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Abstract: This paper studies the scale-delay (SD) system as a paradigm for systems with
vanishing time-variant delay. After a brief review of the scale-delay equation and its associated
solution, we derive new identities for the zeros of the deformed exponential. A solution method
for the higher order scale-delay equation is given in terms of these deformed exponentials.
We then consider the inverse problem: “Given a function x, which differential equation does
it solve?” but with a twist: We are interested in time-variant realizations of the solution, as
described in a companion paper. This extends the well known solution for Bohl functions, where
an LTI-ODE solves the problem. If the function belongs to a subclass of real-analytic functions
with only single real zeros, a regular smooth second-order linear time-variant annihilator exists.
Finally this is applied to obtain a second order time-variant approximation of the SD-equation.

Keywords: Systems with time delays, linear systems, time-varying systems, non-parametric
methods

1. INTRODUCTION

The scale-delay (SD) equation, ẋ(t) = Ax(t) + Bx(αt)
where α ∈ (0, 1), corresponds to a delay equation with
delay τ(t) = (1 − α)t, and therefore satisfies the causality
condition τ̇ < 1 in Verriest [2011]. As a delay equation, it is
infinite dimensional. This causality condition is necessary
to make the problem well-posed. However, the equation
with α > 1 was used by Amburtsumian to model the
absorption of light in interstellar matter. Causal models
appear in certain studies of coherent states in quantum
theory (Griebel [2017], Spiridonov [1996]) and models of
cell growth in biology (van Brunt et al. [2018]). In both
limit cases, α ∈ {0, 1}, the system is finite dimensional.
Also for all, α, the system starts at t = 0 with a finite
dimensional initial condition at 0, and thus builds up its
own memory, which is required to evolve the system for
t > 0. We coin such a system as a self-starting system.
The scale-delay equation, also known as the pantograph
equation has been studied extensively, and interesting
properties are being discovered (Liu [2018]). For this
reason, we shall take it as a canonical form and starting
point to study a delay system with a time-varying delay
vanishing in a point-set T ⊂ R. We expect these system
to have an (at least locally) self-starting effect. Finite-
dimensional linear systems that are feedback-controlled by
a digital computer through a sample and hold scheme form
an important class of systems with such behavior, albeit
for α = 0.

In order to set the stage, we first present some known
results about the scale-delay systems. Its solution is known
by a series expansion, which in a specific case has a com-
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plexity just slightly higher than the exponential function.
It is therefore referred to it as the deformed exponential.
As we are only interested in behaviors for a short instant
after the time where the delay vanishes, we shall work with
finite truncations of the series expansion. In a companion
paper, submitted to this conference (Verriest [2020]), we
explore a realization problem that is directly useful for this
purpose: Given a smooth function, represent it by its time-
variant linear differential operator (a regular differential
polynomial with smooth time varying coefficients) and its
initial condition.

In order to make this paper self-contained, Section 3 builds
on the ideas from (Verriest [2020]), after briefly introduc-
ing the scale-delay equation in Section 2. In that section
we also present some new identities for the zeros of the
deformed exponential, and show how a straightforward ex-
tension (using a generalized characteristic equation) from
LTI system theory allows to solve the homogeneous equa-
tion in higher dimensions in terms of these deformed expo-
nentials. We give an approximate two-dimensional linear
time-variant representation for the deformed exponential
in Section 4. Section 5 briefly returns to the class of self-
starting systems.

2. SCALE-DELAY EQUATION

Valeev [1964] showed that the scalar functional differential
equation (FDA)

ẏ(t) = µy(t) + βy(αt), y(0) = 1, (1)

has a solution given by the series expansion

y(t) = 1 +
∞∑

k=1

tk

k!

k−1∏

i=0

(µ+ βαi). (2)
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Application of the ratio test shows that this series has
an infinite radius of convergence, hence it is an entire
function. For µ 6= 0, the solution diverges if |β| > |µ|
and converges if |β| < |µ|. A particularly interesting case
appears for µ = 0, β = 1: The unit solution (y(0) = 1)
(a.k.a. the deformed exponential)

y(t) =

∞∑

k=0

αk(k−1)/2

k!
tk

def
= Eα(t), (3)

satisfies 0 < y(t) < exp(tǫ) for all ǫ > 0, and y(t) ≥
t
ln ln t

2 lnα
+o(ln t). It follows that for µ = 0 and arbitrary

β, the unit solution is the time-scaled version Eα(βt).
Perhaps surprisingly, the solution Eα(−t) for β = −1
is oscillatory and diverges. Its zeros are asymptotically
given by tk = k

αk−1 (1 + φ(α)k−2 + o(k−2)), where ψ(α)
is the generating function of the sum-of-divisors func-
tion σ(k) (Zhang [2016], Wang [2017]). Since the or-
der, that is, infr>0{Eα(−z) ∼ O(exp |z|r)}, of Eα(z) is
zero, Hadamard’s factorization theorem (see Rudin [1974])
yields the simple form in terms of the roots {tk > 0} of
Eα(−t):

Eα(−t) =
∞∏

k=1

(

1− t

tn

)

. (4)

Zabko et al. [1997] show that the higher dimensional FDE

ẋ(t) = Ax(t) +Bx(αt), x ∈ R
n, (5)

where for f(s) = det(sI−A), and φ(s) = det(A+es lnαB)
we define

λ= max
f(s)=0

Reλ

µ= max
φ(s)=0

Reµ, setting µ = −∞ if there are no roots,

the system is asymptotically stable if λ < 0 and µ < 0,
and unstable if λ > 0 or µ > 0.

Apart form its purely theoretical interest, with applica-
tions in number theory (Kato [1971]), scale-delay equa-
tions (pantograph equations) have been successful in mod-
eling cell division (van Brunt et al. [2018]), electrody-
namics, quantum calculus (Griebel [2017]), and control
(Verriest [2001]).

2.1 Zero-Properties of the deformed exponential Eα(−t)

Consider the series of inverse powers of the roots

Sn =

∞∑

k=1

1

tnk
, n = 1, 2, . . . . (6)

Let also cn denote the coefficient of tn in Eα(t) in (3).
Using the extensions of Newton’s identities for Weierstrass
products, (See Beuer [2012]) one finds

S0 = 1

Sn − c1Sn−1 + c2Sn−2 + · · ·+ (−1)nncnS0 = 0.

Theorem 1. The sum of inverse powers of the roots can be
recursively computed from (3), and give in particular the
sequential relations

S1 = 1

S2 = 1− α
S3 =

1

2
(1− α)2(2 + α)

S4 =
1

6
(1− α)3(6 + 6α+ 3α2 + α3)

S5 =
1

24
(1− α)4(24+36α+30α2+20α3+10α4+4α5+α6).

In addition, the zeros satisfy
∞∑

k=1

1

αtk − tℓ
= 0, ℓ = 1, 2, . . . . (7)

and
1

tk

∏

ℓ 6=k

tℓ − tk
tℓ − αtk

= 1− α, k = 1, 2, . . . (8)

Proof. The identities (7) and (8) follow by substituting
Hadamard’s expansion in the FDE, and evaluating respec-
tively at t = tℓ

α and t = tk. ✷

To the best of our knowledge, the identities (7) and (8)
are new.

3. HIGHER ORDER SCALE-DELAY REALIZATION

Given ẋ(t) = Ax(αt) with y = cx of dimension 1. Let
A ∈ R

n×n have characteristic polynomial a(s) = sn +
a1s

n−1+ . . .+an−1s+an. Successive differentiation of the
output yields

ẏ(t) = cAx(αt)

ÿ(t) = cA2αx(α2t)

y(3)(t) = cA3α1+2x(α3t)

...

y(n−1)(t) = cAn−1α1+2+···+(n−1)x(αn−1t)

y(n)(t) = cAnα1+2+···+nx(αnt).

By the Cayley-Hamilton theorem, it follows that

yn(t) + a1α
ny(n−1)(αt)+

+ a2α
n+(n−1)y(n−2)(α2t) + · · ·+ anα

n+···+1y(αnt) = 0.

This insight leads to a solution method for a class of scale-
delay equations:

3.1 Solution of a class of SD-equations

We use an operator form to simplify notation. Denote by
D and Q are respectively the differentiation and mul-
tiplication by the independent variable operator. These
operators generate an operator algebra, called the Weyl-
algebra, important in quantum mechanics. The fundamen-
tal commutation relation DQ −QD = 1 (Heisenberg) is
easily shown. The combination DQ −QD is also known
as the commutator of D and Q and denoted by [D,Q].
This algebra is fundamental for the theory of linear time-
variant systems (Verriest [1993]). An algebraic theory of
time-variant differential delay systems in the language of
functional operators is discussed b Quadrat and Ushirobira
in (Quadrat and Ushirobira [2016]).
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Let a be a sufficiently smooth function. Define Sα, the
scaling operator: i.e., for all t and all x: Sαx(t) = x(αt).
The vector scale-delay equation is in operator form

Dx = ASαx.

The commutation rule DSα = αSαD and product rule

SαSβ = Sαβ yield for the products of the factors, Ω(a)
def
=

(D− aSα), the commutation rule

(D− µSα)(D− λSα) = (D− αλSα)(D−
µ

α
Sα),

or more compactly,

ΩµΩ(λ) = Ω(αλ)Ω(
µ

α
). (9)

Define the product operator by iteration, Ω(a1, . . . , an) =
Ω(a1)Ω(a2) · · ·Ω(an).
Theorem 2. If {µ1, µ2/α, . . . , µn/α

n−1} are disjoint then

Ω(µn, . . . , µ1)y = 0

has the solution set

Sol[Ω(µ1)]⊕ Sol[Ω(µ2/α)]⊕ · · · ⊕ Sol[Ω(
µn

αn−1
)],

where Sol[operator] is the solution set, i.e, the null-space
of the [operator].

Proof. First note that any y, annihilated by Ω(an), is
also a solution to Ω(a1, . . . , an)y = 0. Next, we apply the
commutation (9) as follows

Ω(µk, µk−1 . . . , µ1)

= Ω(αµk−1,
µk

αµk−2
, . . . , µ1)

= Ω(αµk−1, αµk−2
µk

α2
, . . . , µ1)

= · · · = Ω(αµk−1, αµk−2 . . . , αµ2
µk

αk−1
).

With this, for k = 1, . . . , n it holds that Ω(µn, . . . , µ1) =
Ω(µn, . . . , µk+1)Ω(µk−1, . . . , µ1)Ω(

µk

αk−1 )..

Consequently, functions annihilated by Sol[Ω(µk/α
k−1)]

are solutions of the given FDA. For differing parameter,
the solution sets are independent. ✷

One can deal with “repeated factors” by analogy with the
LTI case, but with a ‘twist’. Consider

(D− αkµSα) · · · (D− αµSα)(D− µSα)

in the following way: Let y ∈ Sol[D − αµSα], and let
x = Qy. Then, using (9) again

(D− µSα)Q=DQ− µSαQ

=QD+ 1− µαQSα

=Q(D− µαSα) + 1.

Consequently,

(D− µSα)Qy = Q(D− µαSα)y + y = y.

But then,

(D− αµSα)(D− µSα)Qy = (D− αµSα)y = 0.

Now, denote the solution to (D− µSα)y with y(0) = 1 as
the scale exponential Eα(µt). Then the previous may be
iterated to establish that the general solution to

(D− αkµSα) · · · (D− αµSα)(D− µSα)x = 0

is given by pk(QSα)Eα(µt), where pk(s) ∈ R[s] of degree
k. We formulate now the following theorem:

Theorem 3. To solve the scale-delay equation
(
Dn + a1SαD

n−1 + a2Sα2Dn−2 + · · ·+ anSαn

)
x = 0,

define its scale-delay characteristic polynomial by

aα(λ) = an + an−1λ+ αan−2λ
2+

+ α1+2an−3λ
3 · · ·+ α1+2+···+(n−1)λn,

and solve the characteristic equation aα(λ) = 0 for λ. If λi
has multiplicity ki, then

Sol[aα(D)] =
∑

i

© pi(QSα)Eα(λit)

where deg pi = ki − 1, and
∑◦ denotes a direct sum.

3.2 Some useful properties

In this subsection a is an arbitrary sufficiently smooth
function. We derive some additional identities in the Weyl
algebra:

Lemma 4. For any sufficiently smooth function a, it holds
that (D+ a)Qk = Qk(D+ a) + kQk−1.

Proof. Simply iterate

(D+ a)Qk =Q(D+ a)Qk−1 +Qk−1

=Q2(D+ a)Qk−2 + 2Qk−1

= . . .

=Qk(D+ a) + kQk−1
✷

Lemma 5. If (D+ a)x = 0, then (D+ a)k+pQkx = 0, for
all k ≥ 0 and p ≥ 1.

Proof. It suffices to prove the induction step. Suppose
that for k0 it holds that (D+ a)k0+pQk0x = 0. Then

(D+ a)k0+p+1Qk0+1x= (D+ a)k0+1
[
(D+ a)Qk0+1

]
x

= (D+ a)k0+1Qk0+1 (D+ a)x
︸ ︷︷ ︸

=0

+

(k0 + 1) (D+ a)k0+1Qk0x
︸ ︷︷ ︸

=0

✷

Lemma 6. If (D+ a)x = 0, and α ∈ R, then
(D+ a− α) eαQ x = 0.

Proof.

(D+ a− α) eαQ x
= [D eαQ +(a− α) eαQ]x = eαQ(D+ α)x = 0. ✷

Lemma 5 directly leads to

Theorem 7. If (D+ a)x = 0, then (D+ a)k+1pk(Q)x = 0,
where pk(s) is an arbitrary polynomial in s of degree k.

Example 1: Consider the function x(t) = (t2+t+1) e−t2/2.

Noting that e−t2/2 is annihilated by (D+t), it follows from
Theorem 1 that (D+ t)3 will null x(t). Its expansion is

(D+ t)3 = D3 + 3tD2 + 3(t2 + 1)D+ t3 + 3t.
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Theorem 8. If x solves (D + a)x = 0 and y solves (D +
b)y = 0, then with (α, β) ∈ R

2, it holds that z = αx + βy
solves llcm{D + a,D + b}z = 0, where llcm{D + a,D +
b} denotes any left common multiple of the differential
operators D+ a and D+ b.

Proof. The llcm must of the form ℓa(Q,D)(D + b) =
ℓb(Q,D)(D+ a). Hence,

llcm(αx + βy)

= αℓb(Q,D) (D + a)x
︸ ︷︷ ︸

=0

+βℓa(Q,D) (D+ b)y
︸ ︷︷ ︸

=0

. ✷

Theorem 9. Let χI denote the indicator function for the
set I. If x solves χI1(D+a)x = 0 and χI2(D+b)x = 0 with
I1 ∩ I2 = ∅, the x solves χI1∪I2 lcm{D+ a,D+ b}x = 0.

Proof. Proof: follows directly from Theorem 8.

For instance, x(t) = sin t for t > 0 and x(t) = sinh t for
t < 0 satisfies (D4−1)x = 0, except at t = 0. It is therefore
a weak solution (Trentelman and Stoorvogel [2002]).

3.3 Partial state realizations for higher order equation

Let ξ be a solution to the homogeneous LTI-ODE

a(D)ξ = 0, (10)

of order (degree of a(s) ∈ R[s]), n. All such functions are
called Bohl-functions. We seek to express ξ as a solution
to a first order LTV-ODE

Dξ = α(t)ξ. (11)

Lemma 10. If ξ satisfies Dξ = αξ, then the successive
derivatives of ξ are given by

Dkξ = (
←−
D + α)kξ (12)

where
←−
D is the derivative operator acting to anything on

the left. (i.e, if x(t) and y(t) are arbitrary differentiable

functions, then x(t)
←−
Dy(t) = ẋ(t)y(t)).

Proof. From the definition, Dξ = (
←−
D+α)ξ. Suppose now

that the above holds for k, then

Dk+1ξ =D(Dkξ)

=D(
←−
D + α)kξ

= (
←−
D + α)kξ

←−
D

= (
←−
D + α)k

←−
Dξ + (

←−
D + α)k(Dξ)

= (
←−
D + α)k

←−
Dξ + (

←−
D + α)k(αξ)

= (
←−
D + α)k+1ξ ✷

Theorem 11. The (potentially singular) first order LTV-
ODE associated with a particular solution of a(D)ξ = 0,
where a(s) =

∑n
i=0 ais

n−i and a0 = 1, is given by the
solution to the time-variant ODE

n∑

i=1

ai(
←−
D + α)n−i = 0. (13)

Proof. follows directly from

0 = a(D)ξ =
n∑

i=0

aiD
n−iξ =

n∑

i=0

ai(
←−
D + α)n−iξ. ✷

Consider now the problem of the partial state realization
with initialization ξ(0) = ξ0, with all other derivatives
dependent on it, i.e., ξ(i)(0) = Diξ0 and Di ∈ R for
i = 1, . . . , n− 1.

Example 2: Consider ξ̈ = 0 with ξ(0) = ξ0 and ξ̇(0) = Dξ0.
It turns out that α̇(t) = −α2(t), with α(0) = D. This
yields the first order representation

ẋ(t) =
D

1 +Dtx(t), x(0) = ξ0,

which is singular at t = −D−1.

More generally, consider the homogeneous system ẋ = Ax,
with partial state y(t) = Cx(t) of dimension n and r < n
respectively. Assume then that y(0) = y0, and x(0) = By0,
so that for all y0, CBy0 = y0, i.e., CB = Ir. It follows that

ẏ(t) = CA eAtBy0.

On the other hand, expressing the r-th order system as
solving a time-variant system ẏ(t) = F (t)y(t), we can
identify

CA eAtBy0 = F (t)C eAtBy0,

so that
F (t) = CA eAtB(C eAtB)−1. (14)

Successive differentiation yields the representation

y(k) = (
←−
D + F )ky.

thus generalizing the formula obtained in Theorem 12. The
reduced linear time-variant representation for the Bohl
function is only well-defined if the r × r matrix function
C eAtB has a nonvanishing determinant. It is shown in
Verriest [2020] that a scalar Bohl function whose zeros
have multiplicity one can be represented as the solution to
a second order time-variant ODE with analytic coefficients,
hence it is a regular ODE. More generally, if the highest
multiplicity of any of the zeros is m, then the order of the
linear time-variant ODE increases to m + 1. This implies
the vector extension:

Theorem 12. Let y be the r-dimensional output of a
homogeneous linear time-invariant system of order n ≥ r,
i.e.,

ẋ = Ax, y = Cx, dim x = n, dim y = r. (15)

then y is the solution of a second-order regular linear
homogeneous vector ODE if the matrix [y(t), ẏ(t)] has rank
2 for all t.

Proof. By definition, y is an r-dimensional vector of Bohl
functions. Let hi, . . . , hr be an arbitrary basis in R

r. Then
the scalar functions ξi(t) = h⊤i y(t) are Bohl functions.
Moreover, because of the rank condition, they all have
zeros of multiplicity one. By the above cited result, it
follows that all ξi satisfy a second order regular linear time-
variant homogeneous ODE

ξ̈i(t) + a1i(t)ξ̇i(t) + a2i(t)ξi(t) = 0.

Let H = [h1, h2, · · · , hr]⊤, and combine the r equations:

Hÿ(t) + diag[a1(t)]Hẏ(t) + diag[a2(t)]Hy(t) = 0.

and thus, setting Ai(t) = H−1diag[ai(t)]H we obtain

ÿ +A1(t)ẏ(t) +A2(t)y(t) = 0. ✷

In principle, this gives a vector system of dimension 2r by
concatenating y and ẏ into a single state vector. However a
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Fig. 1. Coefficient for the first order differential operator
associated with the third order LTI system

reduction in the state may then be possible, so that 2r may
not be the minimal dimension. We leave the problem of the
minimal time-variant realization for further investigation.

Example 3: Consider the third order system with A-matrix
in the reachable canonical form

A =

[−1 −4 −2
1 0 0
0 1 0

]

.

Choosing the first state as the partial state of interest,
a singular first order representation follows, the scalar
a(t) is shown in figure 1. One should then proceed to
a higher order time-variant ODE model, as explained in
(Verriest [2020]). Choosing instead the first and second
state as the partial states yields a second order time
varying representation with the time-varying 2×2 dynamic
matrix given in the (time-varying) reachable canonical
form ,

A2(t) =

[
−a1(t) −a2(t)

1 0

]

.

with a1(t) and a2(t) shown in Figure 2.

Fig. 2. Coefficients for the second order differential opera-
tor associated with the third order LTI system

In Verriest [2020] we show that if x(t) is analytic in an
interval (α, β), and possesses only real roots of multiplic-
ity one, then x(t) satisfies a regular (highest derivative
has coefficient one) second order time-variant ODE, with
coefficients that are analytic in (α, β).
A similar extension can be made here, thus generalizing
Theorem 12 to non-Bohl vector functions.

Fig. 3. ak for equivalent first order model of the Fibonacci
sequence

3.4 Discrete Case

One can also formulate a discrete version of this time-
variant realization problem. We give a simple example:
Consider the second order discrete LTI system specified
by

xk+1 = xk + yk

yk+1 = xk

where x0 is given and y0 is set to zero. The general solution
is the Fibonacci sequence

xk = A





(

1 +
√
5

2

)k

+
3−
√
5

2

(

1−
√
5

2

)k


 .

This satisfies the first order time-variant recursion

xk+1 =






(
1+

√
5

2

)k+1

+ 3−
√
5

2

(
1−

√
5

2

)k+1

(
1+

√
5

2

)k

+ 3−
√
5

2

(
1−

√
5

2

)k




 xk.

Denoting the term in brackets by a(k), the first 20 samples
are shown in Figure 3.

4. SELF-STARTING SYSTEM

The time-variant realization theory we sketched in the
previous Section 3 may be applied to the deformed ex-
ponential. Since the unit solution to ẋ(t) = −x(αt), for
0 < α < 1 has only positive real zeros all with multiplicity
one, x must obey a second order linear time-variant ODE:

ẍ(t) + a1(t)ẋ(t) + a2(t)x(t) = 0.

From the numerical solution of the FDE: a1 and a2 can
be approximated. See Figure 4 for α = 0.5. In fact it
suffices to consider only finitely many of the zeros if the
approximation is only to hold over a finite interval. Note
also that, although the original scale-delay equation is
scalar, and propagates form a one-dimensional state at
t = 0, the linear time-variant realization is consistently
initialized with ẋ(t) = −x(αt) = −x0 at t = 0.

5. SYSTEMS WITH VANISHING DELAY

Let us now consider a homogeneous system of the form

ẋ(t) = Ax(t) +Bx(t − τ(t)), (16)

and suppose that that at t0, the delay τ(t0) = 0. At this
point, the right hand side of (16) is (A + B)x(t0), and
thus completely characterized by the finite dimensional
state, x(t0). With the consistency condition τ̇(t) < 1, it
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Fig. 4. Coefficients a1 and a2 of the LTV-ODE equivalent
to the scale delay equation (α = 0.5)

follows that for small ǫ > 0, it holds in [t0, t0 + ǫ], that
t− τ(t) = t0 + ǫ − τ̇ (t0)(ǫ) ≈ t0 + (1 − τ̇ (t0))ǫ. Hence the
system may be approximated after time t0 (locally) by a
scale-delay system with α = 1− τ̇ (t0).

6. CONCLUSION

This paper summarized some known results regarding the
scale-delay equation and its solution for a special case: the
deformed exponential. New identities for the zeros of this
function were derived. Next we illustrated, using algebraic
properties, how these deformed exponentials generate the
solutions to a class of higher order SD equations. We
provided also some alternative methods to solve the time-
varying realization problem for Bohl-functions, which are
solutions to homogeneous LTI ODE’s. The inverse prob-
lem for obtaining differential annihilators for an analytic
function is then applied to the deformed exponential. A
two-dimensional representation as the solution to a time-
variant ODE resulted. This approximate modeling by an
ODE, is applicable to model the behavior of a system with
time-variant delay in the neighborhood of points where
the delay vanishes. We leave the study of the data require-
ments and accuracy of the approximation in comparison
to standard methods, such as direct Taylor expansion, for
future work (See Saray et al. [2018]).
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