < s′k,
∑

j�s′
k

t(j|s+k , ak) = ℓpk >
∑

j�s′
k

t(j|s−k , ak) = 0

• If s′k = hτk−1(P̄ ) = h2(P̄ ), that is s−k < s+k < s′k and

τ ′k − τ+k ≥ 2,
∑

j�s′
k

t(j|s+k , ak) =
∑

j�s′
k

t(j|s−k , ak) = 0

Then we can get
∑

j�s′
k

t(j|sk, ak) is nondecreasing afore-

mentioned.

Furthermore, we prove that is
∑

j�s′
k

t(j|sk, ak) superad-

ditive function. We make the same classification discussion
like above and fix ak.

• If s′k = h0(P̄ ) = P̄ , that is s′k ≤ s−k < s+k ,
∑

j�s′
k

t(j|s+k , a+k ) =
∑

j�s′
k

t(j|s−k , a+k ) = (1− ℓ)pk

∑

j�s′
k

t(j|s−k , a−k ) = 1− pk >
∑

j�s′
k

t(j|s+k , a−k ) = 0

• If s′k = hτk−1(P̄ ) = h(P̄ ), that is s−k < s′k ≤ s+k ,
∑

j�s′
k

t(j|s+k , a+k ) = ℓpk >
∑

j�s′
k

t(j|s−k , a+k ) = 0

∑

j�s′
k

t(j|s−k , a−k ) =
∑

j�s′
k

t(j|s+k , a−k ) = 1− pk

• If s′k = hτk−1(P̄ ) = h2(P̄ ), that is s−k < s+k < s′k,
∑

j�s′
k

t(j|s+k , a+k ) = ℓpk >
∑

j�s′
k

t(j|s−k , a+k ) = 0

∑

j�s′
k

t(j|s−k , a−k ) =
∑

j�s′
k

t(j|s+k , a−k ) = 0

• If s′k = hτk−1(P̄ ) = h2(P̄ ), that is s−k < s+k < s′k and

τ ′k − τ+k ≥ 2,
∑

j�s′
k

t(j|s+k , a+k ) =
∑

j�s′
k

t(j|s−k , a+k ) = 0

∑

j�s′
k

t(j|s−k , a−k ) = 1− pk >
∑

j�s′
k

t(j|s+k , a−k ) = 0

Thus we can get
∑

j�s′
k

t(j|sk, ak) is superadditive func-

tion.

To summarize, we verify that our model satisfies the four
conditions above, that is existing a limsup average optimal
stationary policy with the property that the optimal policy
is nondecreasing in s.

Thus, we can derive that the optimal policy a(sk) has the
special threshold structure form.
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