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Abstract: Following the recent trend of weight reduction in car industry, producing high quality
cold-rolled AHSS (advanced high-strength steel) strip becomes important. Thickness hunting
(or fluctuation) problem can be more prominent for this cold-rolled AHSS strip making, which
can stem from the non-uniformity of hot-rolled strip and can severely degrade product quality.
In this paper, we propose a novel framework to estimate the strip-longitudinal hardness of
the TCM (tandem cold mill) process and its feedforward control to substantially reduce the
thickness hunting, while fully incorporating the interconnected nature and sensing sparsity of
the TCM process. In particular, our estimator consists of the following two complementary loops:
1) fast real-time hardness estimation loop, which optimally fuses the process model and sensing
information; and 2) slower constant process-parameter estimation loop via optimization utilizing
the nonlinear process model and (stored/measured) sensor data. Efficacy of the proposed
estimation and control frameworks are then validated with high-precision TCM process physics
simulator.

Keywords: Feedforward control, process parameter estimation, sensor fusion, steel
manufacturing process, unscented transformation

1. INTRODUCTION

Cold-rolled steel strip, which is made from hot-rolled steel
strip through TCM (tandem cold mill) process, is used
for automobiles, appliances, construction materials, etc.,
due to its thin thickness and elegant surface. Recently,
following the trend of weight reduction in car industry,
demand for cold-rolled AHSS (advanced high-strength
steel) strip has increased and it becomes important to
produce high quality cold-rolled AHSS strip. For certain
kind of cold-rolled AHSS strip, however, thickness hunting
(or fluctuation) larger than product quality criteria can
easily occur. The main source of this thickness hunting is
known to be the non-uniform hardness of hot-rolled steel
strip (Choi et al. (1994)) fed to the TCM process. Here, the
notation hardness comprehensively means metallurgical
characteristic affecting deformation resistance of the strip.

Suppression of this thickness hunting is challenging, since,
in typical industrial TCM settings, sensors directly and
real-time measuring this non-uniform hardness of the
steel strip and also affordable enough for real deployment
simply do not exist. This hardness estimation challenge
is even further exacerbated with the scarcity/sparsity of
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sensors and the interconnected nature of the TCM process
with inter-stands transport delay - see Fig. 1.

In this paper, we propose a novel estimation framework
for this hardness of the steel strip in the TCM process.
For this, we assume that the hardness (and other met-
allurgical property) non-uniformity is mostly along the
strip-longitudinal direction (i.e., direction passing through
TCM rolls) and construct the TCM process model with
this longitudinal hardness variation. Based on this pro-
cess model, we then derive our hardness estimator, which
consists of the following two complementary loops: 1) fast
updating loop for hardness estimation in the manner of
sensor fusion, by optimally fusing the process model and
the sensor information with their respective uncertainties
also taken into account; and 2) slowly updating loop for
constant process-parameter estimation in the manner of
nonlinear optimization, by exploiting the high-rate data
stream received/stored from available sensors and the non-
linear TCM process model.

More specifically, the hardness estimation loop is: 1) run-
ning fast (e.g., 0.02sec. in Sec. 4) so that the estimated
(longitudinal) hardness can be used for high-rate con-
trol for better hunting suppression performance; 2) uti-
lizing UT (unscented transformation (Julier (2002); Ha
et al. (2018))) to more precisely propagate random vari-
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Fig. 1. Tandem cold mill (TCM) process diagram with six
rolling stands, five of which are involved in thickness
control, and one bridle roll.

ables through the nonlinear TCM process model (than,
e.g., EKF (extended Kalman filtering (Jazwinski (2007)))
scheme), which can then be optimally fused with sensor
measurements (with sensor uncertainties typically given
by their manufacturers); and 3) fully respecting the sensor
scarcity and interconnected nature of the TCM process,
using only available sensors at each roll and gradually
improving the sensing accuracy across each roll through
the TCM process as more information is collected and
optimally exploited down to the last roll. On the other
hand, the constant parameter estimation loop is: 1) run-
ning slow (e.g., 5sec. in Sec. 4), which is enough since
the process parameters to estimate here can be assumed
constant; 2) taking advantage of large amount of TCM
process data, which is collected and stored from high-rate
data stream of measuring instruments during the TCM
operation; and 3) trying to find the best estimate of the
constant process-parameters via nonlinear optimization
based on the (complex/nonlinear) TCM process model.

We also propose a feedforward control framework, which,
by utilizing this real-time estimated longitudinal hard-
ness information, can substantially reduce the thickness
hunting although its synthesis and structure are rather
simple. These proposed hardness estimation and feedfor-
ward control frameworks are then all validated with high-
precision TCM process physics simulator running based
on real TCM process data.

Some on-line estimation schemes of the strip-longitudinal
hardness (or deformation resistance) have been proposed
for the rolling mill process (e.g., Wang et al. (2005);
Bu et al. (2019); Prinz et al. (2019)), which, however,
are based on the batch optimization technique for one
single roll stand, thus, not able to properly take into
account neither the modeling and sensing uncertainties
(and the optimality of their fusion) nor the interconnected
structure of the TCM process. On the other hand, some
control results have also been proposed, where the hard-
ness (and other parameter) variations are lump-modeled
as disturbance and H∞ control or state-dependent LQR
(linear quadratic regulator) are applied to suppress this
disturbance effect (e.g., Geddes and Postlethwaite (1998);
Pittner and Simaan (2006, 2008)). Although effective in
reducing the thickness hunting, these control results, how-
ever, do not provide the longitudinal hardness information,
which, by itself, can be very useful for other purposes in
industrial setting (e.g., strip quality sensing) or can be
flexibly used for other control techniques (e.g., model pre-
dictive control). To our knowledge, our estimation frame-
work presented in this paper is the very first result, which
optimally fuses process model and multi-sensor informa-

Fig. 2. Rolling between two work rolls of the ith stand

tion while fully incorporating their uncertainties and the
interconnected structure of the TCM process.

The rest of the paper is organized as follows. The nonlinear
modeling of the TCM process, which is used both for our
estimation and control frameworks, is presented in Sec. 2.
The main result - optimal hardness estimation framework
- is then derived in Sec. 3, and the feedforward control
design and validation results with high-precision physics-
based TCM simulator explained in Sec. 4. Sec. 5 concludes
the paper with summary.

2. MODELING OF TCM PROCESS

Tandem cold mill (TCM), which produces cold-rolled steel
strip from hot-rolled steel strip, is composed of bridle rolls,
rolling stands, and various measuring instruments (e.g.,
loadcell, thickness gauge, tension gauge, and velocimetry)
as shown in Fig. 1 where the bridle roll feeds hot-rolled
steel strip in TCM, and rolling stand deforms the strip and
transports it to the next stand. About the rolling stand, for
example, strip of thickness Hi entering rolling stand with
speed vbi and tension stress σbi is deformed by the stand
of roll gap Si and roll speed Vi under force Pi and then
becomes strip of thickness hi with speed vfi and tension
stress σfi as shown in Fig. 2. The exact notations about
rolling through the ith stand is specified in table 1.

Table 1. Notations for the ith rolling stand

Notation Physical meaning

Pi Rolling force given to ith stand
Hi Entry thickness of ith stand
hi Exit thickness of ith stand
σbi Back tension stress between (i−1)th and ith stand
σfi Front tension stress between ith and (i+1)th stand
vbi Entry strip speed of ith stand
vfi Exit strip speed of ith stand
Si Roll gap between undeformed work rolls of ith stand
Vi Roll (linear) speed of ith stand
Ri Work roll radius of ith stand

Rolling, which is plastic and nonlinear deformation of the
strip between two work rolls, has been studied for several
decades (e.g., Orowan (1943), Bland and Ford (1943),
Bland et al. (1952), Bryant (1973)). Among the existing
models, we choose Bland-Ford-Hill model for our TCM
model due to its closed-form equations, which can be
represented as
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Pi = W (k̄i − σ̄i)
√
R′i(Hi − hi)Dpi

fi = tan2

(
1

2
sin−1

√
ri +

1

4µi

√
hi
R′i

ln

(
hi
Hi

1− σbi/kbi
1− σfi/kfi

))
(1)

where fi is forward slip, which relates roll speed and exit
strip speed as

vfi = (1 + fi)Vi, (2)

and W is width of steel, and kbi, kfi, k̄i are deformation
resistances, each of which means value at stand entrance,
value at stand exit, and mean value across the roll-bite
region, respectively. These deformation resistances can be
expressed as modeled in (Roberts (1978)).

k̄i = 1.155(α(r̄i + β)γ + a log10(1000ε̇i))
kbi = 1.155(α(rbi + β)γ + a log10(1000ε̇i))
kfi = 1.155(α(rfi + β)γ + a log10(1000ε̇i))

(3)

where α, β, γ, a are metallurgical parameters of steel, and
rbi, rfi, r̄i are thickness reduction ratios of strip given as

r̄i = 0.4rbi + 0.6rfi
rbi = 1−Hi/Ha

rfi = 1−Hi/Ha

(4)

Here, Ha is annealed thickness of hot-rolled steel, which
can be considered as initial thickness of strip before it
enters TCM. Also note that entry thickness of the first
stand H1 is same as the annealed thickness. The variable
εi is local strain at exit of the ith stand and its derivative
is given as

ε̇i = 0.0358Vi

√
ri

2RiHi
(5)

Also note that ri = 1 − hi/Hi of equation (5) is lo-
cal thickness reduction ratio for each rolling stand, and
aforementioned rbi, rfi, r̄i are reduction ratios respect to
annealed thickness of hot-rolled steel.

Going back to equation (1), σ̄i, R
′
i, and Dpi are mean

tension stress, deformed work roll radius, and approximate
value of f3(a, r) specified in (Bland and Ford (1943)),
respectively and given as

σ̄i =
2

3
σbi +

1

3
σfi

R′i = Ri

(
1 +

16(1− ν2R)

πWER(Hi − hi)
Pi

)
Dpi = 1.08− 1.02ri + 1.79µiri

√
R′i
Hi

(6)

where νR and ER are Poisson’s ratio and Young’s modulus
of work roll, respectively, and µi is friction coefficient
between work roll and strip, which is given as

µi =

√
Hi − hi

2Ri

(
0.5 + (Ki1 − 0.5)e−Ki2Vi

)
(7)

with constants Ki1 and Ki2.

Apart from the theoretic rolling model, we also have
a simple empirical relation between roll gap and exit
thickness as

hi = Si +
Pi
Ki

(8)

where Ki is mill stretch constant, which can be considered
as spring coefficient of rolling stand, for the ith stand. Also,

with the assumption that strip only deforms along strip-
longitudinal direction (i.e., direction of strip transporting),
mass flow conservation at the ith rolling stand can be
simply expressed as

Hivbi = hivfi (9)

Therefore, physical phenomenon under rolling stand is ex-
pressed by equations (1), (8), and (9) where equations (2)
to (7) are included in equation (1) and the subscript
i shown in equations (1) to (9) means the correspond-
ing variable or constant of the ith rolling stand. Note
that effect of parameters such as surface roughness and
temperature are neglected because this paper focuses on
addressing thickness hunting stem from the non-uniform
hardness.

The TCM model can be constructed by connecting mul-
tiple rolling stands serially. Then we can find relation
between two adjacent stands. First, with the assumption
that tension stress is homogeneous in strip between two
adjacent stands (i.e., fast enough tension stress dynamics),
front and back tension stresses can be related as

σfi = σb(i+1) (10)

Secondly, from the well known stress-strain relationship
σ = Eε and its differential form, tension stress dynamics,
which relates derivative of front tension stress and strip
speed terms, is obtained as

σ̇fi =
E

Li
(vb(i+1) − vfi) (11)

where E and Li are Young’s modulus of steel and distance
between the ith and (i+1)th rolling stand, respectively.
Note that equations (10) and (11) physically connect the
adjacent stands.

From transportation characteristic of TCM, which means
certain part of strip passing through the ith rolling stand
will arrive the (i+1)th stand after certain delay (e.g.,
from about 0.9 second to 5 seconds for our case), and the
assumption that thickness is preserved while transporting,
entry and exit thicknesses are related as

Hi+1(t) = hi(t− τi,i+1(t)) (12)

where τi,i+1(t) is transport delay between the ith and
(i+1)th rolling stand satisfying

Li =

∫ t

t−τi,i+1

vfi(t)dt (13)

In other words, certain part of strip that reaches the
(i+1)th rolling stand at time t departed from the ith stand
τi,i+1(t) ago.

In order to utilize this transportation characteristic of
TCM process while considering hardness non-uniformity
of hot-rolled steel strip, we assume that the metallurgi-
cal property including hardness non-uniformity is mostly
along the strip-longitudinal direction. Then hot-rolled
steel strip can be modeled as group of numerous strip-
longitudinal segments, each of which has its own metallur-
gical parameters as shown in Fig. 3. Metallurgical parame-
ters of the sth segment are given as Ha(s), α(s), β(s), γ(s),
and a(s), domain of which are longitudinal dimension.
Here, based on experimental results, we assume that α(s),
which is directly proportional to resistance deformation
of equation (3), is dominant parameter corresponding to
non-uniform hardness of hot-rolled steel strip. Therefore,
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Fig. 3. Hot-rolled steel strip is assumed to be composed of
numerous strip-longitudinal segments, each of which
has its own metallurgical parameters.

Fig. 4. Structure of TCM model constructed by connecting
rolling stands serially while incorporating interplay
between adjacent stands.

we define α(s) as representative hardness parameter and β,
γ, and a as metallurgical constants. We can also view longi-
tudinally varying metallurgical parameters Ha(s) and α(s)
from the ith stand by defining Hai(t) and αi(t), meaning
of which are Ha(s) and α(s) when the sth segment arrives
the ith stand at time t, respectively. Then we can easily
find that these Hai(t) and αi(t) also have transportation
relation with same transport delay of equation (12) as

αi+1(t) = αi(t− τi,i+1(t))
Ha(i+1)(t) = Hai(t− τi,i+1(t))

(14)

Note that α of equation (3) and Ha of equation (4) should
be changed to αi and Hai from now on, respectively, to
incorporate our assumption of strip-longitudinal metallur-
gical parameters to TCM process model. Also note that
representative hardness parameter satisfying the trans-
portation characteristic can be utilized for more accurate
estimation, which is detailed in Sec. 3.

Finally, using the physical connection between adjacent
stands (i.e., equations (10) and (11)) and the transporta-
tion relation (i.e., equations (12) and (14)), TCM process
model considering non-uniform hardness is established as
shown in Fig. 4 by connecting rolling stands serially. Note
that structure of the established model is similar to cas-
caded model but not because the entry strip speed (i.e.,
red flow in Fig. 4), affects the tension dynamics of former
adjacent stand, which makes the nonlinear TCM process
model even more complex.

3. OPTIMAL HARDNESS ESTIMATOR DESIGN

From the established TCM process model considering non-
uniform hardness of hot-rolled steel strip and its inter-
stands transportation, we design a novel framework to

estimate the strip-longitudinal hardness information to
address the thickness hunting (or fluctuation) problem
occurred in cold-rolled AHSS strip. Remark that proposed
estimation framework can be considered as virtual sensor
for hardness, which virtually measures hardly observable
metallurgical property on-line by exploiting information of
existing sensors and the TCM process model.

Besides the hardness, there are also indirectly measurable
or unmeasurable TCM process data due to restriction of
sensor deployment and sensing sparsity of TCM. Consid-
ering our TCM shown in the Fig. 1, for example, entry and
exit thicknesses are indirectly measurable by using trans-
portation characteristic because thickness gauges have dis-
tance from rolling stand or even absent. Similarly, exit
strip speed for the first stand is also indirectly measur-
able due to the absent of velocimetry at exit side of the
stand. Metallurgical parameters and friction constants of
equation (7) even do not have corresponding measuring
instruments. Therefore, estimation objectives for our sys-
tem is as summarized in table 2 where αi, Hai, Hi, hi, vf1
are defined as estimation variables and β, γ, a, Ki1, Ki2 as
unknown (constant) process-parameters.

Table 2. Estimation objectives

Notations

Estimation variables αi, Hai, Hi, hi, vf1
Unknown process-parameters β, γ, a, Ki1, Ki2

Sensor measurement of TCM is directly provided by
measuring instruments (i.e., load cell, thickness gauge,
tension gauge, and velocimetry) and inherent sensors of
rolling stands (i.e., pressure gauge, motor encoder, and po-
tentiometer). These multi-sensor information and known
(constant) process-parameters (e.g., width and Young’s
modulus of hot-rolled steel, metallurgical specification and
radius of work rolls, mill stretch constants, and distances
between adjacent stands), which is obtained prior to the
process, for our TCM system are specified in table 3 where
X means thickness gauge measurement and subscripts
E and D correspond to entry and exit side of stand,
respectively.

Table 3. Multi-sensor information and known
process-parameters of TCM process

Notations

Multi-sensor information
Pi, σbi, σfi, vb1, vfi(i6=1), Si, Vi,

X1E, X1D, X5D

Known process-parameters W, E, ER, νR, Li, Ri, Ki

In order to optimally fuse the process model and the
sensor information with their respective uncertainties also
taken into account, sensor measurements are considered as
normal random variables where this assumption is typical
for treating sensors. Then, mean and variance of all the
sensor information notated in table 3 is obtained from
measurements during TCM process and error specifica-
tions provided by sensor manufacturers, respectively. For
example, back tension stress is given with its normal dis-
tribution as

σbi,k ∼ N (µσbi,k, Qσbi,k)

where µσbi,k is back tension stress from tension gauge,
Qσbi,k is variance of the back tension stress from sensor
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specification, and k indicates corresponding variables of
kth time step in discrete time domain. Note that the
variances of sensor information are assumed to be constant
(i.e., Qσbi,k = Qσbi).

Then, the known distributions of multi-sensor information
can be propagated through the process model (i.e., fusing
of sensor measurement and the process model), which lead
us to find normal distributions of estimation variables in
table 2. Normal distribution of hi, for instance, is obtained
by propagating distributions of sensor information Si and
Pi through equation (8) as

µhi,k = µSi,k + µPi,k/Ki

Qhi,k = QSi +QPi/K
2
i

(15)

where µ?,k and Q?,k indicate mean and variance of variable
? at kth time step, respectively. Note that QSi and QPi
are constants and therefore Qhi,k is also constant.

Similar to equation (12), relation between thickness gauge
measurement and entry thickness is given as

Hi(t) = XiE(t− τiE(t)) (16)

with the transport delay τiE(t) satisfying

LiE =

∫ t

t−τiE
vbi(t)dt (17)

where LiE is distance between the ith stand and thickness
gauge at entry side of the ith stand. In other words, a strip
segment that reaches the ith stand at time t departed from
the entry thickness gauge of the ith stand τiE(t) ago. Note
that our estimation framework uses τiE(t) = LiE/vbi(t)
and τi,i+1(t) = Li/vfi(t) as transport delays for simplicity
while accurate hardness estimation is still possible - see
Sec. 4. Then, normal distribution of Hi is gained by
propagating the distribution of XiE through equation (16)
as

µHi,k = µXiE,k−kiE
QHi,k = QXiE

(18)

where kiE is discrete time step corresponding to transport
delay τiE(t). Similarly, propagating through equation (12),
another normal distribution of Hi is procured as

µHi,k = µhi−1,k−ki
QHi,k = Qhi−1,k−ki

(19)

where ki is discrete time step corresponding to transport
delay τi−1,i(t). In the same way, normal distributions for αi
and Hai are obtained through the transportation relation
of equation (14) as

µαi,k = µαi−1,k−ki
Qαi,k = Qαi−1,k−ki
µHai,k = µHa(i−1),k−ki
QHai,k = QHa(i−1)

(20)

Considering material continuity, which assumes strip-
longitudinal metallurgical parameters of adjacent strip
segments are almost identical, representative hardness pa-
rameter can be modeled as random-walk process with
white Gaussian noise wα as

αi(t) = αi−1(t) + wα (21)

Then normal distribution from equation (21) is given as

µαi,k = µαi,k−1
Qαi,k = Qwα

(22)

where Qwα is variance of wα. Note that this continuity
information is inserted to our estimation framework to
induce physically reasonable hardness estimation.

The mass flow conservation of equation (9) can be ex-
pressed as

vfi = g(Hi, vbi, hi), hi = g(Hi, vbi, vfi) (23)

where the left equation for vfi corresponds to i = 1 and
the right equation for hi corresponds to i = 2, · · · , 5 for
our TCM and g is a nonlinear map defined as

g(χ1, χ2, χ3) ≡ χ1χ2

χ3
(24)

Then, normal distributions of vfi (or hi) is obtained by
propagating known distributions of Hi, vbi, and hi (or
vfi) via nonlinear map g . In order to propagate distri-
butions through the nonlinear map, unscented transfor-
mation (UT) is adopted, s.t.,

vfi,k = UTg, (Hi,k,vbi,k,hi,k) ≈ N (µUT
vfi,k

, QUT
vfi,k

)

hi,k = UTg, (Hi,k,vbi,k,vfi,k) ≈ N (µUT
hi,k, Q

UT
hi,k)

(25)

where UTg, ? is the unscented transformation through
the nonlinear map g(?). Similarly, from equation (1),
representative hardness parameter is given as

αi = (r̄i + β)−γ(0.8658k̄i − a log10(1000ε̇i))
≡ gα(Hai, Hi, hi, Pi, Vi, σbi, σfi)

(26)

with nonlinear map gα of variables with known distri-
butions. Then normal distribution of αi,k is obtained by
utilizing UT as

αi,k = UTgα, (Hai,Hi,hi,Pi,Vi,σbi,σfi) ≈ N (µUT
αi,k, Q

UT
αi,k)

(27)

Note that unknown process-parameters of table 2 is used
for equation (27), which leads us to development of an-
other estimation loop for the unknown (constant) process-
parameters detailed later in this section.

Among the procured normal distributions, redundant in-
formation exist for certain variables (e.g., Hi, hi, and αi).
For example, distributions of Hi for i = 2 is observed
from the both equations (18) and (19). By using well
known optimal fusion of two normal distributions (Winkler
(1981)), redundant information can be combined to more
accurate (i.e., smaller variance) normal distribution, which
is in a manner of sensor fusion. Then, normal distribution
of H2 from the sensor fusion is gained as

Hi,k ∼ N (µSF
Hi,k, Q

SF
Hi) (28)

where the mean and variance are simply calculated from
the distributions before merging. Note that propagating
optimally fused distribution of H2 through the process
model (e.g., equation (23) and (26) also leads to more
believable information of h2. In the same way, from the
equation (15) and (25) with fused distribution of H2,
optimally fused normal distribution of hi can be obtained
for i = 2, · · · , 5.

hi,k ∼ N (µSF
hi,k, Q

SF
hi ) (29)

Similarly, distribution for αi,k in a manner of sensor fusion
is gained from equation (20), (22), and (27) with the other
optimally fused information.

αi,k ∼ N (µSF
αi,k, Q

SF
αi,k) (30)

In this case, for instance, to fully exploit the advantage of
information fusion, distributions of equation (22) and (27)
are firstly merged for i = 1. Then, utilizing the optimally
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fused information of α1, distribution of α2 is obtained from
the equation (20), (22), and (27). Again, optimally fused
information of α2 is used for merging of α3 distributions
from the same three equations and same as other stands
(i.e., i = 4, 5).

Therefore, normal distributions for all the estimation vari-
ables, including representative hardness parameter, are
procured by optimally fusing multi-sensor information and
the process model while UT is adopted to more precisely
propagate random variables through the nonlinear process
model. Note that this estimation based on sensor fusion
fully respects the sensor scarcity and interconnected na-
ture of the TCM process by using only available sensors
at each stand. Also note that all the calculation along
estimation is explicit, which leads to fast update rate of
the estimation loop.

However, unknown process-parameters in table 2 are as-
sumed to be known and used to get the result of equa-
tion (27). Therefore, another estimation for the constant
process-parameters is needed. Thanks to large amount
of TCM process data, stored/measured process data (of
current strip) can be utilized to estimation the process-
parameters by solving nonlinear optimization. With the
assumption that estimation variables of table 2 are given
from the aforementioned estimation loop of sensor fusion,
nonlinear optimization, goal of which is to find unknown
process-parameters that satisfy the Bland-Ford-Hill rolling
model of equation (1), is constructed as

ξ = arg min

Ns∑
i=1

Nd∑
j=1

(1− P̂i(ξ, j)

Pi(j)

)2

+

(
1− v̂fi(ξ, j)

vfi(j)

)2


(31)

where ξ ≡ [β, γ, a,Ki1,Ki2] is composed of unknown
process-parameters, and Ns and Nd are number of stands
(e.g., 5 for our TCM) and time steps for process data
accumulation (e.g., 2500 for our case), respectively. Here,
Pi(j) and vfi(j) are measurement of rolling force and

exit strip speed, respectively, and P̂i(ξ, j) and v̂fi(ξ, j) are
calculated ones from current ξ and estimated variables via
equation (1). This estimation loop for constant process-
parameters needs time to store the process data and solve
the nonlinear optimization, which leads to slow update
rate compare to the estimation loop based on sensor fusion.

In summary, our optimal hardness estimator is developed
in two complementary estimation loops, one of which
optimally fuses multi-sensor information and the nonlin-
ear/complex TCM process model in a manner of sensor
fusion to obtain normal distributions of estimation vari-
ables including hardness, and the other utilizes rich TCM
process data to estimate unknown process-parameters by
solving nonlinear optimization. Structure of the proposed
estimation framework with two complementary loops is
shown in the Fig. 5.

4. FEEDFORWARD CONTROL DESIGN AND
VALIDATION

In order to validate the efficacy of proposed hardness
optimal estimator, in-house TCM simulator developed and
validated in the funding company, is used. This high-
precision physics-based TCM simulator behaves similar to

Fig. 5. Structure of proposed optimal hardness estimator

Fig. 6. Representative hardness parameter αi from the
estimator and simulation result

the actual TCM process, with its parameters, including
the representative hardness parameter α(s), extracted
from the actual TCM process data. The estimation loop
based on sensor fusion (or nonlinear optimization) of the
proposed estimator update the results by every 0.02sec.
(or 5sec.) for our TCM simulator. Performing the TCM
simulation with our proposed hardness optimal estimator,
representative hardness parameter αi from the estimator
(i.e., blue lines) and simulation result (i.e., black dashed
lines) are given as in Fig. 6 where the simulation result is
treated as ground truth. The RMSE data is The RMSE
(root mean square error) of the estimated representative
hardness parameter αi for each stand is given as table
4, which shows accurate estimation performance of the
proposed hardness estimator. The normalized error is used
for calculating RMSE due to data security.

Table 4. RMSE of the estimation for αi

Stand number 1 2 3 4 5

RMSE (%) 2.09 1.99 1.95 1.90 1.92

Note that the estimation error has tendency of decreasing
by passing through TCM process, which can be explained
by variances of αi from the estimator - see Fig. 7. For
example, as detailed in Sec.3, α1 is estimated by optimally
fusing sensor information and the process model corre-
spond to the 1st stand. Then α2 estimation is performed by
optimally merging sensor measurement, the process model
for the 2nd stand, and additionally transported optimally
fused α1 information, which leads smaller variance (i.e.
more accurate estimation) by exploiting information of
the both 1st and 2nd stand. In the same way, therefore,
ith stand can take advantage of exploiting information
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Fig. 7. Variances of αi from proposed hardness estimator

obtained from 1st stand to ith stand and most accurate
hardness estimation is achieved for the last stand of the
TCM process.

In order to utilize our real-time optimal hardness es-
timator for thickness hunting suppression, we design a
feedforward controller that uses estimated representative
hardness parameter transported from the former stand as
feedforward to control exit thickness. In order to respect
the existing industrial control structure of TCM composed
of numerous single objective controllers, and to reduce the
risk for adjustment to real system, a retrofit controller,
which can be equipped to existing control structure, is
considered. Then, not only following concept of existing
TCM feedforward controller, which uses transported entry
thickness as feedforward, but also considering longitudi-
nally varying hardness, partial differential form respect to
entry thickness and representative hardness parameter for
equation (8) is considered.

∆S =
∂h

∂H
∆H +

∂h

∂α
∆α− 1

K

(
∂P

∂H

∣∣∣∣
∗

∆H +
∂P

∂α

∣∣∣∣
∗

∆α

)
(32)

where ∆ indicates difference from the nominal state and
* indicates derivative value at nominal state. Therefore,
to maintain exit thickness from varying entry thickness
and hardness, ∆S, which is control input for rolling stand,
should be given as

∆S = − 1

K

(
∂P

∂H

∣∣∣∣
∗

∆H +
∂P

∂α

∣∣∣∣
∗

∆α

)
(33)

The nominal partial derivative values can be calculated
by differentiating rolling force equation (1). Note that
this simple structure retrofit controller can replace exist-
ing feedback controller while maintaining the other con-
trollers.

In order to validate the efficacy of proposed feedforward
controller for thickness hunting suppression, TCM simula-
tion under existing control structure and changed control
structure, existing feedforward controller of which is re-
placed to proposed feedforward controller, are performed.
Both the original feedforward control and proposed one are
applied to the 5th stand to directly compare the results.
Exit thickness of the 5th stand, which is actually thickness
of cold-rolled steel, is shown in Fig. 8 where the result
of default control structure, control setting with proposed
feedforward control, and desired thickness are expressed
in blue dashed line, red line, and black thin dashed line,
respectively. The RMSE of the 5th exit thickness for each

Fig. 8. TCM simulation result for exit thickness of 5th
stand for default control structure and our proposed
controller

case are given as table 5. Note that our proposed feed-
forward controller with hardness estimator significantly
suppresses thickness hunting so that RMSE of the 5th exit
thickness is reduced by 37% of default control structure.
Here, the RMSE is calculated from normalized error to
keep data security.

Table 5. RMSE of the 5th exit thickness

Controller Original Proposed

RMSE (%) 0.525 0.331

Not only the RMSE of 5th exit thickness but also off gauge
length, which is the strip length violating given thickness
error tolerance, can be used for the evaluation. The off
gauge length for original/proposed feedforward control for
three cases of error tolerances are given as table 6. Note
that the off gauge length is directly connected to the
profit, which means our proposed estimation framework
and controller can significantly reduce the loss from the
thickness hunting.

Table 6. Off gauge length for error tolerances

Tolerance (%) Original Proposed

±2 22.13 6.98

±2.5 8.69 5.25

±3 6.39 0.00

5. CONCLUSION

We propose a novel hardness estimation framework for
TCM (tandem col milling) process, which optimally fuses
the nonlinear process model and available sensor informa-
tion from each rolling stand, while also fully respecting
the sparsity/scarcity of the sensors and the interconnected
structure of the TCM process. We also devise a feedfor-
ward thickness hunting suppression control, which, by ex-
ploiting the estimated hardness information, can substan-
tially reduce the thickness hunting of the TCM process.
The proposed hardness estimation and feedforward control
frameworks are then validated/verified with high-precision
physics-based simulator of the TCM process.
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