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Abstract: Smart walkers with admittance controller usually have limited dynamics and low maximal
velocity to provide stable and safe behavior. To enable physically challenging training with smart
walker control strategies enabling faster dynamics is needed. However, in certain situations, this can
lead to instabilities, which further complicates the finding of suitable parameters for the envisioned
training functionalities. To overcome these issues, we have introduced an interaction-energy limiter and
developed a strategy to automatically determine individual user parameters for an adaptive admittance
controller. The energy limiter bounds the controller and training elements to avoid uncomfortable and
dangerous situations. These training elements are placed on a 2D map of a training environment. If the
user passes these training elements with our smart walker – RoboTrainer – they are triggered. Therefore
we call them spatial control actions. We can show that interaction-energy limiter successfully avoids
instabilities and dangerous situations when spatial control actions are triggered. The evaluation with 22
users, which used RoboTrainer with and without individualized parameters, successfully demonstrate
the benefits of the parameterization method. The presented method could be generally valuable for the
implementation of smart walkers in everyday life since it provides a solution for dealing with users with
different skills and a solution for safe interaction with smart walkers using high-dynamic control.

Keywords: Human-machine interface, Human-machine interaction, Admittance control, Model-based
control, Human-centered design, Nonlinear gain, Mobile robots

1. INTRODUCTION

Technological developments in recent decades enabled robotic
systems to emerge in our everyday life. Smart walkers (SWs)
(i.e., motorized and sensor-equipped walkers) are one example
of those systems. Recent research and development on smart
walkers focus on their design and application with elderly,
disabled, or injured persons. However, control of smart walkers
in these scenarios is done by sharply limiting the walker’s
dynamics (e.g., PAMM in Yu et al. (2003) interacts with forces
of approx. 20 N). Such a solution is not suitable for an active
force-based and physically challenging interaction with a user,
which is needed to realize training with a smart walker.

Research on dynamic control of smart walkers provides a
variety of methods, which can be mainly classified by the
type of input device used and the walker’s low-level control.
Studies that use a force sensor as an input device and control
the velocity of a walker use an admittance control approach
(Dubowsky et al. (2000); Yu et al. (2003); Chuy et al. (2007)).
Another challenge is the robust control of a smart walker
covering a variety of persons with different physical strength
and interaction preferences. There are few proposals in the
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literature to adapt walkers’ parameters to a user (e.g., Chuy
et al. (2005); Martins et al. (2014)).

In our previous works Stogl et al. (2019a,b), we proposed a
smart walker – RoboTrainer – for strength and motor train-
ing which uses an admittance controller with fixed parame-
ters. Here we describe an extended control approach consid-
ering interaction-energy between a user and RoboTrainer and a
method to determine a personalized control behavior for each
user.

The main contributions are (I) an extension of the energy limit
approach providing better performance compared to state of the
art; (II) an interaction-energy approach for avoiding unwanted
behaviors when using active training elements – spatial con-
trol actions (SCAs); (III) a method for allowing personalized
interaction forces and (IV) a non-linear adaption function for
the user’s forces considering the actual speed of RoboTrainer.
We extend the interaction-energy limiter approach (i.e., passiv-
ity) introduced by Chuy et al. (2007) for use with a walker
with faster dynamics and, at the same time recognizing the
user’s intention when suddenly changing driving direction. The
interaction-energy approach for SCAs implements two con-
cepts: passivity and safety. The passivity concept reduces the
influence of SCAs at lower interaction forces, and the safety
protects the user by limiting RoboTrainer from moving un-
intentionally in his direction. The method for individualized
interaction forces considers input forces separately in all three
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degrees of freedom and adjusts the speed of the RoboTrainer to
the actual walking speed of a user. The method does not need
any external sensor nor markings in the training environment.
This method, as well as the non-linear adaption function, are
evaluated in an experiment with 22 persons between 20 to 40
years.

Section 2 gives an overview of relevant related work on ad-
mittance control approach and its parameterization for smart
walkers. Section 3 explains the concepts in detail and sec-
tion 4 presents relevant software components of our SW –
RoboTrainer. Section 5 presents experimental results for the
interaction-energy limiting approach and outcomes from the
evaluation of the parameterization approach with the users.
Section 6 finalizes the paper with a conclusion and an outlook.

2. RELATED WORK

An active research community on smart walkers (SW) exists
already for over two decades, starting with the PAM-AID by
Lacey and M. Dawson-Howe (1998), which uses a joystick as
an input device. Later, researchers began to use force sensors
as a human-machine interface in similar walking aid systems
(e.g., Dubowsky et al. (2000)), and admittance control became
a sort of a standard (e.g., Yu et al. (2003); Chuy et al. (2005))
for control of SWs. Force-torque sensors are a widespread and
intuitive human-machine interface for a SW and therefore used
in many devices Martins et al. (2012); Solenne et al. (2016).

Yu et al. (2003) proposes a velocity-dependent adaption of the
damping factor of the admittance rule:

M · ẍ(t) + D · ẋ(t) = Fh(t) (1)
where the M is the desired mass and D the desired damping of
the smart device while Fh being the input force from a user. The
proposed damping adaption is shown in (2) where damping is
reduced with increasing speed V between maximal dmax and
minimal d0 value. Vmax represents the maximal speed of the
walking aid (i.e., PAMM).

D = dmax −
dmax − d0
Vmax

|V | (2)

We used this approach as a basis for the individual adaption
of the input forces to RoboTrainer’s speed. We propose an
extension from linear to non-linear adaption.

During interaction with RoboTrainer, we expect that users use
stronger forces, especially when spatial control actions (SCAs)
are active. In that case, a user needs to react actively to changes
in RoboTrainer’s behavior. If the user then stiffens his arms,
this can lead to an oscillatory behavior, as described in Chuy
et al. (2007). The authors also propose a solution for this by
modifying the admittance rule (1) to:

M · ẍ(t) + D · ẋ(t) = k · Fh(t) (3)
where factor k ∈ [0 1] adjusts the dynamics of a SW to achieve
stable behavior of the human-walker system. The authors also
propose an approach for the detection of oscillatory situations
by monitoring the energy of the system:

Esystem =

∫ tcurr

0

Fh · ẋdt (4)

where E represents the energy, Fh the input force from a user
and ẋ the velocity of the SW. The energy is calculated at each
control step from the system start t = 0 and until current time
t = tcurr. Exact detail for adjusting factor k from (3) are not
provided, other than k < 1.

In this paper, we implement, extend, and evaluate the approach
from Chuy et al. (2007) to detect the oscillatory behavior of
RoboTrainer. This extension (c.f. Stogl et al. (2019b)) solves
a drawback of the original method, which accumulates too
much energy over time and therefore delays the detection
of oscillations. Furthermore, we add an intention recognition
mechanism, which avoids the reduction of scaling factor k
when sudden, aperiodic changes in the input force happen.

For the second part of this paper about user-specific control
parameters for SW, there is not much relevant literature. There
is a calibration strategy for novel handle interface, presented in
Martins et al. (2014), and an approach to adapt SW’s behavior
by shifting its center of rotation (CoR) Chuy et al. (2005).
Other publications use fuzzy and state-space control, but these
are not relevant to our work. The calibration strategy from
Martins et al. (2014) is similar to our approach since we
also introduced a parameterization sequence to measure the
user’s input and derive from this the controller parameters.
Martins et al. (2014) considers only forward movements of
a smart walker and does not enable automatic calculation of
individualized controller parameters. The approach from Chuy
et al. (2005) needs specific reference paths in the environment
of the SW to calculate the adaption of CoR. Our approach does
not have such requirements and is used in an open space.

3. CONCEPT

This section describes the interaction-energy limiting approach,
and per-user parameterization implemented and evaluated with
RoboTrainer. The first part considers a situation in which comes
to unintended oscillations between user and SW caused by user
suddenly changing input force vector or stiffness of its arms.
The second part details the approach for limiting active forces
caused by spatial control actions (SCAs) and the reasoning
behind it. The last two subsections explain a process for the
automatic determination of per-user maximal forces and force
scaling factors according to RoboTrainer’s velocity.

3.1 Intention-Energy Limiting

During the previous evaluations of RoboTrainer’s functional-
ities by inexperienced users, we have observed that they are
often using powerful forces and stiff their hands to try to hold
RoboTrainer in place. This behavior decreases the stability of
the user-SW system and may cause oscillations. These oscil-
lations endanger a user and may break some parts of Robo-
Trainer’s hardware. A very similar case is already observed
by Chuy et al. (2007). Therefore, at first, we implemented
their approach for the calculation of interaction-energy. This
approach did not provide satisfactory results, probably because
of the different dynamics of Chuy et al. (2007)’s system and
RoboTrainer. An example result of this algorithm is shown in
Fig. 2, where it can be seen that the approach from Chuy et al.
(2007) accumulates the energy of the system very fast, which
is not able to fall under zero in the case of oscillations. A phase
shift of approximately 1

4 of the period between the input force
and RoboTrainer’s velocity in the case of oscillations causes the
short negative power of the system (c.f. 4) at each period. In our
experiment, this leads to a slow increase Chuy et al. (2007)’s
energy instead of a decrease.

Based on these observations, we have adapted the energy calcu-
lation from (4) to sliding-discrete form (5), where only local en-
ergy of the lastN measurements with period ∆t between them,
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is calculated. The sliding form provides a faster decrease of
the calculated system energy in case of oscillations (cf. Fig. 2).
Based on this observation and proposal from Chuy et al. (2007),
we implemented a linear decrease of factor k from (3) when the
negative energy is detected, and linear increase in case of the
positive energy. We did this for each degree of freedom, for
which also a desired adaption factor kd in (6) is defined. In this
context, h is the proportional gain which models disturbance
force feedback caused by user’s stiff arms, Ma is the actual
mass of the RoboTrainer and Md desired mass. The desired
adaption factor defines minimal factor to damp input forces in
case of the oscillatory behavior.

Esystem,n =

n∑
i=n−N

Fh,iẊi∆t (5)

kd = 1/

(
h ∗Ma

Md
− h
)

(6)

Differing from many SWs, RoboTrainer can move freely in
all directions. Therefore it is possible to suddenly change its
movement direction for 180 deg (i.e., from forward to back-
ward, or from left to right). Preparing for the evaluation of this
work, we realized that the dynamic of the system slows down
when suddenly switching directions. This velocity decline is
caused by the sliding integral approach for energy calculation.
The sliding integral approach from (5) is very sensitive to a
large negative power, which leads to the reduction of the scaling
factor (6). This effect is shown in Fig. 3 and explained in detail
in section 5.

To achieve the targeted scenario with RoboTrainer, we had to
further extend the method for the adaptation to recognize the
user’s intention. The recognition system detects one or multiple
direction changes in a specified time interval. During the first
direction change, even if the energy of the system is negative,
the scaling factor is not reduced, but the controller waits on
the further reaction of the user. If another direction change is
detected or the energy is negative also after the time interval, the
scaling factor is reduced. If there is no further direction change,
as soon as the energy is positive again, the scaling factor is reset
to its maximal value (i.e., 1). In this way, RoboTrainer does not
limit its dynamic on sudden direction change, but it is still able
to detect oscillatory behavior based on negative system energy.

3.2 Energy Limiting for Spatial Control Actions

The goal of energy limiting for SCAs is to achieve passive
behavior and increase safety when behavior modifiers are influ-
encing RoboTrainer. SCAs are introduced in Stogl et al. (2019a)
(called control modalities) and explained in detail in Stogl et al.
(2019). In short, the SCAs are virtual elements which are de-
fined along a training path to modify RoboTrainer’s behavior
to make training more versatile and challenging. They are ac-
tivated if the user is in their influence radius. In general, SCAs
can be defined and configured arbitrarily, unrelated from user’s
characteristics (e.g., interaction forces and walking speed) and
controller parameters. As described in Stogl et al. (2019), SCAs
have there own dynamics which enables better control over the
influence on the main controller, but also makes the control
over all parameters more complex. For these reasons, it is pos-
sible that the virtual force, and consequently, virtual velocity,
is higher than the user’s input, which could lead to dangerous
situations for a user. This effect is due to the influence of SCAs
on the output velocity of RoboTrianer (7).

Ẋn,out = Ẋn,main +

A∑
a

Ẋn,a (7)

n is the discrete controller step, Ẋn,main is the velocity from
the main controller using (8) and Ẋn,a is the output velocity of
the SCA a from the set of active SCAs A. RoboTrainer main
controller is time-discrete admittance rule (1):

Ẋn = Fn−1 ·K · (1− e−
1

rT ) + Ẋn−1 · e−
1

rT (8)
where r = 1/∆t is the sampling rate, K = 1/D and T =
M/D. More details about it we gave in Stogl et al. (2019b).

For better understanding, dangerous situations are explained
exemplary on the Virtual Forces SCA. This is a type of SCAs
where on a predefined path, a force vector with influence radius,
direction, and strength is defined (c.f. Stogl et al. (2019a,b)).
The virtual force disturbs a user during the training by pulling
him away from the path. The user needs to "feel" this force and
act to it to keep RoboTrainer on the predefined path.

In a case that Virtual Forces SCA is not configured properly,
the virtual force may exceed the user’s input force, which
can lead to situations where (i) user releases the handles or
(ii) tries to overcome the virtual force. At the current state of
the implementation, both cases lead to dangerous situations for
a user. In the first case, RoboTrainer will start to move into
the direction of the virtual force on its own, and in the second
case, RoboTrainer potentially pushes the user backward from
the virtual force field.

We introduce two concepts for protecting a user in those situa-
tions. The first one is inspired by the energy limiting concept,
which defines that no movement of the RoboTrainer is allowed
without the user’s intention. For this specific case, we adapted
the SCAs where we want a user to "feel" virtual forces. We
implemented a rule where the absolute value of virtual velocity
caused by SCAs does ẋSCA not exceeds the absolute value of
velocity caused by the user ẋh, i.e., ‖ẋh‖2 ≥ ‖ẋSCA‖2. In
practice, this functionality is active only if user’s input force
is lower than some predefined minimal force ‖Fh‖2 < Fmin,
then the equation for calculating RoboTrainer’s velocity ẋR is:

Ẋn,out = Ẋn,main +

A∑
a

Ẋn,a · fn,a ; fn,a =
‖ẋn,h‖2
‖ẋn,a‖2

(9)

fn,a is the scaling factor, ẋn,h is velocity resulting from the
user’s force input and ẋn,a is virtual velocity at at controller
step n and for an SCA a.

The second concept, safety, is designed to protect a user from
non-intentional RoboTrainer movements in the user’s direction.
For this, a safety angle of 30° from RoboTrainer toward the
user, i.e., in a backward direction, is defined. This concept
protects a user when using stronger forces than the predefined
minimal force Fmin, where the SCA can generally produce
stronger virtual force in one dimension, but should not push
a user backward. Concrete, this concept checks if the virtual
force is stronger than the user’s input force and if it is inside the
safety angle, and if so, (9) is applied.

3.3 Adaption of Personalized Force-Limits

Different users have a potentially vast difference in interaction
forces with RoboTrainer and natural walking speed. An admit-
tance controller with fixed parameters provides a fixed ratio
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between a user’s maximal force and maximal velocity of Robo-
Trainer, which is generally not the case. To adapt RoboTrainer
towards an individual user, we developed a method for per-
sonalizing maximal interaction forces, which adapts indirectly
mass and damping of the admittance rule from (1). This method
determines the maximal user’s interaction forces and adjusts the
admittance parameters to correspond to the maximal feasible
velocity of RoboTrainer. This maximal interaction force is in
the following called the base force.

In the procedure to determine personalized force-limits, a user
pushes RoboTrainer against virtual spring for each movement
direction separately. Parameters for backward movement are
calculated indirectly by scaling-down parameters for the for-
ward direction to avoid the risky situation where users would
pull the RoboTrainer towards itself. At the beginning of each
step, the movement of RoboTrainer is limited to the dimension
of the to-be-determined force, e.g., only forward movement
is allowed. The interaction with a user is done by flashing
the LEDs on RoboTrainer. So the green light visualizes the
direction in which a user should give the force. When a user
pushes against the virtual spring with factor k for a distance
x from the starting point, it generates the opposing force is
Fopp = k∗x. This force is subtracted from the user’s input force
and sent to the admittance controller with fixed parameters to
generate RoboTariner’s movement. A user is then required to
push the RoboTrainer against the spring as much as he feels
safe to handle and to keep the force and position stable for at
least one second in a predefined range of a few centimeters.
After reaching this state, the average input force during the last
second is calculated and stored as the maximum force value
for the to-be-determined movement direction. A red flashing
light informs a user about the completion of this step and the
RoboTrainer’s intention to move autonomously. As soon as a
user releases the handles, RoboTrainer starts slowly to move
back to the starting position. After the maximal forces are
determined for forward, left and right translation, and clockwise
and counterclockwise rotation, the next personalization step is
to be done.

3.4 Non-linear Adjustment of Admittance Parameters According
to Velocity

Steady-state velocity output of an admittance controller (8) is
only defined by the damping constant: Vss = Fh/D (cf. Yu
et al. (2003)). To move RoboTrainer with a constant velocity,
the user needs to input a constant force. To reduce user’s effort
when walking at a constant speed, damping constant needs to
be reduced. Nevertheless, if damping is too small, the SW gets
too reactive, and the user-SW system tends to oscillate. This
is observed by Yu et al. (2003), which proposed the linear
adaption of damping constant shown in (2).

After the initial implementation of this concept, we also inves-
tigated a linear adaption of the virtual mass of the RoboTrainer.
Changing only damping or mass constant, we ended up with
either oscillatory or overall too heavy SW. Because of the high-
dynamics of our system, none of the solutions provided satis-
factory results. Therefore, we decided to change both constants
at the same ratio to keep the dynamic profile of the system the
same but change the response time. For the reason of simplic-
ity, we decided to implement this by manipulating the user’s
input force. Another positive effect of this approach is that the
influence of the spatial control actions changes accordingly,

0 0.2 0.4 0.6 0.8 1
0
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0.4

0.6

0.8

1

v%

F %
(v
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y = x (ref.)
r =0.1
r =1

Fig. 1. Non-linear scaling of user’s input force in respect to
velocity (11), with r ∈ [0.05, 1.0], s = 10.0.

without the need for adapting their internal dynamic model. We
are adapting the maximal force limit, which scales the user’s
input force in the interval [0, 1] at the start of the control loop.
Depending of RoboTrainer’s current velocity v%(t), we adapt
the user’s maximum force limit Fbu between two extremes
f0 ∈ [0.35, 1.0] and fvmax

∈ [1.0, 2.0] for standstill and maxi-
mum velocity:

F∗
max(t) = (fvmax

+ (fvmax
− f0)F%(v(t))) · Fbu (10)

where scaling factor F%(v(t)) is an arbitrary function. In this
work, we define it as a non-linear function with parameters
curvature r and steepness s:

F%(v(t)) =
1.0− (v%(t) · r + 1.0)−s

1.0− (r + 1.0)−s
(11)

The non-linear scaling function (11) is shown in Fig. 1 for
parameters r ∈ [0.05, 1.0] and s = 10.0. This adaption model
provides higher granularity at the lower velocities to get better
maneuverability in curves and around obstacles, and results in
lower effort when the user is moving faster. This parameters
are chosen experimentally, s = 10 based on curve plots as in
Fig. 1 and r = 0.55 based on analysis of its influence on SW’s
behavior.

In general, the scaling parameter for zero velocity f0 should
be kept at values ≤ 1.0 to give the system more robustness at
lower velocities. The parameter for maximum velocity fvmax

should be held at values > 1.0 to lower the user’s force input
for keeping the pace at higher velocities. The parameters are
chosen to decrease the SW’s sensitivity for factor three and to
decrease the needed force for the maximal velocity for a half..

For calculation of scale parameters f0 and fvmax we developed
a second parameterization method. This method consists of two
steps, in which RoboTrainer can move only forward and back-
ward. The user is asked to walk two times for approximately
8 m straight forward and then backward to the start position.
During this movement, the average distance between the Robo-
Trainer and the user’s lower-legs is determined. In the first
run, the RoboTrainer is using the admittance controller with
fixed parameters and maximal force value determined during
the previous (i.e., maximal interaction force) parameterization
process. From this run, an average leg distance distbase for
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the specific user is determined and used as a baseline for the
second step. In the second run RoboTrainer uses the veloc-
ity based force adaption (10) with default parameters and the
quadratic distance difference in distance towards the first run
δd(t) = ‖dist(t) − distbase‖2 to tune the parameters. If the
measured user-SW distance is larger than the distance from the
previous run, the parameters are tuned to provide more restric-
tive behavior (12)(13). If the distance is smaller, the parameters
are tuned to provide more agile behavior. This tuning is done
online and stops when the same distance as the baseline is
recognized for five consecutive measurements.

fm =

{
fm + δd(t) · (1−fm) if F%<1 and δd(t)<0

fm − δd(t) · (1−fm) if F%<1 and δd(t)>0
(12)

f0 =

{
f0 + δd(t) · (1−f0) if F%>1 and δd(t)>0

f0 − δd(t) · (1−f0) if F%>1 and δd(t)<0
(13)

Upon completion of this parameterization step, RoboTrainer is
free to move in all directions. The obtained maximum force
limits and velocities are used as controller parameters, and
the velocity-adaptive control is activated using the calculated
adaption factors.

4. ROBOTRAINER’S CONTROL ARCHITECTURE

The general concept and technical details of the RoboTrainer
device are already described in our previous works, Stogl et al.
(2014); Stogl et al. (2019a). Here, we give more concrete in-
formation on components relevant to the control concepts. The
software of RoboTrainer is realized using the Robot Operat-
ing System (ROS) Quigley et al. (2009) as a middleware for
communication between different components. For control ros-
control-concept is used, where controllers are programmed in
C++ and abstracted from used robot hardware. The controllers
are compiled in dynamic libraries that can be loaded and un-
loaded during run-time without a need for a new start of a
RoboTrainers’s hardware.

Controllers are implemented in a hierarchy so that the base con-
troller presented in Stogl et al. (2019a) is extended by controller
implementing the interaction-energy limiter, which is further
extended by the adaptive admittance controller. To demonstrate
different functionalities, we use dynamic_reconfigure ROS-
package to change parameters during run-time and enable func-
tionalities. All functionalities in this paper are implemented di-
rectly in the controllers, except the shin tracking algorithm used
for calculating the distance between a user and RoboTrainer.
The leg-tracking algorithm implements the shin tracking ap-
proach from Lee et al. (2011) in a separate ROS-Node.

5. EVALUATION

For the evaluation of our extension of the energy limiting
approach from Chuy et al. (2007), a user was intentionally using
very the results are only shown for one dimension, i.e., the
longitudinal axis of the system. The quality of individualized
parameters and non-linear interaction adaption was evaluated
in a study with 22 participants on test parkour shown in Fig. 9.
The complete details about evaluation are given in the following
subsections.
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Fig. 2. Comparison of energy calculation with approach from
Chuy et al. (2007) (“Energy Chuy”) and our extension
(“Energy Sliding”).

5.1 Energy Limiting

Fig. 2 shows an experimental comparison of the approach from
Chuy et al. (2007) and our extended approach. The user was
advised to move for a few seconds forward and then to provoke
an oscillatory behavior by stiffing his arms. The Chuy et al.
(2007) approach does not function properly with our system.
The main reason for this is that one could have long periods
when energy is positive, during which Chuy’s energy achieves
high values. These values are, in the case of oscillatory behavior
(at 3 s), not able to fall under zero. The second issue with
Chuy’s energy is that during oscillations for a short period, the
power of the system is positive, i.e., input force and velocity
show in the same direction, which leads to the slow increase of
it. Our approach to calculating energy using a sliding integral
shows a faster reaction to oscillatory behavior and keeps low
values during oscillations.

To show and to evaluate the issue of reducing RoboTrainer’s dy-
namics when the user suddenly changes directions, we defined
the following scenario: (I) the user moves with RoboTrainer ap-
proximately two meters forwards; (II) suddenly switches direc-
tion and moves back to the start; (III) the user moves forwards
again and stiffs his arms; (IV) the user waits until the oscil-
latory behavior is in given limits and then removes his hands
from RoboTrainer’s handles. The first two steps evaluate the
influence of the energy limiter on sudden direction changes, and
the second two steps examine RoboTrainer’s behavior when an
oscillation happens.

Fig. 3 shows the influence of the sliding-integral-energy-
calculation on the reduction of the scaling factor. When os-
cillatory behavior happens (at 10 s), the scaling factor of the
input force is damped as intended, and the output velocity of
RoboTrainer is stabilized. At 4 s and 6 s, this approach impairs
the dynamics of RoboTrainer when the user suddenly inverts
the direction. Fig. 4 shows the results regarding our adapted
method for changing the scaling factor by detection of the user’s
intention. The scaling factor is reduced only for a short time
when the user changes the direction (approx. 3 s and 6 s), while
the reliable detection of oscillations is still present. At 10 s, the
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Fig. 3. Influence of the sliding integral on a sudden change of
RoboTrainer’s direction.
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Fig. 4. Adapted method for scaling factor with the detection of
the user’s intention to keep dynamics of the system when
the user suddenly changes direction.

oscillatory behavior takes for a second, and the scaling factor is
set to zero to protect RoboTrainer’s hardware.

5.2 Passivity and Safety of Spatial Control Actions

Potentially dangerous situations without the energy limiting
concepts for SCAs are shown in Fig. 5 and 7. The effect of these
concepts is the same for different types of SCAs. Therefore,
we present here only the evaluation with Virtual Forces SCA.
For the clear representation, figures show only one degree
of freedom, i.e., the longitudinal axis of RoboTrainer. In the
evaluation scenario, we configured the virtual force of Virtual
Forces SCA to be oriented towards the user and stronger than
his maximal input force.

Fig. 5 depicts a situation where the user is overstrained with
the virtual force and decides to remove his hands from Robo-
Trainer’s handlebars (at 5 s). At that moment, RoboTrainer
starts to move towards the user, i.e., continues its movements
according to the velocity generated by the virtual force field (at
6 s) until the influence of the field disappears (at 8 s).
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Fig. 5. SCAs without the passivity concept. The user is over-
strained with the virtual force and lets RoboTrainer go (at
5 s). RoboTrainer starts to move towards the user (6 s) until
the influence of the virtual force disappears (at 8 s). After
that, the user moves RoboTrainer again.
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Fig. 6. SCAs with the passivity concept. When the user removes
his hands from the handles (at 5 s), RoboTrainer stops.
Even in a virtual force field, RoboTrainer does not move
(5 s to 7 s) and starts its movement in the user’s direction
only when the user intends this.

When the passivity concept for SCAs is integrated and used,
RoboTrainer stops immediately when the user releases its han-
dles (Fig. 6 at 5 s to 7 s). It starts to move when the user’s input
force present again.

The scenario when the user tries to overcome a too strong
virtual force, is depicted in Fig. 7 for the deactivated safety
concept and in Fig. 8 for the activated safety concept. In the
first case, the user is pushed our from the virtual force field
(i.e., negative RoboTrainer’s velocity at 5 s to 7 s) against his
will (i.e., the user’s input force is pushing the robot away from
him). In the second case, the resulting velocity of the robot stays
around 0 and, therefore, does not endanger the user.
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Fig. 7. The user tries to overcome a too strong virtual force.
Without any limitations, the user is being pushed back
from the virtual force field (negative robot velocity at 5 s
to 7 s) against its intention (input force is positive).
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Fig. 8. The safety concept for SCAs. Even if the virtual force is
stronger than the user’s input force, RoboTrainer does not
move towards the user against its intention. The robot’s ve-
locity is stopped at zero and becomes negative only when
the user intends to move RoboTrainer towards himself.

5.3 Individualized Controller Parameters

The approach for the parameterization of personalized control
parameters is evaluated in a user study with 22 participants (3
females) between 20 to 40 years of age. The participants were
university students and researchers, which responded to our
call-for-participation on the institute’s mailing list. 13 of them
had very little or no previous experience with RoboTrainer, 4
average experience, and 5 were experienced and very experi-
enced with it. In the latter group are authors of this paper and
former students, who worked with RoboTrainer in the past.

We evaluated the following variables: (1) subjective complex-
ity, intuitiveness, and practical use of parameterization pro-
cesses; (2) subjective and objective influence on the control
performance with and without personalized forces; (3) sub-
jective and objective influence of non-linear adaptive control

Fig. 9. Left: RoboTrainer v1; Right: The training paths for
the user-study marked with numbered sections. The users
pulled RoboTrainer backward in section 3. In other sec-
tions, the user is moving forwards.

versus controller with fixed parameters; (4) subjective influence
of the position of the center of rotation (CoR) on control of
RoboTrainer. Subjective evaluations are done in the form of
questionaries and objective ones by measuring average velocity,
forces, and deviation from the given paths. The change of Robo-
Trainer’s CoR is done by transforming the user’s input force
in the coordinate system in the middle of the RoboTrainer’s
front edge, i.e., further away from the user. Therefore, there
is no detailed explanation about it in the concept section. In
the evaluation, we used the RoboTrainer v1 device and parkour
from Fig. 9.

Upfront the study, we explained to the participants the study
goals, gathered demographic data, and got consent to record
and process their data. As a warm-up task, the participants
moved along the straight line (“1” in Fig. 9) forward and back-
ward. First, the participants did user-force parameterization
process, after which we ask the following questions: (1) “How
complex was the parameterization process for You?”; (2) “How
intuitive was the parameterization process?”. The participants
answered on a scale with five-level Likert items from “1 -
very complex / not intuitive at all” to “5 - very simple / very
intuitive”. The answers are summarized in the second and third
columns of Table 1.

The usefulness of this process is evaluated by two consecu-
tive repetitions of the parkour “1-2-3” (section “3” backward
movement). The pre-defined controller with maximal linear
force of 100 N in both dimensions and maximal rotational
moment of 30 N m is compared to the user-specific maximum
force/torque values. Those two settings were chosen in random
order between the repetitions to avoid the influence of growing
experience with RoboTrainer. Afterward, we asked uses which
repetition was easier for them to accomplish.

72.7 % of the users rated the individual-force parameterization
as easy and very easy, while only one user rated it as difficult.
68.2 % graded the process as intuitive and very intuitive, while
18.2 % were undecided or found the process unintuitive (cf.
Table 1). The cause for this is probably a too high minimal-
reaction-force limit, which was an issue for some very careful
first-time-users. 19 of the 22 users preferred their maximal
force, while 3 of them found the standard values to be more
comfortable. For both of these runs, we calculated the average
RoboTrainer’s velocity, user’s input force, and path deviation.
All three measured parameters tend to be higher using standard
values, with minimal, i.e., <10 %, and statistically insignificant
differences.
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Table 1. The number of users’ responses per grades on the
Likert scale regarding their experience with the personalization

strategies and shift of the CoR.

Individual User Force Individual Velocity Adaption CoR Front
Grade Complexity Intuitiveness Complexity Intuitiveness Complexity

1 0 0 0 0 2
2 1 4 0 1 1
3 5 3 2 3 3
4 9 6 7 3 7
5 7 9 13 15 9

Scale: 5 - very simple, very intuitive; 5 - very complex, very unintuitive

The process for characterization of non-linear velocity adaption
parameters was evaluated by participants using the same two
questions as for the previous parameterization. The results are
presented in the fourth and fifth columns of Table 1. Over
90.9 % of the users found the parameterization for the velocity
adaption factors easy and very easy, while two users rated it
as average and none as difficult. The method was rated as
intuitive and very intuitive by 81.8 % of the users, while only
one participant rated it as unintuitive.

For comparison of the non-linear adaptive controller to the
admittance-controller with fixed parameters, the users repeated
the “1-2-3” parkour with activated virtual forces twice. The
controllers are chosen again in random order. Three participants
found the admittance-controller with fixed parameters to be
more comfortable, while 19 of them preferred the velocity-
adaptive control. Users were faster using the adaptive controller
and much faster compared to the repetitions from individual-
force parameterization. Probably a growing experience with
RoboTrianer caused this. The average force and its standard
deviation increased, which means that the users’ input forces
were widespread.

The shift of the center of rotation (CoR) was evaluated using a
“4-5” parkour, where the participants had to do 180° turn on a
predefined radius. Most of the users preferred shifting the center
of rotation further away from themselves. 72 % of the users
rated it as simple and very simple, three users were undecided,
and the remaining three prefer the center of rotation to be closer
to them (see Table 1).

6. CONCLUSIONS AND OUTLOOK

Admittance control is one of the most commonly used control
strategies in smart walkers (SWs) when a force sensor is the
chosen input device. We present an interaction-energy observer
to achieve better performance in detecting oscillatory behavior
during the interplay of the user and the SW, especially taking
the user’s intention into account. This concept is also applied
to a training scenario where spatial control actions, i.e., active
modifiers of RoboTrainer’s behavior, are applied to prevent
potentially dangerous situations for a user. Furthermore, we
propose a method for individual per-user parameterization of an
adaptive admittance controller. The evaluation shows that users
prefer our control strategy, being able to incorporate individual
user parameters while using a suitable adaptation strategy.

The goal of our upcoming research work with RoboTrainer
is to provide better intention recognition, especially in a case
where scaling factors should not be changed at all when a
user abruptly changes movement direction. Furthermore, we
want to enable updates of adaption parameters also during the
interaction with RoboTrainer to react to changes in the user’s
behavior.
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