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Abstract: This paper considers the problem of network overloading in the power distribution
networks of Pakistan, often resulting from the inability of the transmission system to transfer
power from source to end-user during peak loads. This results in frequent power-outages and
consumers at such times have to rely on alternative energy sources, e.g. Uninterrupted Power
Supply (UPS) systems with batteries to meet their basic demand. In this paper, we propose a
demand response framework to eliminate the problem of network overloading. The flexibility
provided by the batteries at different houses connected to the same grid node is exploited by
scheduling the flow of power from mains and batteries and altering the charging-discharging
patterns of the batteries, thereby avoiding network overloading and any tripping of the grid
node. This is achieved by casting the problem in an optimal control setting based on a prediction
of power demand at a grid node and then solving it using a model predictive control strategy.
We present a case study to demonstrate the application and efficacy of our proposed framework.

1. INTRODUCTION

The economic and social impact of an unreliable power
generation and distribution system can be huge. For ex-
ample, in Pakistan, the annual loss is estimated to be
4.5 billion dollars (1.7% of gross domestic product), while
more than 50 million still remain off the grid (Samad
and Zhang (2018)). The demand-supply gap results in an
average of six to eight hours of outages per day during
hot summers when the demand peaks and the existing
infrastructure cannot sustain the power flow from genera-
tion to end users. With the increase in energy demand to
sustain economic growth and more people connecting to
the grid, the existing infrastructure is going to be more
strained. Replacing or upgrading the transmission and
distribution system is either costly or infeasible, hence
necessitating more innovative solutions to the problem of
network overloading.
During the power-outages, consumers usually rely on Un-
interrupted Power Supply (UPS) 1 systems together with

? The research work is supported in part by the Leading House South
Asia and Iran, Zürcher Hochschule für Angewandte Wissenschaften
(ZHAW), Switzerland.
1 UPS is a power-converter that ensures a smooth flow of power to
the critical loads from the associated battery, in case of interruption
of the mains power supply. It also charges and discharges the battery
depending on the availability of the power.

electric batteries to meet their most essential requirements.
Due to planned and unplanned outages in the country,
almost every household in Pakistan has a UPS-battery
system installed. In this paper, the availability of such a
resource is exploited, and a Demand Response (DR) based
approach is proposed to address the network overloading
problem by utilizing the flexibility of the energy storage
devices at the consumers’ premises. Based on a forecast
of power demand at a given grid node, the flow of power
is scheduled from the grid and storage batteries to houses
connected to the same node, while altering the charging
periods of the batteries to off-peak hours. This smart
coordination of the electric batteries with the grid helps to
keep the overall load on the grid node within its limits, and
thus reduces overloading and power-outages. All of this
is achieved by posing the problem in an optimal control
framework and solving it in a receding horizon fashion
using a Model Predictive Control (MPC) setting. The
optimal strategy eliminates the peaks in consumption at
a given node and ensures continuous flow of power to all
the consumers connected to that node.
The purpose of DR is to enable the consumers to con-
tribute to the operation of the electric grid by reducing
or shifting their electricity usage to off-peak hours, thus
giving some relaxation to the grid. Various DR techniques
have been proposed in the literature. Consumer partici-
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pation, however, usually comes with an incentive such as
subsidised rates during the off-peak hours (Ballenger et al.
(2017), Mahmood et al. (2014)). In (Ma et al. (2012), Avci
et al. (2013), Conejo et al. (2010)), an MPC approach
is proposed to minimize the daily electricity costs of the
consumers. In (Vrettos et al. (2013), Qureshi et al. (2014),
Bianchini et al. (2016)), an MPC controller that enables
optimization of building’s thermal load operation in the
presence of day-ahead and real-time prices was proposed.
(Oldewurtel et al. (2010)) considers building climate and
incorporates an electricity tariff directly into the cost
function of an MPC setup to reduce the peak demand.
(Li et al. (2011)) solve for an optimal price policy that
not only reduces the consumers’ individual electricity bill
but also benefits the whole system. (Zhang et al. (2014))
explicitly models the dynamic nature of specific appliance
preferences and their short term evolution to solve for an
optimal price policy.
This paper presents a DR framework that addresses the
network overloading problem by adopting demand side
management, where the flexibility provided by the energy
storage devices is exploited in conjunction with a demand
forecast. The problem is posed in an optimal control
framework where the optimal strategy alters the charg-
ing/discharging times of the batteries, based on a demand
forecast, and optimally schedules the flow of power from
the grid and the batteries to meet the consumers demand.
With the proposed approach, the discharged batteries are
scheduled to charge during the off-peak hours, and in such
a way that the simultaneous charging of the batteries at
all houses is avoided to evade network overloading events,
e.g., consider a case where all batteries have been fully
discharged during the peak hours. In the usual scenario,
where DR is not implemented, all batteries will begin
charging right after the power-outage is recovered. This
can cause overloading as soon as the power supply is
resumed. However, an optimization based technique, as
proposed in this paper, ensures that the charging time
of the batteries is distributed through out the off-peak
hours in such a way that the batteries are charged without
overloading the network. The efficacy of the proposed
framework is shown in simulations. It is demonstrated
that the proposed approach optimally regulates the flow of
power, thereby eliminating network overloading and thus
power-outages during peak hours.
The main contribution of this paper can be summarized
as follows:

(1) A DR based strategy is proposed to overcome and
minimise network overloading events in a power grid.

(2) A framework of the DR based strategy is presented,
where a Model Predictive Control (MPC) strategy is
employed to control charging and discharging of the
batteries.

(3) The proposed strategy is implemented on the demand
profiles of an average house in Las Vegas and San
Francisco (Data source: EERE (2019)).

The paper focuses on the special case of Pakistan (where
UPS-battery setups already exists), however, due to un-
availability of consumption data of houses, authors are
using available data from a foreign country. The proposed
framework is quite general and extendable to any power
grid with battery based resources such as electric vehicles,

houses with solar systems etc. Additionally, appliances
with major consumption such as air-conditioners can also
be incorporated into DR framework to fully exploit the
flexibility of the load.

The rest of the paper is organized as follows. Section 2
presents the problem formulation. An MPC based optimal
control strategy is presented in Section 3 to solve the
problem over a finite horizon. In Section 4, simulation
results are provided to demonstrate the working of the
proposed framework. Section 5 concludes the paper.

2. PROBLEM FORMULATION

In this section, we first present a setup that is amenable
to the application of our demand response framework. We
then present the mathematical models for batteries, power
consumption and demand forecasts and then propose cost
functions to achieve the objective of minimizing network
overloading.

2.1 Network Control Architecture

Consider a typical household with a UPS-battery setup
and connected to grid as shown in Figure 1. The house
can take power from the grid or from the UPS-battery
unit in case the grid is down. Figure 2 shows the proposed
control overlay over the existing network architecture for
the implementation of our framework. In this setup, a com-
munication link is established between a central controller
and UPS-battery units at homes to allow for exchanges of
information such as battery’s State-Of-Charge (SOC) and
control signals for charging and discharging of batteries.
We assume that the appliances at homes can be powered
by grid and UPS-Battery units simultaneously e.g. using
multi-port power converters.

H
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Main Power Lines

H
o
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UPS-

Battery

UPS-

Battery

Fig. 1. Current status of the power distribution network
in Pakistan.

House M

. . .
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Battery
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Central Controller

. . .

Fig. 2. Proposed upgrade for the power distribution net-
work in Pakistan.

2.2 System Modeling and Constraints

Consider a cluster of N houses attached to a grid node,
out of which M houses are equipped with UPS-Battery
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setups, as shown in Figure 2. The dynamics of a battery,
inspired by (Patrinos et al. (2011)), can be represented as

xj(k + 1) = ajxj(k) + bjuj(k), (1)

where j = 1, 2, · · · ,M denotes the battery in the respec-
tive house. Here xj represents the State-Of-Charge (SOC),

while the coefficients aj and bj =
[
ηcj η

d
j

]
represent dissipa-

tion factors, and the charging and discharging coefficients
of the jth battery. The input uj to each respective battery

is assumed to be of the form uj(k) =
[
ucj(k) udj (k)

]T
,

where ucj and udj represent the charging and discharging
inputs respectively. To obtain a more compact represen-
tation, we concatenate the equations in (1) to obtain the
following state space model:

X(k + 1) = AX(k) +BU(k), (2)

where

X(k) = [x1(k) x2(k) · · · xM (k)]
T

M×1 , (3)

U(k) = [u1(k) u2(k) · · · uM (k)]
T

2M×1 , (4)

and

A =

a1 · · · 0
...

. . .
...

0 · · · aM


M×M

, B =

b1 · · · 0
...

. . .
...

0 · · · bM


M×2M

.

If we let

XL = [x1,l · · · xM,l]
T

M×1 and XH = [x1,h · · · xM,h]
T

M×1
denote the minimum and the maximum SOC allowed for
the batteries, we then have the constraint

XL ≤ X(k) ≤ XH. (5)

Similarly, there is a constraint on the inputs

UL ≤ U(k) ≤ UH, (6)

where

UH = [u1,h · · · uM,h]
T

2M×1 and UL = [u1,l · · · uM,l]
T

2M×1
contain the maximum and minimum charging and dis-
charging limits for the inputs respectively. Since each input
further has a charging and discharging component, we let

Uc(k) = [uc1(k) uc2(k) · · · ucM (k)]
T

M×1 , (7)

Ud(k) =
[
ud1(k) ud2(k) · · · udM (k)

]T
M×1 . (8)

where k denotes the time index. At any given time, a UPS
can either charge or discharge a corresponding battery,
but can’t do both i.e. both uc and uk cannot be positive
simultaneously. Alternatively, each battery can remain in
an idle state with no charging or discharging happening.
This constraint on charging and discharging of batteries
can mathematically be written in succinct form using the
Hadamard product (Horn (1990)) as

Uc(k) ◦ Ud(k) = OM×1, (9)

where OM×1 is a vector of zeros of size M × 1.

2.3 Power Consumption

The total power flow from the grid node to the cluster can
be modeled as

P (k) =

N∑
j=1

dj(k) +

M∑
j=1

ucj(k)−
M∑
j=1

udj (k), (10)

where dj(k) represents the actual consumption of the jth

house measured by a smart meter, while ucj(k) and udj (k)

either adds to or subtracts from the load. There is an upper
limit on the total available power to the node imposed by
the operators to avoid network overloading. This limit is
imposed by the ratings of the transmission wires and the
transformers tasked to supply power to the given node, and
can be represented by the following inequality constraint

P (k) ≤ Pmax. (11)

Whenever the demand exceeds the constraint, the electric-
ity providers disconnect the entire power supply to avoid
any damage to the associated electrical systems in the
network.

2.4 Demand Forecast

To be able to determine the optimal charging and dis-
charging inputs ucj and udj at time k, we need a demand
forecast in such a way that P (k) never exceeds Pmax. For
our problem, we use the following Auto Regressive (AR)
predictor, inspired by (Fan and Hyndman (2012)), as the
demand forecast model for a single house:

d̂(k) = a1d(k − 1) + a2d(k − 2) + a3d(k − 3)+

a4d(k − 24) + a5d(k − 48). (12)

Here d̂(k) is the predicted demand at time k, the sampling
time is 1 hour and a = [a1, a2, a3, a4, a5] denotes the model
parameters. ‘k − 24’ and ‘k − 48’, in (12), represent the
time instants yesterday and the day before yesterday. The
unknown parameters in a are estimated by the method of
least squares using historical data.

2.5 Objective Function

To avoid network overloading, we consider the following
two cost functions:

Cost Function 1- Peak Shaving: Network overloading
can be avoided by minimising the maximum of the total
consumption at a given node. Mathematically this min-
max problem can be formulated using the infinity norm,

min
U(1),U(2),...,U(T )

∥∥∥[P̂ (1) P̂ (2) . . . P̂ (T )
]T∥∥∥

∞
(13)

over the sequence of control actions, U , as defined in (2),

for a finite time hoizon, T , and P̂ (k) is defined as follows:

P̂ (k) =

N∑
j=1

d̂j(k) +

M∑
j=1

(ucj(k)− udj (k)). (14)

The above objective function shaves off the peaks in P̂ .

Cost Function 2 - Peak Shaving and Valley Filling:
Network overloading can also be avoided by shifting the
demand to a carefully chosen power consumption γ for
the node, which is always less than Pmax, e.g., consider
the following objective function:

min
U(1),U(2),...,U(T )

T∑
k=1

(P̂ (k)− γ)2, (15)

where γ can be chosen as the mean of the consumption at a
node obtained from historical data. This objective function
also shaves off the peaks in P̂ but additionally fills in the
valleys in load profiles. The results for the two choices of
the objective function are compared in the sequel.
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3. MPC BASED DEMAND RESPONSE
FRAMEWORK

The objective functions in (13) and (15), subject to the
constraints in (2), (5), (6), (10), (9) and (11), is solved
in a receding horizon fashion. To be precise, the following
Model Predictive Control (MPC) problem is solved:

min
U(m), U(m+1), ..., U(m+T−1)

m+T−1∑
k=m

(P̂ (k)− γ)2,

subject to X(k + 1) = AX(k) +BU(k),

P̂ (k) ≤ Pmax,

XL ≤ X(k) ≤ XH,

UL ≤ U(k) ≤ UH,

Uc ◦ Ud = O,

m = 1, 2, · · · .

(16)

The proposed discrete-time optimal control problem is
quadratic in cost and linear in constraints, and as such,
it is amenable to the use of commercially available solvers
for computing the optimal sequence of actions. For our
case, we solve the MPC problem (16) we use Gurobi
(Gurobi Optimization (2018)), via YALMIP (Lofberg
(2004)), in MATLAB.

4. SIMULATIONS

To demonstrate the application, and consequently the
effectiveness of the proposed DR framework, a cluster of
100 houses is considered in this section for a simulation
based study. The cluster consists of houses with both large
and small demand. All houses satisfy the assumptions
stated in problem formulation (Section 2).

4.1 Power Demand Data

The consumption data of the houses is taken from the
dataset in (EERE (2019)). The dataset contains the load
profiles of the major cities Las Vegas and San Francisco
in the United States of America, sampled on hourly basis.
This is because the climate of these cities resembles the
climate of most of the cities in Pakistan. The load profiles
contain the consumption data for a single residential
building for a whole year. To use it for 100 houses, the
data of the two cities is divided into 50 chunks each, and
every chunk is assumed to be the actual consumption of
a house. The data of a large house is obtained by further
incrementing the consumption of the house by 75%.

4.2 Simulation Parameters

For simulations, it is assumed that all houses in a cluster
are participating in the DR program and all batteries have
the same dissipation factor, aj = 0.95, and the same
charging and discharging coefficients, ηcj = ηdj = 0.85.
There are 30 large houses and 70 small houses. The large
and small houses are equipped with batteries of 1800 Wh
and 1200 Wh storage capacities respectively. The initial
SOC for all large batteries is set to 900 Wh while that
of all small batteries is set to 600 Wh. The maximum
power ratings of the corresponding UPS-battery setups are
assumed to be 1200 W and 1000 W respectively. These

values correspond to the commonly used UPS-battery
units in Pakistan. A lower limit of 200 Wh on the SOC
of all batteries has also been set to ensure that it never
gets fully discharged which conforms to the precautions
taken for longer battery life.

Parameters of the demand forecast model, (12), are esti-
mated by the method of least squares using the historical
data (EERE (2019)). The estimate âSF is,

âSF = [−0.0035,−0.0164, 0.0486, 0.7888, 0.1673]

for the first 50 houses, obtained from the San Francisco
dataset, and the estimate âLV

âLV = [0.0159,−0.0188, 0.0197, 0.9766, 0.0127]

for the remaining 50 houses obtained from the Las Vegas
dataset. The identified models are then used to predict
the consumption for every house. Figure 3 shows the
performance of the estimated model on the dataset. It

Time (Hour)
2 4 6 8 10 12 14 16 18 20

C
o

n
s
u

m
p

ti
o

n
 (

W
a
tt

s
)

600

800

1000

1200

1400

1600

1800

2000

2200

2400

2600
Day ahead Prediction using a 3rd order model 

Actual Data

Predicted Data

Fig. 3. Day ahead consumption, predicted by a model
obtained from the historical data.

can be noted that the model has predicted the short
term consumption trends quite well, which coincides with
our requirements for MPC based control strategy. In the
proposed strategy, a noise of zero mean and a standard
deviation of 50 watts, which ranges between 2 to 12
percent of the consumption of the houses, is also added
to the predicted demand to account for the consumers’
unpredictable behavior.
The maximum allowed power consumption, Pmax, was set
in the range 85−95% of the maximum value of the demand
profile. The following simulation results are shown for
Pmax = 86%, which is the minimum value that eliminated
any network overloading. The reference consumption, γ in
(15), is chosen to be the average of the demand profile.
The time horizon, T , is set to be 6 hours in (16), and the
simulations are carried out for R = 48 MPC steps (1 MPC
step = 1 hour).

4.3 Results

The simulation results for 48 hours are shown in Figures 4
and 6. Figure 4 shows the simulation results for the infinity
norm based cost function. The red (solid) line shows
the cluster’s original demand while the blue (dashed)
line shows the optimized consumption resulting from the
proposed technique. The demand curve exceeds the Pmax

constraint two times (from 18th to 22th and 32th to 46th

hours) indicating network overloading and hence power-
outages. The optimized consumption resulting from the
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Fig. 4. Figure shows the demand and the optimized con-
sumption of the cluster. The DR framework performs
demand side management in such a way that the
optimized consumption always remains below Pmax.

optimization based DR framework, however, is always
within the limits, thereby successfully avoiding network
overloading for the entire duration and highlighting the
efficacy of the proposed approach.

The improvement, as shown in Figure 4, is made possible
by the contribution of each house in the cluster. Figure
5 shows the response of a randomly chosen house (House
30). The first two subplots demonstrate the behavior of the
battery. The battery is charged when the charging input
(red (solid) line in subplot 2) is non-zero and the SOC of
the battery rises (in subplot 1). Similarly, the battery is
discharged when the discharging input (blue (dashed) line
in subplot 2) is non-zero and the SOC of the battery drops
(in subplot 1). The SOC of the battery, however, is always
greater than or equal to the minimum SOC value, so that
the constraint on SOC is always satisfied. Similar response
has been observed for the remaining houses (not shown to
avoid repetition). The third subplot shows the demand
(solid red line) and the consumption as a result of the
proposed technique (optimized consumption, blue dashed
line) of the house. While the optimized consumption is
different from the demand for a given house, the combined
effect of all houses resulted in the avoidance of network
overloading at the node, as shown in Figure 4.

Figure 5 shows that there is a rapid charging and dis-
charging behavior of the battery. This is not good for the
battery health and it also adds huge fluctuations in terms
of from where the load is served (grid or battery) in a
house. Moreover, in Figure 4, the off-peak hours are not
fully exploited. These problems are however circumvented
by using the objective function in (15) instead of (13).
Figure 6 shows the simulation results for the cost (15). It
can be seen that both consumption peaks are reduced and
the flexible load has been shifted to off-peak hours. Figure
7 shows the corresponding response of House 30, where the
frequent charging and discharging of the battery has also
been reduced. In summary, the optimization problem in
(16) puts some additional load on the grid during the off-
peak hours to charge the batteries, while during the peak
hours, the optimal scheduling shifts some of the load from
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Fig. 5. Figure shows the power flow at house 30. The bat-
tery is charged to provide a backup for a component
of the house demand thereby reducing the load on the
grid during the peak hours.
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Fig. 6. Figure shows an improvement in the profile of the
optimized power consumption with the use of (15).
The overall consumption is now closer to the reference
level γ.

the grid to the charged batteries, thus keeping the overall
consumption of the cluster below Pmax.

Figure 8 shows an analysis of the proposed technique
in view of number of participants in the DR technique.
One can see that as the number of participants increase,
load shedding decreases. It can be noticed that only 45%
participation rate can reduce the load shedding to half
its maximum value while 80% participation results in
complete elimination of load shedding.

5. CONCLUSIONS

In this paper, a DR based technique is utilized on the
UPS-battery units to reduce overloading on the grid. The
proposed formulation is practically viable for developing
countries like Pakistan, where such units are available in
almost every house. Whenever load on the grid exceeds
a certain threshold, some of the load, corresponding to
each house, is shifted to the batteries associated with
those houses, and as a result providing a relief to the grid.
Later the batteries are charged again during the off peak
hours. The charging and discharging decisions are taken
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Fig. 7. Figure shows the power flow at the same house
30 with the objective function of (15). The frequent
switching between charging and discharging has been
reduced.
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Fig. 8. Figure shows that increasing number of participants
(UPS-Battery setups) successfully manages to reduce
the magnitude of load shedding.

on the basis of a demand forecast and the UPS-battery
units are controlled by a control signal from the electricity
provider. The technique is simulated on a cluster of 100
houses of large and small sizes. The simulations results
show reduction in the peak consumption of the cluster
and demonstrate how much a flexible load, such as a UPS-
battery unit, can play a role in the avoidance of network
overloading.
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