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Abstract: This paper proposes an algorithm for online controller synthesis for autonomous
systems with LTI dynamics considering obstacle avoidance. The obstacles are assumed to be
other systems with affine probabilistic dynamics. The initial state as well as the disturbances
of these systems are Gaussian distributed. To guarantee that the probability of a collision
is smaller than a predefined threshold, probabilistic reachable sets are used. Due to the
Gaussian distribution, the probabilistic reachability procedure can use the principles of the
ellipsoidal calculus. For the autonomous system, these time-varying reachable sets of the
other systems are avoided by an approach, which is based on model predictive control and
successive convexification of the constraints. Due to high computational times required for
the computation of probabilistic reachable sets and the convexification, different techniques
to reduce the computational time significantly are also proposed.
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networked systems, predictive control.

1. INTRODUCTION

Multi-agent systems are systems composed of several indi-
vidual subsystems, and typically, these subsystems solve
a task collaboratively, see e.g. Tiang and Mahyuddin
(2016); Zhang et al. (2018). But for some scenarios, the
subsystems have individual objectives, and in this case,
an important aspect is to guarantee collision avoidance
between the subsystems and with other obstacles. In this
paper, we propose a control scheme that is sample-free and
predicts states which are probabilistically safe with respect
to the states of the other subsystems. Mylvaganam et al.
(2017) formulate a similar problem as a differential game
with the assumption that the states of the subsystems
are deterministic. But in many applications, uncertainties
play a crucial role, and hence, the environment cannot be
exactly modeled. One way to describe the obstacles is by
using reachable sets of the subsystems, as in this paper. In
most approaches, the uncertainties are specified in terms
of bounded sets, e.g. HomChaudhuri et al. (2017), which
is a major restriction, since in most cases the disturbances
arise from measurement noise, where the state information
is distributed around the true value. In Asselborn and
Stursberg (2015); Vinod et al. (2018), the uncertainties
are modeled by probability distributions, leading to prob-
abilistic reachable sets with the interpretation that these
sets contain only a certain (high) percentage of all reach-
able states of a system. The probabilistic reachable sets are
over-approximated by ellipsoids, motivated by modeling
the uncertainties as Gaussian distributions, and the con-
fidence regions of a Gaussian distribution are ellipsoidal
sets. But in Asselborn and Stursberg (2015), obstacle
avoidance does not play a role, and in Vinod et al. (2018),
reachable sets are computed with the assumption that the

subsystems (robots) have translational motion only. Fur-
thermore, they are not controlled to obtain probabilistic
reachable sets which decrease over time in size, leading
to infeasible problems as time advances. An alternatives
is chance-constrained approaches, as e.g. in Blackmore
et al. (2006, 2011), using disjunctive linear programming
to formulate the probabilistic obstacle avoidance problem,
or sample-based approaches, as e.g. in Prandini et al.
(2012), Chiang et al. (2015). The chance-constrained ap-
proaches require polytopic obstacles, and they are com-
putationally expensive. For the sample-based approach, in
addition a high number of samples is necessary to achieve
the desired confidence, particularly in higher dimensions.
In terms of the real-time requirement, the computational
time has to be kept as small as possible, and hence, it is
necessary to choose an appropriate approach for obstacle
avoidance, e.g. such that the optimization problem results
in a convex program.
The main contribution of this paper is an online control
scheme for a single subsystem/agent within a stochasti-
cally modeled environment. The environment is modeled
by using probabilistic reachable sets for the other subsys-
tems, since their uncertainties are assumed to be Gaussian
distributions. The resulting non-convex obstacle avoidance
problem is convexified via successive convexification (SC),
as described by Mao et al. (2016); Dueri et al. (2017);
Szmuk et al. (2017). A model predictive control (MPC)
approach is used to formulate the resulting convex obstacle
avoidance problem, and to achieve the desired computa-
tional time for online application, different modifications
are proposed. In contrast to Vinod et al. (2018), the
obstacles are also controlled to predict the behavior of the
other subsystems in an optimal manner such that 1) the
probabilistic reachable sets do not increase over time, and
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2) they steer the subsystems towards their targets.
The paper is organized as follows: Sec. 2 describes the over-
all problem, introduces notation used afterwards, and it
provides a description of the dynamic obstacles. In Sec. 3,
the proposed synthesis techniques embedding a step of SC
is described, followed in Sec. 4, by techniques to reduce
computational time. A numerical example is presented in
Sec. 5, and Sec. 6 concludes the paper.

2. PROBLEM STATEMENT AND CONTEXT
MODELING

The considered environment is partitioned into no + 1
subsystems, of which one, called the autonomous system
(AS), is to be controlled in context of the no others.
The context cannot precisely modeled, since the dynamics
of the other subsystems includes uncertainties. The AS
has to be controlled such that the probability of harmful
interaction with the other subsystems is lower than a given
threshold. Therefore, bounded sets of uncertain states are
computed for the no subsystems, which define forbidden
regions (obstacles) for the AS, as illustrated in Fig. 1.

Assumption 1. For the AS, only the information of the
other subsystems are known at time k̄ ∈ N0, and there is
no communication between the subsystems. Furthermore,
the other subsystems have the objective to be controlled,
such that they reach their desired target regions.

Assumption 1 should be interpreted as follows: at time
instant k̄, the AS gets the information about the other
subsystems (e.g. the expectation values and the covariance
matrices of their states, target regions etc.), and from then
on, it is assumed that no communication occurs until the
state of the AS reaches its target region (e.g. for some
reason, a communication network is not available). Hence,
the bounded sets have to be computed online. From now
on, assume that k̄ = 0 for ease of notation.

Fig. 1. Sets are computed which contain the uncertain
states of the other subsystems (E1 - E4) to a specified
confidence. These sets are obstacles for the AS, and
the objective is to control the AS into the target set
(red ellipse) without hitting the obstacles.

A. Preliminaries and System Definition

Let Sn++ be the set of all symmetric positive definite
matrices of order n × n, and Sn+ the set of all symmetric
positive semi-definite matrices. λmin(M) and λmax(M)
denote the minimum and maximum eigenvalues of the
matrix M . The set E contains all ellipsoids in Rn. An
ellipsoid is defined by ε(q,Q) = {x | (x − q)TQ−1(x −
q) ≤ 1}, where q ∈ Rn is the center point and Q ∈ Sn++ the
shape matrix. A polytope P in half-space representation
and parametrized by A and b is defined by PH(A, b) =
{x |Ax ≤ b, A ∈ Rn×np , b ∈ Rnp}. Given a compact set
Ω ⊂ Rn, the boundary of this set is denoted by ∂Ω and its
interior by int(Ω).

The dynamics of the AS is assumed to be discrete-time
LTI with state and input constraints:

xk+1 = Axk +Buk, xk ∈ X , uk ∈ U, (1)

where X and U are polytopic sets. Furthermore, let x̄ ∈ X
be an equilibrium point, for which an input ū ∈ U exists.

B. Specification of the Obstacles

In this subsection, the notion of probabilistic reachable
sets as defined in Asselborn and Stursberg (2015) are
used. This procedure is sketched as it plays an important
role in the overall optimization to be presented later. In
the following, the quantities for the i-th subsystem are
indicated by the superscript (i). The dynamics of each
other subsystem i ∈ {1, . . . , no} is assumed to be affine
probabilistic:

x
(i)
k+1 = A(i)x

(i)
k +B(i)u

(i)
k +G(i)v

(i)
k , u

(i)
k ∈ U

(i), (2a)

x
(i)
0 ∼ N (q

(i)
0 , Q

(i)
0 ), v

(i)
k ∼ N (q(i)v , Q(i)

v ), (2b)

where q
(i)
0 , q

(i)
v ∈ Rn are the mean vectors of the prob-

abilistic distributions of the initial states and the dis-
turbances, and Q

(i)
0 , Q

(i)
v ∈ Sn++ are the corresponding

covariance matrices. Furthermore, the input is bounded by

the polytope U (i) = PH(R
(i)
u , b

(i)
u ), where R

(i)
u ∈ Rn(i)

u ×m

and b
(i)
u ∈ Rn(i)

u .

Assumption 2. Let x̄(i) be an equilibrium point for the
system (2), i.e., a unique input ū(i) ∈ U (i) exists with

x̄(i) = (I −A(i))−1(B(i)ū(i) +G(i)q
(i)
v ).

Assumption 2 is necessary to ensure the solvability of the

following reachability problem. The reachable set X
(i)
k+1 ⊆

Rn of a system describes the set of all states x
(i)
k , which

are reachable from the previous set X
(i)
k for at least one

u
(i)
k ∈ U (i). It can be expressed as a set valued mapping:

X
(i)
k+1 = A(i)X

(i)
k ⊕B

(i)U (i) ⊕G(i)V (i), (3)

where X
(i)
k ∈ E and V (i) = ε(q

(i)
v , Q

(i)
v ) ∈ E are two

bounded ellipsoidal sets. Since the Minkowski sum of
two ellipsoids is in general not an ellipsoid anymore,
the Minkowski sum is over-approximated by an ellipsoid:

X
(i)
k+1 ⊆ X̂

(i)
k+1 = ε(q

(i)
k+1, Q

(i)
k+1). Due to the stochasticity

of the considered subsystems, probabilistic reachable sets
are introduced with the interpretation, that a percentage
δ(i) of the possible states for the probabilistic system are
contained within these sets. A probabilistic reachable set
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with confidence δ is denoted by X̂δ(i)

k . Given that only
normal distributions are considered, the confidence regions
correspond to ellipsoidal sets. A confidence ellipsoid is
computed with a scaling parameter c(i):

X̂δ(i)

k = ε(q
(i)
k , Qδ

(i)

k ), Qδ
(i)

k = c(i) ·Q(i)
k , (4)

and c(i) is the solution of the inverse cumulative distribu-
tion function of the χ2-distribution: c(i) = (Fχ2)−1(δ(i), n),
see Asselborn and Stursberg (2015).
Assuming that the subsystem is under effect of an affine

control law u
(i)
k = −K(i)

k x
(i)
k + d

(i)
k in order to drive the

i-th subsystem to x̄(i), (3) can be rewritten to:

Xδ(i)

k+1 ⊆ ε(A
(i)
cl,kq

(i)
k , A

(i)
cl,kQ

δ(i)

k A
(i)T

cl,k )⊕ . . .

. . .⊕ ε(G(i)q(i)v , G(i)Qδ
(i)

v G(i)T ) +B(i)d
(i)
k ⊆ X̂

δ(i)

k+1,
(5)

whereA
(i)
cl,k = A(i)−B(i)K

(i)
k . Now, the over-approximation

of the next probabilistic reachable set is computed as

follows: X̂δ(i)

k+1 = ε(q
(i)
k+1, Q

δ(i)

k+1) ⊇ Xδ(i)

k+1, where q
(i)
k+1 =

A
(i)
cl,kq

(i)
k + B(i)d

(i)
k + G(i)q

(i)
v , and for s(i) ∈ R>0: Qδ

(i)

k+1 =

(1+s(i)
−1

)A
(i)
cl,kQ

δ(i)

k A
(i)T

cl,k +(1+s(i))G(i)Qδ
(i)

v G(i)T . For all

s(i) > 0, X̂δ(i)

k+1 is an over-approximation of the Minkowski

sum, but there exists a unique s(i), such that X̂δ(i)

k+1 be-
comes a Loewner-John-ellipsoid, Asselborn and Stursberg
(2015).

The determination of the control tuple (K
(i)
k , d

(i)
k ) to

solve the reachability problem is cast into a solution of
a semi-definite program (SDP). To guarantee stability,

a quadratic time-invariant Lyapunov function V (q
(i)
k ) =

q
(i)T

k M (i)q
(i)
k is used, where M (i) ∈ Sn++. The inequality

q
(i)T

k+1M
(i)q

(i)
k+1 − ρ(i)q

(i)T

k M (i)q
(i)
k ≤ 0 with ρ(i) ∈ (0, 1]

has to be fulfilled to ensure stability with respect to the

origin. For the convergence of the shape matrix Qδ
(i)

k , an

over-approximated matrix S
(i)
k ∈ Sn++ is introduced, and

it must hold that tr(S
(i)
k+1) ≤ tr(Qδ

(i)

k ) and Sk+1 ≥ Qδ
(i)

k+1.
This can be expressed by the following linear matrix in-
equality (LMI): S

(i)
k+1 A

(i)
cl,kQ

δ(i)

k G(i)Qδ
(i)

v

Qδ
(i)

k A
(i)T

cl,k (1− ν(i))Qδ(i)k 0

Qδ
(i)

v G(i)T 0 ν(i)Qδ
(i)

v

 ≥ 0, ν(i) ∈ (0, 1),

(6)

with ν(i) = 1/(1 + s(i)). To ensure, that the input con-
straints are satisfied in each time step, the control law is
inserted to the half-space representation of the polytope
U (i):

R(i)
u (−K(i)

k x
(i)
k + d

(i)
k ) ≤ b(i)u , ∀x(i)k ∈ X̂

δ(i)

k . (7)

By row-wise maximization, the condition (7) can be ex-
pressed as:

max
w(i)∈W (i)

r(i)u,pw ≤ b(i)u,p, ∀p(i) ∈ {1, . . . , n(i)
u }, (8a)

W (i) = {w(i) ∈ Rm | w(i) = −K(i)
k x

(i)
k + d

(i)
k , x

(i)
k ∈ X

(i)
k }.
(8b)

Here, r
(i)
u,p is the p-th row of R

(i)
u , and b

(i)
u,p the corre-

sponding p(i)-th entry of the vector b
(i)
u . The ellipsoid

X̂δ(i)

k is now transformed into a unit hyper-ball by θ(i) =

Qδ
(i)−1/2

k (x
(i)
k − q

(i)
k ), ||θ(i)||2 ≤ 1. Now, the set (8b) can be

expressed as:

W (i) = {w(i) | w(i) = −K(i)
k (Qδ

(i)1/2

k θ(i) + q
(i)
k ) + d

(i)
k }.

(9)

By use of (9), the maximization can be eliminated
from (8a):

max
θ(i)

||θ(i)||2≤1

r(i)u,p(−K
(i)
k Qδ

(i)1/2

k θ(i))− r(i)u,pK
(i)
k q

(i)
k + . . .

. . .+ r(i)u,pd
(i)
k ≤ b

(i)
u,p, (10a)

|| − r(i)u,pK
(i)
k Qδ

(i)1/2

k ||2 ≤ b(i)u,p − r(i)u,p(d
(i)
k −K

(i)
k q

(i)
k ).

(10b)

Finally, the inequality (10b) can be expressed by the
following LMI: ϕ

(i)
u,p,k −r(i)u,pK(i)

k Qδ
(i)1/2

k

(−r(i)u,pK(i)
k Qδ

(i)1/2

k )T ϕ
(i)
u,p,kIn

 ≥ 0, (11)

∀p(i) ∈ {1, . . . , n(i)
u },

where ϕ
(i)
u,p,k = b

(i)
u,p−r(i)u,p(d(i)k −K

(i)
k q

(i)
k ). The derived con-

straints together with an appropriate objective function
yields the following optimization to determine a control
strategy for the i-th subsystem:

min
S

(i)

k
,K

(i)

k
,d

(i)

k
,ν(i)

µ
(i)
0 tr(S

(i)
k+1) + µ

(i)
1 ||q

(i)
k+1||2 + µ

(i)
2 ||u

(i)
k ||2,

(12a)
s.t.: q

(i)
k+1 = A

(i)
cl,kq

(i)
k +B(i)d

(i)
k +G(i)q(i)v , (12b)

q
(i)T

k+1M
(i)q

(i)
k+1 − ρ

(i)q
(i)T

k M (i)q
(i)
k ≤ 0, (12c)

tr(S
(i)
k+1) ≤ tr(Qδ

(i)

k ), (12d)

(6) and (11) ∀p(i) ∈ {1, . . . , n(i)
u }. (12e)

The weights µ0, µ1, and µ2 are user-specific degrees of
freedom and can be used to adjust priorities for the size
of the over-approximated ellipsoid, the shift of the center
point to the origin, and the magnitude of the input. The

solution provides a control tuple (K
(i)
k , d

(i)
k ) to compute the

next over-approximated probabilistic reachable set. If this
is repeated for each subsystem over a certain time horizon,
the computed reachable sets determine the obstacles for
the AS. Compared to Asselborn and Stursberg (2015), the
reachable sets are executed online in this paper.

C. Control Problem for the AS

The objective is to find an input sequence π̄, which steers
the AS into a target region within a finite time N , such
that no collision with any obstacle occurs:

Problem 1. Given is the AS (1) with an initial state x0
and a target set T ⊂ Rn with x̄ ∈ T. Furthermore, let

Oδk = {Xδ(1)

k , . . . , Xδ(no)

k } be a set of obstacles, with states
modeled as random variables as in the previous subsection.
Find a control sequence π̄ = {u0, u1, . . . , uN−1} for the
AS (1) such that:

• the solution fulfills the difference equations, i.e.
xk+1 = Axk +Buk ∀k ∈ {0, 1, . . . , N − 1},

• a finite N ∈ N0 is determined (if existing) such that
xN ∈ T holds,
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• the probability of collision avoidance with obstacle i

is at least δ(i), i.e. xk /∈ Xδ(i)

k with Pr(x
(i)
k ∈ Xδ(i)

k ) =

δ(i), ∀k ∈ {1, . . . , N} and ∀i ∈ {1, . . . , no},
• the input and the state constraints are satisfied, i.e.
uk ∈ U and xk ∈ X ∀k ∈ {0, 1, . . . , N − 1}.

For solving this problem online, an MPC scheme with a
quadratic objective function is chosen:

min
uk|k,...,uk+H−1|k

||xk+H|k − xref ||2P+

H−1∑
j=0

||xk+j|k − xref ||2Qx
+ ||uk+j|k||2R

(13a)

s.t.: xk+j|k =Axk+j−1|k +Buk+j−1|k, (13b)

xk+j|k ∈X , uk+j−1|k ∈ U, (13c)

xk+j|k /∈Xδ(i)

k+j|k with Pr(x
(i)
k+j|k ∈ X

δ(i)

k+j|k) = δ(i),

(13d)

∀i ∈ {i, . . . , no}.
Here, Qx ∈ Sn+, R ∈ Sn++ are weighting matrices, P ∈ Sn+
is the unique solution to the discrete algebraic Riccati
equation for the infinite horizon unconstrained optimal
control problem, and H the prediction horizon. Due to
the non-convexity of the constraints (13d), the optimiza-
tion problem is non-convex. In this paper, only convex
optimization is considered to reduce the computational
time, and to guarantee an optimal solution. Hence, the
constraints (13d) are convexified such that the optimiza-
tion problem (13) results in a substitute quadratic program
(QP).

3. ALGORITHM FOR ONLINE CONTROL OF AS

The first objective is to convert the non-convex optimiza-
tion problem into a QP to be able to solve the problem fast
(thus to meet real-time requirements), and to guarantee a
global solution.

A. Successive Convexification

To convexify the non-convex constraints (13d), the method
of successive convexification (SC) according to Mao et al.
(2016, 2017) and Vinod et al. (2018) is tailored to the
problem at hand. These constraints can be reformulated
into:

(xk+j|k − q
(i)
k+j|k)T

(
Qδ

(i)

k+j|k

)−1
(xk+j|k − q

(i)
k+j|k)− 1 ≥ 0.

(14)

Let φ
(i)
k+j|k : Rn → R be a convex quadratic function of

the following form:

φ
(i)
k+j|k(z) := (z − q(i)k+j|k)T

(
Qδ

(i)

k+j|k

)−1
(z − q(i)k+j|k)− 1.

(15)

Obviously, φ
(i)
k+j|k(z) is continuously differentiable and

describes the left hand side of (14) for z = xk+j|k. Let

further Mk+j|k = {x ∈ X | x /∈ ε(q
(i)
k+j|k, Q

δ(i)

k+j|k) ∀i ∈
{1, . . . , no}} be the time-varying set for which the non-
convex constraint (13d) is valid. For every x ∈Mk+j|k and

every set X̂δ(i)

k+j|k, there exists a unique point z ∈ X̂δ(i)

k+j|k,

such that ||x− z||2 is minimized over X̂δ(i)

k+j|k:

z∗
(i)

k+j|k = arg min
z
||x− z||2 s.t.: z ∈ X̂δ(i)

k+j|k. (16)

The solution z∗
(i)

k+j|k is called the projection of x onto

X̂δ(i)

k+j|k. Now, the functions φ
(i)
k+j|k(z) are linearly approx-

imated in z∗
(i)

k+j|k:

t
(i)
k+j|k(z, x) := ∇Tz φ

(i)
k+j|k(z∗

(i)

k+j|k)(z − z∗
(i)

k+j|k). (17)

Note that the term of zero-th order is omitted, since the

projection point lies always on the boundary of X̂δ(i)

k+j|k,

and it holds that φ
(i)
k+j|k(z∗

(i)

k+j|k) = 0. A feasible convex set

is now given by the following condition:

t
(i)
k+j|k(z, x) ≥ 0

∣∣
z=xk+j|k

, (18a)

−∇Tz φ
(i)
k+j|k(z∗

(i)

k+j|k)︸ ︷︷ ︸
=:C

(i)T

k+j|k

xk+j|k ≤ −∇Tz φ
(i)
k+j|k(z∗

(i)

k+j|k)z∗
(i)

k+j|k︸ ︷︷ ︸
=:b

(i)

k+j|k

.

(18b)

The vector x which is needed to compute the projection
point in (16), is now replaced by the predicted states
of the previous time step xk+j|k−1. For the first time
step, no predicted states are available, and to handle this
problem, (13) is solved without considering the non-convex
constraint (13d). Now, for every predicted state over the
entire horizon, it is checked whether there exists a point
which is contained within the corresponding obstacle. If
true, then the nearest point on the boundary of that
obstacle is taken by solving the following SDP:

min
xk+j|0,new

||xk+j|0,old − xk+j|0,new||2 (19a)

s.t.: xk+j|0,new ∈ ∂ε(q
(i)
k+j|0, Q

δ(i)

k+j|0). (19b)

This procedure constructs a polytopic subset as new
constraint dividing the feasible set from the obstacles.

B. MPC Algorithm Based on SC and Reachable Set Com-
putation

The non-convex optimization (13) is now converted into a
convex one:

min
uk|k,...,uk+H−1|k

(13a) (20a)

s.t.: (13b), (13c) and (18b) ∀i ∈ {1, . . . , no}. (20b)

The objective function is a common quadratic function of
the input and state for an MPC. The first constraint (13b)
ensures that the solution satisfies the system equation, and
the second one (13c) ensures the satisfaction of the state
and input constraints. The constraints (18b) guarantee
that no collision with any other subsystem occurs with
a predefined probability. These constraints define time-
varying (but not necessarily closed) polytopic sets. To
compute these polytopic sets, the SDP (16) has to be
solved for every i ∈ {1, . . . , no} and over the entire horizon.
In this optimization, the previous predicted states are
included, which means that the predicted states have to
be stored for the next time step. The constraints of this
optimization make use of the probabilistic reachable sets
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Fig. 2. Flowchart of the complete optimization procedure.

of the i-th subsystem. To get them, another SDP (12) has
to be solved over the horizon. Fig. 2 illustrates the entire
optimization procedure as a flowchart. The information of
each subsystem is known at time k̄ = 0 with uncertainty,
because of Assumption 1. First, the optimization (12) com-
putes the reachable sets for each subsystem, defining the
obstacles for the AS. Afterwards, the optimization (16)-
(18) convexifies the originally non-convex feasible set into
a convex polytope for each point of time, which is used in
the optimization (20). The AS optimizes over the horizon
up to the goal in each time step. Algorithm 1 solves the
Problem 1 iteratively and terminates successfully, if the
state of the system (1) reaches the target region eventually.

Algorithm 1 MPC Algorithm with Obstacle Avoidance

Require: System (1), x0, T, H, Qx, R, P , kmax, and a set

of obstacles Oδ0 = {Xδ(1)

0 , . . . , Xδ(no)

0 } with T(i), δ(i),

ρ(i), µ
(i)
0 , µ

(i)
1 , µ

(i)
2 , M (i), and U (i), i ∈ {1, . . . , no}.

1: k := 0
2: while xk /∈ T and k ≤ kmax do
3: for every i and over the horizon do
4: solve the SDP (12)
5: end for
6: if k = 0 then
7: solve (13) without the constraints (13d)

8: if xk+j|k ∈ int(ε(q
(i)
k+j|k, Q

δ(i)

k+j|k)) then

9: solve (19)
10: end if
11: end if
12: for every i and over the horizon do

13: solve (16) and compute C
(i)
k+j|k, b

(i)
k+j|k

14: end for
15: solve the QP (20)
16: if no feasible solution is found then
17: stop algorithm (synthesis failed)
18: end if
19: compute the next state & store the predicted states
20: k ← k + 1
21: end while

Theorem 1. If Algorithm 1 terminates with xN ∈ T,
Problem 1 is successfully solved and an input sequence
exists, which transfers the initial state x0 into a target

region T in N steps. Furthermore, the probability of
collision avoidance with the i-th subsystem is greater than
δ(i) for all k ∈ {1, . . . , N} and i ∈ {1, . . . , no}.

Proof. Successful termination of Algorithm 1 implies that
xN ∈ T. Furthermore, the true reachable set of the i-th
subsystem at each time step is over-approximated by the

ellipsoid X̂δ(i)

k , and it holds that Pr(x
(i)
k ∈ Xδ(i)

k ) = δ(i). It
follows, that the state of the i-th subsystem is contained

within the reachable set X̂δ(i)

k with a probability greater

or equal than δ(i) for all k ∈ {1, . . . , N}. Furthermore, let

Fk+j|k = {x ∈ Rn | C(i)T

k+j|kx ≤ b
(i)
k+j|k, ∀i ∈ {1, . . . , no}}

be the time-varying convex polytope at time k+j predicted
at time k after the SC procedure. Since the projection

point z∗
(i)

k+j|k is the closest point to the previous predicted

state xk+j|k−1, the vector (xk+j|k−1−z∗
(i)

k+j|k) is the normal

vector of the corresponding i-th ellipsoid at point z∗
(i)

k+j|k.

Now, if the inner product of the normal vector and

(xk+j|k − z∗
(i)

k+j|k) for all i ∈ {1, . . . , no} is non-negative,

as ensured by the convex constraint (18), it follows that
xk+j|k ∈ Fk+j|k. According to Sec. 2, every obstacle is
represented by a convex set. Thus, it can be expressed by

the convex function φ
(i)
k+j|k(z), and for all z ∈ Fk+j|k holds:

φ
(i)
k+j|k(z) ≥ t(i)k+j|k(z, xk+j|k−1), ∀i ∈ {1, . . . , no}. (21)

Thus,

φ
(i)
k+j|k(z) ≥ 0, ∀i ∈ {1, . . . , no}, (22)

which implies that z ∈ Mk+j|k and hence, Fk+j|k ⊆
Mk+j|k and xk+j|k /∈ ε(q

(i)
k+j|k, Q

δ(i)

k+j|k) = Xδ(i)

k+j|k, ∀i ∈
{1, . . . , no} and k ∈ {1, . . . , N}. �

In general, feasibility of Algorithm 1 cannot be provided,
even with additional assumptions/conditions (e.g. only a
small number of subsystems or a small δ). But Theorem 1
ensures that the solution is collision-free in a probabilistic
manner if a feasible solution is found.

4. MEANS TO IMPROVE COMPUTATIONAL
EFFICIENCY

In order to be able to run the procedure in real time,
modifications of Algorithm 1 are made to improve com-
putational efficiency: Once the reachable sets are com-
puted, they are stored for the next time step, such that
only the reachable set at predicted time k + H has to
be computed in every iteration, except of the first one.
In the first time step, the reachable sets are computed
over the entire horizon. Because of Assumption 1, the
optimizations (12) for the subsystems can be accomplished
efficiently by parallel programming. The optimization of
each subsystem is assigned to one computational node,
assuming that as many computational nodes are available
as subsystems. Furthermore, only relevant parts of the
context are considered: First, (13) is solved without the
non-convex constraints (13d). Then, it is checked whether
a predicted state is contained within an obstacle. If not,
the next state of the AS is computed directly, and the
predicted states are stored for the next time step. Secondly,
obstacles are neglected, if they are far away, or if they
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move away from the path of the AS. In the first case, the
obstacles are omitted temporarily in the convexification
procedure, if the following condition is valid:

||xk+1−q(i)k+1||2 >
√
λmax(Qδ

(i)

k+1) + . . .

. . .+ ||q(i)k+1 − q
(i)
k ||2 + max

uk

||xk+1 − xk||2.
(23)

In the second case, the optimization of the reachable sets
is omitted with the additional assumption, that the target
regions of the subsystems are static. This criterion is
expressed by:

||xk+j|k−1 − q
(i)
k+j ||2 ≥ ||xk+j−1|k−1 − q

(i)
k+j−1||2, (24a)

||xk+j|k−1 − q
(i)
T ||2 ≥ ||xk+j−1|k−1 − q

(i)
T ||2, (24b)

∀j ∈ {1, . . . ,H}.
Note that once an obstacle is eliminated, the optimization
does not consider this obstacle anymore for the remaining
time.
Thirdly, the ellipsoids can be over-approximated by hyper-
spheres:

λmin(Qδ
(i)

k+j|k)

λmax(Qδ
(i)

k+j|k)
> α, 0 < α ≤ 1. (25)

The advantage is now that the projection point can be
computed analytically, and thus, (16) can be omitted. The
parameter α establishes a compromise between computa-
tional time and optimality of the solution.
The concept of a dynamic horizon, see Liu and Guan
(2011), to reduce the computational time further is applied
in addition. The idea is to adapt the horizon to the local
environment: For a complicated environment with several
obstacles, a large horizon is particularly advantageous,
since a feasible path can be planned early, while a short
horizon could lead to infeasibility (e.g. if the AS steers to a
dead end). For a simple environment (e.g. obstacles moving
in parallel to AS), a short horizon may be sufficient. To
detect which case applies, the norms of the difference
between the center point of an obstacle and the state of
the AS may be compared.

5. NUMERICAL EXAMPLE

To illustrate the capability of the Algorithm 1, a numerical
example is used. The chosen AS has four states, while the
other subsystems/obstacles have only two. Only the first
two states of the AS are considered to avoid the obstacles
(interpreted e.g. as the position coordinates of a vehicle
which should not coincide with an obstacle). The dynamics
of the AS is given by:

A =

1 0 0.15 0
0 1 0 0.15
0 0 1 0
0 0 0 1

 , B = 10−2

1.125 0
0 1.125
15 0
0 15

 ,
with initial state x0 = [−5 45 0 0]

T
, and target set

T = ε([−8 −15 0 0]
T
, I). The inputs are bounded to

−25 ≤ u1,k ≤ 25, −25 ≤ u2,k ≤ 25. The horizon is chosen
to H = 20. The dynamics of the other subsystems are
modeled arbitrarily as:

A(1) = A(2) =
1

10

[
9.22 0.19
−0.58 10.4

]
, A(3) =

1

10

[
9.2 −0.31
0.72 9.79

]
,

B(1) = B(2) =
1

10

[
1.96 0.02
4.02 2.04

]
, B(3) =

1

10

[
2.12 −1.7
0.4 2.5

]
,

G(1) = G(2) = G(3) =
1

10

[
1 0.5

0.8 2

]
,

with the following information at k̄ = 0:

q
(1)
0 =

[
−11
50

]
, q

(2)
0 =

[
0
50

]
, q

(3)
0 =

[
−20
10

]
,

and Q
(i)
0 = I, i ∈ {1, 2, 3}. The disturbances are assumed

to be white noise with the following covariance matrices:

Q(i)
v = 10−2

[
2 1
1 2

]
, i ∈ {1, 2, 3}.

The target sets are given by:

T(i) = ε(q
(i)
T , QT ), QT =

[
0.96 0.64
0.64 0.8

]
,

with q
(1)
T = [0 0]

T
, q

(2)
T = [−5 −10]

T
, q

(3)
T = [2 30]

T
. The

remaining parameters are chosen for M (i) = 10−3I, ρ(i) =

1, µ
(i)
0 = 1, µ

(i)
2 = 0 ∀i = {1, 2, 3}, and µ

(1)
1 = µ

(2)
1 = 5,

µ
(3)
1 = 10. The probabilities of the confidence ellipsoids are

selected to: δ(1) = δ(2) = 99 %, δ(3) = 95 %.

By applying the proposed control scheme, the system is
transferred into the target region in N = 28 time steps
with a total time of 149.07 sec, and an average time per
iteration of 5.32 sec. Fig. 3 shows the results exemplarily
at certain time instants.
By implementation of the presented techniques for reduc-
ing the computational effort according to Sec. 4 with a
dynamic horizon with lower bound Hmin = 7, the average
computational time is reduced to 286.4 ms per iteration.
Tab. 1 shows the time and call reduction of every opti-
mization. In particular, the optimization (16) is less often
called, which results in a significant time reduction. Since
the reduction techniques relate to the optimization for the
obstacles and convexification, the convergence of the AS
to the target T remains assured.

Table 1. Total computational times and opti-
mizations for the chosen example: 1) without
time reduction techniques (TRT), and 2) with

TRT.

without TRT with TRT

Algorithm total time calls total time calls

Optimization (12) 13.86 sec 141 1.92 sec 71

Optimization (16) 124.13 sec 1680 1.88 sec 90

Optimization (20) 10.38 sec 28 2.62 sec 31

6. CONCLUSION

An MPC-like synthesis procedure based on obstacle avoid-
ance has been proposed, which computes a feasible input
sequence for the AS while guaranteeing obstacle avoid-
ance in a probabilistic manner. Due to the stochasticity
of the other systems, probabilistic reachable sets were
used to describe the dynamic obstacles. The non-convex
optimal control problem was then convexified via suc-
cessive convexification. Since the computational time was
initially high, different techniques have been presented to
reduce the required time. While the computational time
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Fig. 3. Control result for the chosen example: The little red
circle represents the state at time k, and the ellipse
with the same color the target region T of the AS.
The magenta crosses are the predicted states. The
blue ellipses are the reachable sets of the obstacles
in k, and the grey ones the corresponding predicted
reachable sets. The target sets of the obstacles are the
green ellipses.

is significantly reduced, the guarantee of solvability of
the overall problem may be lost due to: 1) a bad choice
of the parameterization (e.g. δ close to 1), 2) too many
agents/subsystems are operating in the same environment,
or 3) the AS steers towards a dead end.

Future research will consider additional uncertainties for
the autonomous system. Also, the investigation of the
feasibility of (20), and the time efficiency of the convexifi-
cation methods are possible points for improvement.
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