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Abstract: In this paper, stability conditions based on graph theory for dynamical network
systems are shown. Although many frameworks based on graph theory for analysis of dynamical
systems have been proposed, there is no stability condition that can be utilized to design
of controllers and observers for linear dynamical systems. In this work, to show the stability
condition based on graph theory for control and estimation, the dynamical system is represented
by a directed graph with weights. The proposed stability conditions are obtained as the
inequality of the weighted degrees defined in this paper. As applications, equilibrium point
analysis of Lotka-Volterra system and design of pinning controllers and observers for consensus
systems are proposed.
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1. INTRODUCTION

A dynamical network systems is a system whose behaviors
are determined by interactions over large-scale complex
networks. Many phenomena, for example, a gene network,
electrical power network, epidemic, hit phenomena Boc-
caletti et al. (2006); Mesbahi and Egerstedt (2010); Liu
et al. (2011); Ishii et al. (2012) can be represented by
dynamical network systems. Since it is difficult for us to
apply the standard analysis for the large-scale complex
networks, efficient frameworks to analyze the dynamical
network systems are required. For example, to reduce a
complexity of networks some model reduction methods
have been proposed in Ishizaki et al. (2014); Antoulas
(2005); Ishizaki and Imura (2015).

In the past decades, graph theory is utilized the analysis
of the dynamical systems Liu et al. (2011); Wang et al.
(2016); Gu et al. (2015); Liu et al. (2013). To represent
the dynamical network system based on graph theory,
a structured system representation is proposed in Dion
et al. (2003). The structured system is represented by a
directed graph, where nodes correspond to states, inputs,
and outputs of the original state space and edges means
that there exits nonzero parameter between end points of
the corresponding edge in the original state space.

Properties of the graph corresponding to the structured
system provide generic conditions of the original systems,
for example, controllability Glover and Silverman (1976);
Shields and Pearson (1976) and the number of invariant
zeros van der Woude (1999). Since little information is
required for the analysis, the conditions obtained from the

structured system are useful to analyze the systems which
are difficult to identify, for example, biological systems
and social systems. However, the conditions based on
the structured system are conservative. In particular, the
paper Dion et al. (2003) indicates that we can not obtain
stability conditions from the structured systems.

In other past works, the stability condition of the dy-
namical network systems based on graph theory has been
proposed in Mochizuki et al. (2013); Fiedler et al. (2013);
Zañudo et al. (2017); Ogura and Preciado (2017); Azuma
et al. (2017). In Mochizuki et al. (2013) and Fiedler et al.
(2013), the stability condition of nonlinear dynamical net-
work systems based on a feedback vertex set is proposed.
Based on the condition proposed in Mochizuki et al. (2013)
and Fiedler et al. (2013), the system is stable if the states
corresponding to the feedback vertex set are 0. However,
the paper Zañudo et al. (2017) indicates that there is no
guaranty of the existence of the controller which stabi-
lizes the states corresponding to the feedback vertex set.
Although the other works Ogura and Preciado (2017);
Azuma et al. (2017) show the stability condition based on
graph theory, the system is confined to a positive system
and a Boolean network, respectively.

In this works, the stability condition based on graph theory
for linear dynamical network systems is shown and design
methods of a controller and an observer are proposed. A
system in this work is expressed as a directed graph with
weights. For the directed graph with weights, weighted
degrees are defined to derive stability conditions of the
linear dynamical systems. From the stability condition
based on the weighted degrees, parameter region of the
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controller and observer which stabilize the system and
error systems are shown.

As applications, we consider an equilibrium point analysis
of Lotka-Volterra system and design problem of the con-
troller and observer for consensus systems.

Preliminaries

We utilize [A]i,j as the (i, j)-entry of the matrix A.
For a set N , we utilize a cardinality of N as |N |. Let
G := (V, E ,W) be a directed graphs with weights, where
V := {1, · · · , n}, E ⊆ V × V is a set of edges and W :=
{ w(i,j) ; w(i,j) ∈ R} is a set of the weights. The graph Ḡ is

defined by Ḡ := (V, Ē , W̄), where Ē := { (i, j) ; (j, i) ∈ E}
and W̄ = {w̄(j,i); w̄(j,i) = w(i,j) ∈ W}. Let G1 :=
(V1 ∪ V2, E1,W1) and G2 := (V2 ∪ V3, E2,W2) be directed
bipartite graphs with the weights, where Ei ⊆ Vi × Vi+1

andWi = {wi
(j,i);w

i
(i,j) ∈ W}. A product of G1 and G2 are

defined by G1×2 := (V1 ∪ V3, E1×2,W1×2). The set of the
edges is defined by E1×2 := {(j, i); (j, k) ∈ E1 and (k, j) ∈
E2} and w1×2

(j,i) ∈ W1×2 is defined by

w1×2
(j,i) =


∑

(j,k)∈E1,(k,i)∈E2

w1
(j,k)w

2
(k,j) if (j, i) ∈ E1×2

0 otherwise.

2. DYNAMICAL NETWORK SYSTEMS

Let us consider the dynamical systems in which states
evolve over complex networks. Nodes of the networks are
categorized by the states, inputs, and outputs. Let Vx :=
{x1, · · · , xn} be a set of the states, Vu := {u1, · · · , up} be
a set of the inputs and Vy := {y1, · · · , yq} be a set of the
outputs. Interaction among nodes is expressed by directed
graphs with weights.

The dynamics of the states are expressed by a self feedback
and the interaction among the other states. Gain of self-
feedback in ith state is given by ai. The interaction among
the states is defined by a directed graph with weights like
Gx := (Vx, Ex,Wx), where Ex ⊆ Vx × Vx is a set of edges
and Wx := { w(i,j) ; w(i,j) ∈ R} is a set of the weights.
If xj affects dynamics of xj , (xi, xj) ∈ Ex. The weight
w(j,i) corresponds to a coefficient of xj in the dynamics of
xi. Index sets of the states which affect and are affected
by xi are denoted by N in

i := { j ; (xj , xi) ∈ Ex} and
N out

i := { j ; (xi, xj) ∈ Ex}, respectively.
The interaction between the inputs and the states are
defined by a directed bipartite graph with the weights like
Gu := (Vx ∪ Vu, Eu,Wu), where Eu ⊆ Vu × Vx is a set of
edges andWu := { b(j,i) ; b(j,i) ∈ R} is a set of the weights.
If the input uj affects the dynamics of xi, (uj , xi) ∈ Eu.
The weight b(j,i) corresponds to a coefficient of uj in the
dynamics of xi. An index set of the inputs which affect the
dynamics of xi are denoted by Pi := { j ; (uj , xi) ∈ Eu}.
The interaction between the states and the outputs are
defined by a directed bipartite graph with the weights like
Gy := (Vx ∪ Vy, Ey,Wy), where Ey ⊆ Vx × Vy is a set
of edges and Wy := { c(j,i) ; c(j,i) ∈ R} is a set of the
weights. If the state xj affects the output yi, (xj , yi) ∈ Ey.
The weight c(j,i) corresponds to a coefficient of uj in the

dynamics of xi. An index set of the states which affect yi
are denoted by Qi := { j ; (uj , xi) ∈ Eu}.
Based on above definition, ith state equation is expressed
by

ẋi = aixi +
∑

j∈N in
i

w(j,i)xj +
∑
k∈Pi

b(k,i)uk (1)

and ith output equation is expressed by

yi =
∑
j∈Qi

c(j,i)xj . (2)

Let x := col(x1, · · · , xn) ∈ R|Vx|, u := col(u1, · · · , up) ∈
R|Vu| and y := col(y1, · · · , yq) ∈ R|Vu|. We set A, D ∈
R|Vx|×|Vx|, B ∈ R|Vx|×|Vu| and C ∈ R|Vy|×|Vx| as

A = diag(a1, · · · , an),

[D]i,j =

{
w(j,i) (xj , xi) ∈ Ex
0 otherwise,

[B]i,j =

{
b(j,i) (uj , xi) ∈ Eu
0 otherwise,

[C]i,j =

{
c(j,i) (xj , yi) ∈ Ey
0 otherwise.

We can obtain the state space representation of the dy-
namical network system as follows:

ẋ = (A+D)x+Bu, (3a)

y = Cx. (3b)

Example 1. (Air Conditioning System). Let us consider
an air conditional system for an office room which is
utilized in Ido et al. (2016). To simplify dynamics, we
ignore the dynamics of air conditioners and only consider
thermal diffusion among the areas. The state equation of
the ith area is given by

ciẋi = −
∑

j∈N in
i

k(j,i)(xi − xj) + ui (4)

where xi is a temperature of ith area and ui is a heat
quantity given by air conditioners. Coefficients ci and
k(j,i) = k(i,j) denote the thermal capacity and the thermal
conductance between jth and ith area. Based on (1), the
gain of self feedback ai and weight w(j,i) of (1) for the air
conditioning system are obtained by

ai = − 1

ci

∑
j∈N in

i

k(j,i) and w(j,i) =
k(j,i)

ci
.

3. PROBLEM FORMULATION

Since the system (3) is classified a linear time invariant
system, we can analyze stability of the system and design
controllers and observers based on eigenvalues. The sta-
bility condition is that real parts of eigenvalues of A +D
are negative. Design problems of the controller and the
observer are that find K and L such that A + D + BK
and A+D+LC are stable, respectively. However, in large
scale systems, for example electric power networks or gene
networks, it is difficult to execute these calculations. In
addition, eigenvalue based design of the controller and the
observer sometime ignore a structure of systems, which
causes high-gain controllers and an inappropriate selection
of actuators and sensors.
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Instead of the eigenvalue, we find a stability condition,
a controller and an observer for the dynamical network
system (3) based on weighted degrees in this paper.

Definition 1. (Weighted Degree of Gx). For the directed
graph with the weights Gx, indegree din(i) and outdegree
dout(i) of the node xi are defined by

din(i) =
∑

j∈N in
i

|w(j,i)|,

dout(i) =
∑

j∈N out
i

|w(i,j)|.

In the stability analysis based on the weighted degree, we
find a regions of the indegree and the outdegree which
guarantee that the system (3) becomes stable.

Problem 1. For the system (3a), the indegree din(i) and
outdegree dout(i) are given. Then, find the regions ξi and
ηi

ξi(din(i), ai) < 0, (5a)

ηi(dout(i), ai) < 0 (5b)

which guarantee limt→∞ x = 0.

In the design problem of the controller, we find state
feedback controller such that a closed loop system satisfies
(5). An actuator network among the inputs and the states
are defined by a directed bipartite graph with the weights
like Gc := (Vu ∪ Vx, Ec,Wc), where Ec ⊆ Vx × Vu is a set
of edges and Wc := { k(j,i) ; k(j,i) ∈ R} is a set of the
weights. If the controller which calculates the input values
for ui can utilize the state xj , (xj , ui) ∈ Ec. The weight
k(j,i) corresponds to feedback gain of xj in ui. An index
set of the states which are utilized in ui are denoted by
Ki := { j ; (xj , ui) ∈ Ec}. Using the actuator network Gc,
linear feedback controller for ui are given by

ui =
∑
j∈Ki

k(j,i)xj . (6)

Then, we consider the following problem.

Problem 2. The system (3a) is given. Then find the actua-
tor network Gc such that the closed loop system consisted
by (3a) and (6) satisfies (5).

In the design problem of the observer, we consider a
Luenberger type observer for the system (3). A sensor
network among observers and the outputs are defined by a
directed bipartite graph with the weights like Go := (Vy ∪
Vx, Eo,Wo), where Eo ⊆ Vy × Vx is a set of edges and
Wo := { l(j,i) ; l(j,i) ∈ R} is a set of the weights. Let Σi

be the observer which estimates xi. If Σi can utilize the
output yj , (yj , xi) ∈ Eo. The weight l(j,i) corresponds to an
observer gain of yj in Σi. An index set of the output which
are utilized in Σi are denoted by Li := { j ; (yj , xi) ∈ Ec}.
By using the sensor network Go, we define the observer Σi

as
˙̂xi =âix̂i +

∑
j∈N̂ in

i

ŵ(j,i)x̂j +
∑
k∈P̂i

b̂(k,i)uk

+
∑
m∈Li

l(m,i)ym.
(7)

Then, we consider the following problem.

Problem 3. The system (3a) is given. Then find the full
state observers Σi for all xi ∈ Vx (i.e., find the coefficients

âi, ŵ(j,i), b̂(k,i), the index sets N̂ in
i , P̂i and the sensor

network Go) such that limt→∞(xi − x̂i) = 0.

4. MAIN RESULT

4.1 Stability Analysis Based on Weighted Degree

In this section, we derive the stability condition for (3a)
based on the weighted degree as a solution of Problem 1.
To corresponds the weighted degree to the stability of the
system (3a), we utilize Gershgorin circle theorem.

Theorem 1. (Gershgorin circle theorem). Let A be a n×n
matrix whose entries are complex numbers. Gershgorin
disc Ri and Si are defined by

Ri :=

 s ; |s− [A]i,i| ≤
∑
i ̸=j

|[A]i,j |

 ,

Si :=

 s ; |s− [A]i,i| ≤
∑
i ̸=j

|[A]j,i|

 .

Then, every eigenvalue of A lies the region(
n∪

i=1

Ri

)
∩

(
n∪

i=1

Si

)
.

Based on Gershgorin circle theorem, the stability condition
for (3a) based on the weighted degree are given by the
following theorem.

Theorem 2. The system (3) are stable if either (C1)
or (C2) are satisfied.

(C1) For all xi ∈ Vx, din(i) + ai < 0.
(C2) For all xi ∈ Vx, dout(i) + ai < 0.

Proof 1. (C1) From the definition of the indegree, the
Gershgorin disc Ri of A+D in (3a) is given by

Ri = { s ; |s− ai| ≤ din(i)} .
From din(i)+ai < 0, we can obtain Ri ⊂ {s; s ∈ C,Re(s) <
0}. Therefore, we can obtain

n∪
i=1

Ri ⊂ {s; s ∈ C,Re(s) < 0}.

From the above discussion, we can conclude that the real
parts of the all eigenvalue of A+D are negative if (C1) is
satisfied.

(C2) From the definition of the outdegree, the Gershgorin
disc Si of A+D in (3a) is given by

Si = { s ; |s− ai| ≤ dout(i)} .
From dout(i) + ai < 0, we can obtain Si ⊂ {s; s ∈
C,Re(s) < 0}. Therefore, we can obtain

n∪
i=1

Si ⊂ {s; s ∈ C,Re(s) < 0}.

From the above discussion, we can conclude that the real
parts of the all eigenvalue of A+D are negative if (C2) is
satisfied.

4.2 Design of Controller and Observer Based on Weighted
Degree

In this subsection, the controller which stabilizes the
system (3a) and the observer which estimates the state of
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(3) are discussed as a solution of Problem 2 and 3. Previous
subsection provides the stability condition of (3a) based on
the weighted degree. Therefore, we find Gc such that the
closed loop system satisfies Theorem 2 and Go such that
dynamics of ei satisfies Theorem 2.

An interaction among the states generated by actuator
networks is given by Gu × Gc := (Vx, Eu×c,Wu×c). An
index set of the states which affect and are affected by xi

over Gu ×Gc are denoted by Cin
i := { j ; (xj , xi) ∈ Eu×c}

and Cout
i := { j ; (xi, xj) ∈ Eu×c}, respectively. Let d(j,i) ∈

Wu×c be the weight which corresponds (xj , xi) ∈ Eu×c.
Based on d(j,i) and Cin

i , a state feedback of ui is given by∑
j∈Cin

i

d(j,i)xj .

Then, the stability conditions of the closed loop system
(1) with (6) are given by the following theorem.

Theorem 3. The closed loop system (1) with (6) is stable
if either (8) or (9) are satisfied.∑

j∈N in
i

|w(j,i) + d(j,i)|+
∑

j∈Cin
i
\N in

i

|d(j,i)|

+ ai + d(i,i) < 0 for all xi ∈ Vx.

(8)

∑
j∈N out

i

|w(i,j) + d(i,j)|+
∑

j∈Cout
i

\N out
i

|d(i,j)|

+ ai + d(i,i) < 0 for all xi ∈ Vx.

(9)

Proof 2. The state equation of closed loop system of (1)
with (6) are expressed by

ẋi =(ai + d(i,i))xi +
∑

j∈N in
i

(w(j,i) + d(j,i))xj

+
∑

j∈Cin
i
\N in

i

d(j,i)xj .

Based on Definition 1, the indegree and the outdegree of
xi in the closed loop system are expressed by

din(i) =
∑

j∈N in
i

|w(j,i) + d(j,i)|+
∑

j∈Cin
i
\N in

i

|d(j,i)|,

dout(i) =
∑

j∈N out
i

|w(i,j) + d(i,j)|+
∑

j∈Cout
i

\N out
i

|d(i,j)|.

Therefore, from Theorem 2, we can obtain (8) and (9) as
the stability condition.

We find the sensor network Go such that dynamics of ei
becomes stable based on the weighted degree. Let us give
the observer Σi as

˙̂xi =aix̂i +
∑

j∈N in
i

w(j,i)x̂j +
∑
k∈Pi

b(k,i)uk

+
∑
m∈Li

l(m,i)(ŷm − ym),

ŷi =
∑
j∈Qi

c(j,i)x̂j .

(10)

Based on (10), the dynamics of estimation error ei is
expressed by

ėi = aiei +
∑

j∈N in
i

w(j,i)ei +
∑
m∈Li

l(m,i)αm,

αm =
∑

j∈Qm

c(j,m)ej .
(11)

An interaction among the estimation error generated by
sensor network is given by Go × Gy := (Vx, Eo×y,Wo×y).
An index set of the estimation error which affect and
are affected by error of xi over Go × Gy are denoted by
Oin

i := { j ; (xj , xi) ∈ Eo×y} and Oout
i := { j ; (xi, xj) ∈

Eo×y}, respectively. Let h(j,i) ∈ Wo×y be the weight which
corresponds (xj , xi) ∈ Eo×y. By using Go × Gy, (11) can
be expressed by

ėi =(ai + h(i,i))ei +
∑

j∈N in
i

(w(j,i) + h(j,i))ej

+
∑

j∈Oin
i
/N in

i

h(j,i)ej .
(12)

Then, the stability conditions of (12) are given by the
following theorem.

Theorem 4. The error system (12) is stable if either (13)
or (14) are satisfied.∑

j∈N in
i

|w(j,i) + h(j,i)|+
∑

j∈Cin
i
\N in

i

|h(j,i)|

+ ai + h(i,i) < 0 for all xi ∈ Vx.

(13)

∑
j∈N out

i

|w(i,j) + h(i,j)|+
∑

j∈Cout
i

\N out
i

|h(i,j)|

+ ai + h(i,i) < 0 for all xi ∈ Vx.

(14)

Proof 3. Based on Definition 1, the indegree and the
outdegree of ei in (12) are expressed by

din(i) =
∑

j∈N in
i

|w(j,i) + h(j,i)|+
∑

j∈Cin
i
\N in

i

|h(j,i)|,

dout(i) =
∑

j∈N out
i

|w(i,j) + h(i,j)|+
∑

j∈Cout
i

\N out
i

|h(i,j)|.

Therefore, from Theorem 2, we can obtain (13) and (14)
as the stability condition of (12).

Let Ξ := (A,Gu, Gx, Gy) denote the dynamical network
system which is expressed by (3). We define Ξ̄ as a
dual system of Ξ and Ξ̄ is expressed by (A, Ḡy, Ḡx, Ḡu).
Therefore, the controller based on the outdegree for Ξ
becomes the observer based on the indegree for Ξ̄.

5. APPLICATIONS

5.1 Equilibrium Point Analysis of Lotka-Volterra System

Theorem 2 provides a relation between the stability condi-
tion and the interaction among the states over the graph.
In this subsection, we apply Theorem 2 for an equilibrium
point analysis of Lotka-Volterra system to discuss the char-
acterization of competition among species. Lotka-Volterra
system represents a competition among some species and
is expressed by

ẋi =

ϵi − µ(i,i)xi −
∑

j∈N in
i

µ(j,i)xj

xi, (15)
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where xi > 0 is a population of ith species, ϵi > 0 is an
intrinsic rate of natural increase of ith species, µ(i,i) > 0
is a self-interacting coefficient of ith species and µ(j,i) > 0
is an interacting coefficient from jth to ith species. The
equilibrium point of Lotka-Volterra system (15) can be
characterized as

• Shakeout: xi = 0
• Subsistence: xi > 0, ϵi−µ(i,i)xi−

∑
j∈N in

i
µ(j,i)xj = 0.

In this paper, we find the condition for all species to be
subsistence under (15) as the following problem.

Problem 4. For the system (15), the equilibrium point
x̄ := (x̄1, · · · , x̄n)

⊤ > 0 is given. Then, find the region
ζ

ζ({µ(i,j) ; (xj , xi) ∈ Ex}, {µ(i,i) ; xi ∈ Vx}) < 0

such that x̄ becomes a stable equilibrium point of (15).

The region ζ is given by the following theorem.

Theorem 5. If
∑

j∈N in
i
µ(j,i) < µ(i,i) for all xi ∈ Vx are

satisfied, x̄ is the stable equilibrium point of (15). In other
word, if an affect of self-interacting outraces interacting
among neighbor species for all species, x̄ is the stable
equilibrium point of (15).

Proof 4. A linear approximated system of (15) around x̄
is expressed by

˙̃xi = −µ(i,i)x̄ix̃i −
∑

j∈N in
i

µ(j,i)x̄ix̃j , (16)

where x̃i = xi − x̄i. From the definition of indegree, din(i)
of (16) is expressed by

din(i) =
∑

j∈N in
i

µ(j,i)x̄i.

From Theorem 2, we can get a stability condition of (16)
as ∑

j∈N in
i

µ(j,i)x̄i − µ(i,i)x̄i < 0.

Due to x̄ > 0, we can get
∑

j∈N in
i
µ(j,i) < µ(i,i).

5.2 Design of Controller and Observer for Consensus
System

In Section 4.2, the condition of the controller and the
observer for a general dynamical network system is shown.
In this subsection, we show the actual design of actuator
and sensor network for the control and estimation of a
consensus system as an example of a dynamical network
system. Let G := {V, E} be undirected graph, where
V := {1, · · · , n} is a set of nodes and E ⊆ V × V the
set of edges. The neighbor nodes of ith nodes over G are
given by Ni := { j ; (j, i) ∈ E}. Based on G, the consensus
system is defined by

ẋi = −
∑
j∈Ni

(xi − xj). (17)

If G is connected, xi for all i ∈ V converges to

xi(∞) =
1

n

n∑
i=1

xi(0). (18)

In this subsection, we consider the pinning controller which
changes consensus values from (18) to another value. Let

P ⊂ V be set of the pinning nodes which are applied
external inputs. The dynamics of the pinning node p ∈ P
is expressed by

ẋp = −
∑
j∈Np

(xp − xj) + up. (19)

We consider following problem.

Problem 5. For the system constructed by (17) and (19),
a new consensus values xcon is given. Then, find pinning
controller

up(t) = g({xj ; j ∈ Kp}, xcon)

such that

lim
t→∞

(x(t)− xcon) = 0.

By using x̃i = xi − xcon, the system constructed by (17)
and (19) can be expressed by

˙̃xi = −
∑
j∈Ni

(x̃i − x̃j) + ui i ∈ P

˙̃xi = −
∑
j∈Ni

(x̃i − x̃j) otherwise.
(20)

Let souti := dout(i) + ai and souti for all i ∈ V of (20) is
expressed by

souti = |Ni| − |Ni| = 0.

To stabilize (20) based on Theorem 2, we design an
actuator network such that souti < 0. Let Gc :=
(Vc, Ec,Wc) be the actuator network for the pinning con-
trol of (20), where Vc := {x̃1, · · · , x̃n} ∪

∪
i∈P{ui}, Ec :=∪

i∈P{
∪

j∈Ki
{(xj , ui)}} and Wc := { k(j, i) ; k(j, i) ∈ R}.

Assume that Ki = Ni ∪ {i} and the pinning controller
generated by the actuator network Gc for (20) is expressed
by

ui =k(i,i)x̃i +
∑
j∈Ni

k(j,i)x̃j

=k(i,i)xi +
∑
j∈Ni

k(j,i)xj

−

k(i,i) +
∑
j∈Ni

k(j,i)

xcon.

(21)

Then, the following theorem holds.

Theorem 6. If (C1) and (C2) are satisfied, the closed loop
system (20) with (21) becomes stable.

(C1)
∪

i∈P Ni ∪ P = V
(C2) k(i,i) < 0 and −2 < k(j,i) < 0

Proof 5. The state equation of the pinning node i with
(21) is expressed by

˙̃xi = (k(i,i) − |Ni|)x̃i +
∑
j∈Ni

(1 + k(j,i))x̃j .

From (k(i,i) − |Ni|) < −|Ni|, souti < 0 for i ∈ P. From
|1 + k(j,i)| < 1, dout(j) for j ∈ Ni and i ∈ P of the closed
loop system (20) with (21) is smaller than |Ni|, which
means soutj < 0 for j ∈ Ni and souti < 0 for i ∈ P. In
addition, from

∪
i∈P Ni ∪ P = V, we can conclude that

si < 0 for all i ∈ V holds.

Based on the duality of the controller and the observers,
we can design the observer from Theorem 6. For the
system (17), we consider the following outputs
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ym = xm,m ∈ Q ⊂ V, (22)

where Q is a set of sensor nodes. Let Go := (Vo, Eo, Eo) be
the sensor network for the estimation of (17), where Vo :=
{x̂1, · · · , x̂n} ∪

∪
i∈Q{yi}, Eo :=

∪
i∈Q{

∪
j∈Li

{(yj , x̂i)}}
and Wo := { l(j,i) ; l(j,i) ∈ R}. Based on Go, an observer
for the system (18) with (22) can be expressed by

˙̂xi = −
∑
j∈Ni

(x̂i − x̂j) +
∑
m∈Li

l(m,i)(x̂m − ym). (23)

Then, we consider the following problems.

Problem 6. The system constructed by (17) and (22) is
given. Then, find Go such that limt→∞(xi − x̂i) = 0.

Let Gu be an actuator network for pinning controller of
(17), where pinning node is selected Q and Ki = Ni ∪ {i}.
Then, we obtain the observer for (17) from the following
theorem.

Theorem 7. If Gu satisfies Theorem 6, the estimation
errors of the observer (23) based on Ḡu converge to 0.

Proof 6. Since G is the undirected graph, G = Ḡ. From
the duality, the sensor network Ḡu becomes the observer
for (17).

6. CONCLUSION

In this works, the graph-theoretic stability condition based
on the weighted degrees for linear dynamical network sys-
tems is shown. Based on the stability condition proposed
in this paper, we can design a controller and an observer.
As applications, an equilibrium point analysis of Lotka-
Volterra system and design problem of the controller and
observer for consensus systems are discussed. Finally nu-
merical simulation show that the graph-theoretic stability
based on the weighted degrees can be utilized in the pin-
ning control and the observer for the consensus systems.
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