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Abstract: Payload estimation is essential to measure productivity, evaluate efficiency in
industrial operations and adapting control laws according to the carried weight. One particular
problem is to identify how much mass is carried in a mining machine while it is being operated
without using strain gauge sensors which require frequent calibration and are prone to failure
due to mechanical stress. This paper presents an on-line method to estimate a loader’s payload
mass, rotational inertia and viscous friction coefficients employing inertial, torque and speed
measurements. The proposed approach introduces a mutual information criterion to select
those acceleration and velocity measurements that jointly with the excitation force ensure the
identifiability of the parameters. The approach relies on the recursive least-squares algorithm for
fast update of the parameters. The proposed strategy is also compared to the implementations
based on variants of the least-squares estimator, such as the feasible generalized least squares
and the total least squares approach. The approach is tested in simulation and validated in
experiments with an industrial semi-autonomous skid-steer loader Catr262C for different loads.
Results show that using the recursive least squares it is possible to estimate the parameters with
the same level of accuracy than OLS approach, while not needing a large buffer for estimation.
Mass is effectively estimated with an RMS error below 1% the total mass of the machine.

Keywords: Mobile robots, inertial parameters, on-line recursive parameter estimation,
identification methods, autonomous vehicles.

1. INTRODUCTION

Improving excavation and hauling efficiency is crucial to
mining productivity. In recent years significant efforts have
been devoted to the implementation of teleoperation ca-
pabilities and autonomous machines (Rigotti-Thompson
et al., 2018; Aguilera-Marinovic et al., 2017). However,
a central aspect in productivity and efficiency concerns
the amount of material extracted at the draw point and
the associated energy consumption. Thus measuring pro-
ductivity requires information of the inertial parameters,
particularly the transported mass.

One way to measure the load of an excavator or a load-
haul-dump (LHD) vehicle is to employ strain gauge sen-
sors. Unfortunately, these sensors are susceptible to quick
degradation due to continuous deformations and thus de-
mand frequent recalibration that renders these sensors
unreliable and not very practical in the context of mining
operations. An alternative approach is to estimate the load
by model identification methods using information from
other sensors. In this work we propose a strategy that relies

? This project has been supported by the National Commission for
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on inertial, torque and velocity sensors to estimate the
inertial parameters of loaders, e.g. scoops, LHD vehicles,
dump trucks, skid-steer loaders. The proposed approach
combines classic least squares estimators, but includes
strategies that provide information quality metrics essen-
tial to ensuring that the inertial parameter estimates can
be computed online in real-time without degrading the
accuracy of the estimates, particularly at constant speed
or low torque conditions for which the estimation problem
becomes ill-conditioned.

Methods for estimating inertial parameters and mobile
robot model identification have been proposed in (Hoang
and Kang, 2015; Rogers-Marcovitz and Kelly, 2014; Seeg-
miller et al., 2013). However, none of the existing ap-
proaches have focused on the particular challenges of iner-
tial parameter estimation of robotic excavators and loaders
for mining. Most of the approaches are validated only in
simulation (Hoang and Kang, 2015) or consider other ap-
plications, such as the inertial load modeling of an object
grasped by several mobile manipulator robots (Franchi
et al., 2014) or estimating wheel-terrain slippage charac-
teristics (Rogers-Marcovitz and Kelly, 2014). Most of the
existing inertial parameter estimation approaches either
consider robot arms with fixed-bases or constant mass
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mobile robots. The majority focus on the identification
of the end-effector load (Kubus et al., 2008; Siciliano and
Khatib, 2008) and very few have been conceived for online
estimation (Kubus et al., 2008).

The contribution of this work can be summarized in the
development of a novel approach for reliably computing
the inertial parameters of robotic mobile manipulators in
real-time and online. The approach takes advantage of the
structure of the model equations and introduces the use
of a mutual information criterion to select measurements
that jointly with the excitation force can deliver better
estimates for the inertial parameters. The proposed ap-
proach employs the recursive-least estimator for computa-
tional efficiency, but results using ordinary least squares,
feasible generalized least squares, total least squares are
also obtained for comparison purposes.

The proposed method is especially valuable to operation
managers for production monitoring and yield estimation
in mining, forestry, construction and other industries that
employ a variety of loaders and excavators. On the other
hand, the heavy loads moved by these machines, combined
with the slope of the terrain and load position can compro-
mise the stability of the machine. Thus it is important to
determine in an automated way the inertial characteristics
of the machine without employing the less reliable strain
gauge sensors for weight measurement.

This paper is organized as follows. Section 2 describes
the relevant model equations for the motion dynamics
of mobile robotic loader. Section 3 explains the inertial
parameter estimation strategy. Section 4 describes the
simulations and experiments used to test the proposed
approach and presents the results obtained during tests
with an industrial robotic mobile manipulator (Aguilera-
Marinovic et al., 2017). Finally, Section 5 discusses the
conclusions and aspects concerning ongoing research.

2. THEORETICAL BACKGROUND AND EXISTING
APPROACHES

Briefly stated, the problem of estimating the inertial
parameters of a rigid body b is to find its 10 inertial
parameters: the body mass mb ∈ R, the center of mass
cb0 ∈ R3 relative to an origin O0 of an inertial coordinate
frame F0, and the six inertia values of the symmetric
inertia matrix Ib ∈ R3×3 referred the origin Ob of the
body-frame Fb. The rigid body can be considered to be
composed of a mobile base, the arm links, the external load
held by the arm or a composition of rigidly fixed bodies
treated as a single larger body (Siciliano and Khatib,
2008). The estimation procedure then typically involves
the following main steps:

(1) Formulating the Newton-Euler equations of the body
dynamics to obtain a linear dependence on the inertial
parameters.

(2) Generating an adequate motion trajectory.
(3) Measuring with suitable sensors and filters the body

velocity vb and acceleration ab, and the forces or
torques.

(4) Solving a least-squares optimization problem to find
the parameters that minimize the residuals between

the measured values and the value provided by the
model.

Using the spatial vector formalism (Featherstone, 2008),
the Newton-Euler equation referred to Ob for a body b is
given by

f b = Ibab + vb ×∗ Ibvb (1)

where f b is the net spatial force acting on body b, Ib is the
spatial inertia matrix

Ib =

[
Ib mbS(cb)

mbS(cb)T mb1

]
and ab is the spatial acceleration vector

ab =

[
ω̇b

v̇b

]
=

[
ω̇b

d̈b0 − ωb × vb
]

with S(v1) denoting the skew-symmetric 3×3 matrix that
satisfies S(v1)v2 = v1×v2 for any two vectors v1,v2 ∈ R3,
see ch. 2 of (Siciliano and Khatib, 2008) for further details.

Multiplying the spatial inertia and the spatial acceleration
yields the first term of the Newton-Euler equation:

Ibab =

 Ibω̇b +mbS(cb)
(
d̈b0 − ωb × vb

)
mbS(cb)T ω̇b +mb

(
d̈b0 − ωb × vb

)  (2)

Similarly, using the expression for the spatial inertia and
the spatial velocity

vb =

[
ωb

vb

]
yields

vb ×∗ Ibvb =

[
S(ωb) S(vb)

0 S(ωb)

]
×
[

Ib mbS(cb)
mbS(cb)T mb1

] [
ωb

vb

]
=

[
S(ωb)Ibωb +mbS(cb)S(ωb)vb

mbS(ωb)S(cb)Tωb +mbS(ωb)Tvb

]
. (3)

The net force f b in a robotic system is typically the
combination of the actuators force f ba, the viscous fric-
tion forces f bf = −b ◦ vb, where ◦ is the Hadamard or

entrywise product, and gravitational forces f bg . Thus, if

f b = f ba + f bf + f bg , combining the equations (2) and (3)

and replacing into (1), the Newton-Euler equations are:

f bz =

[
Ibω̇b + S(ωb)Ibωb − S(d̈b0)mbcb + bω ◦ ωb

mbd̈b0 + S(ω̇b)mbcb + S(ωb)S(ωb)mbcb + bv ◦ vb
]
.(4)

where f bz
def
= f ba + f bg is the measured spatial force acting on

the body including the actuators and gravitational forces,
and bω = b1:3, bv = b4:6 are the vectors of rotational and
translational viscous friction coefficients.

Since the mass mb can be is estimated from the term
mbd̈b0 in (4) separately from the terms containing mbcb,
it is possible to extract also the center of mass cb. To
this end, the inertia matrix is written in vector for as
Īb = [I11 I12 I13 I22 I23 I33]T , and the terms in (4)
rearranged in such a way so that (4) can be writ-
ten as linear expression with respect to the parameters:
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f bz =

[
03×1 −S(d̈b0) L(ω̇b) + S(ωb)L(ωb) D(ωb) 03×3

d̈b0 S(ω̇b) + S(ωb)S(ωb) 03×6 03×3 D(vb)

]
mb

mbcb

Īb

bω
bv


=Abφb. (5)

where L : R3 → R3×6 is a left-multiplication opera-
tor defined such that L(v)Īb = Ibv, D(v) = diag(v),
Ab ∈ R6×16 is a matrix of containing the body’s velocity
and acceleration measurements, and φb ∈ R16 is the vec-
tor of the 10 unknown inertial parameters and 6 friction
parameters. From (5), the ordinary least-squares (OLS)
estimator is built as

φ̂b =
(
AbTAb

)−1

AbT f bz (6)

The estimation of the inertial parameters φb can also be
formulated in a recursive way using, for example, a re-
cursive least-squares (RLS) filter (Haykin, 2013), or other
recursive strategies using total least-squares as proposed
in (Kubus et al., 2008) for the estimation of loads attached
to fixed-base robot manipulators. Unlike traditional least-
squares, total least-squares approaches and recent im-
provements, such as the recursive restricted total least-
squares (RTL) (Rhode et al., 2014) can handle noise on
the outputs and the inputs, and not only the outputs.

3. PROPOSED APPROACH

The proposed strategy can be summarized in the following
steps:

Step 1 : Trajectory design that guarantees identifiability
of the parameters.

Step 2 : Compute the mutual information content Î(ābk; f̄ bk)
between sequences of data of applied spatial forces:

f̄ bk
def
= {f bi ; k −N ≤ i ≤ k}

and the measured spatial accelerations:

ābk
def
= {abi ; k −N ≤ i ≤ k}.

Step 3 : Solve the recursive least-squares (RLS) esti-
mation with the data sequences {Āb

k; f̄ bk}, for which

Î(ābk; f̄ bk) > 0, where Āb
k is the data matrix constructed

by vertically stacking matrices Ab(abi ,v
b
i ), from (5) for

k −N ≤ i ≤ k, i.e.

Āb
k

def
= [Ab(abk−N ,v

b
k−N )T , Ab(abk−N+1,v

b
k−N+1)T ,

Ab(abk−N+2,v
b
k−N+2)T , . . . , Ab(abk,v

b
k)T ]T .

The details of each step are discussed in the following
subsections.

3.1 Trajectories for identifiability

The motions that excite a robot’s dynamics and ensure
the identifiability of the inertial parameters are called
persistent exciting (PE) trajectories or optimal excitation
trajectories (Gautier and Khalil, 1992; Park, 2006). The
PE trajectories are typically sinusoidal and polynomial
functions that minimize the sensitivity of the estimated
parameters to measurement noise and disturbances. The

trajectories must be designed to ensure that AbTAb in (5)

is invertible. It can easily be verified that AbTAb becomes

not invertible due to loss of rank when either the trajectory

is purely translational, i.e. (ω̇b,ωb) = (0,0), or purely
rotational, i.e. (v̇v,vb) = (0,0). However, the loss of rank
does not affect the possibility of identifying the remaining
parameters. Thus, it is convenient to group the identifiable
parameters into rotational and translational parameters,
and implement the identification process in two separate
stages.

Stage 1 : For a straight trajectory with (ω̇b,ωb) = (0,0),
set all components of f b to zero, except for the longitu-
dinal motion force fx = A

T

∣∣(tmodT )− T
2

∣∣+f0 and solve
the following reduced version of (5):

[
d̈b0 D(vb)

] [mb

bv

]
=

[
fx
0
0

]
. (7)

Stage 2 : For a purely rotational maneuver with (v̇b,vb) =
(0,0), set all components of f b to zero, except for the
rotational torque τz = A

T

∣∣(tmodT )− T
2

∣∣ + τ0 and solve
the following reduced version of (5):

[
L(ω̇b) + S(ωb)L(ωb) D(ωb)

] [ Īb
bω

]
=

[
0
0
τz

]
. (8)

Stage 3 : For an arc traversed at constant longitudi-
nal and angular velocities with (v̇b,vb) = (0,vbe),
(ω̇b,ωb) = (0,ωbe), and a constant spatial force f b =
[0 0 τze fxe 0 0]T solve the following reduced version
of (5):

S(ωb)S(ωb)cb =
fx
m̂b
− b̂vx
m̂b

vbx. (9)

This strategy helps to decouple the estimation of one set
of parameters from disturbances and noise induced by the
other control action associated to the other parameters
and viceversa.

3.2 Mutual information content criterion

The mutual information content I(ābk; f̄ bk) criterion is em-
ployed to select measurements that contribute to the
improvement of the estimates and discard measurement
sequences that have a poor signal-to-noise ratio or have
a weak dependence. In other words, without a sufficiently
large change in the forces f̄ bk driving the system, the ac-
celerations will be null or practically negligible, therefore
it becomes hard to find any evidence about how the input
forces affect the accelerations, and in turn the velocities,
which will be almost constant because the accelerations
will be negligible. Thus the quality of data for identifi-
ability of the parameters can be assessed using a mutual
dependence criterion, such as the mutual information mea-
sure (Smith, 2015). In terms of the probability density
functions for continuous distributions ābk and f̄ bk , the mu-
tual information measure is defined as:

I(ābk; f̄ bk) =

∫
āb
k

∫
f̄b
k

p(ābk; f̄ bk) log

(
p(ābk; f̄ bk)

p(ābk)p(f̄ bk)

)
∂ābk∂ f̄ bk .

The marginal probability density functions p(ābk), p(f̄ bk)
and the joint probability density function p(ābk; f̄ bk) are
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not known, but by an adequate the design of the exciting
trajectory driving forces can be made to approach normal
distributions, in which case the mutual information crite-
rion can be expressed in terms of the correlation ρ(ābk; f̄ bk)
as (Gel’fand and Yaglom, 1957):

I(ābk; f̄ bk) =−1

2
log
(
1− ρ(ābk; f̄ bk)2

)
. (10)

It is to be noted that the mutual information criterion
is positive also for negative correlations ρ(ābk; f̄ bk) < 0 and
that I(ābk; f̄ bk)→ 0 when ρ(ābk; f̄ bk)2 → 0. However, from the
equations of motion (7) or (8) it is possible to observe that
for a given velocity possibly non-zero, the elements of the
spatial acceleration ab will be positive for a positive spatial
force f b acting along the axes of the spatial acceleration
that are also positive if the spatial force f b exceeds the
viscous force. Hence, negative correlations between the
measured acceleration and an applied excitation can only
occur when the applied excitation is not able to produce a
force that overcomes the effects of friction. Thus, in order
to obtain better estimates of the inertial parameters, we
propose a variant of the mutual information criterion (10),
which we define here as:

Î(ābk; f̄ bk) =−1

2
log
(
1− ρ(ābk; f̄ bk)

)
. (11)

The mutual information content index (11) employs
ρ(ābk; f̄ bk) instead of ρ(ābk; f̄ bk)2, therefore when ρ(ābk; f̄ bk) <

0, then Î(ābk; f̄ bk) < 0. This allows to select measure-
ment sequences which are consistent with the expected
dependence between the variables imposed by the physical
laws. Remark: Under the assumption of normal distribu-
tions, using the correlation coefficient ρ(ābk; f̄ bk) directly as
measure of dependence is equivalent. However, it is well-
known that, while independent variables have a correla-
tion coefficient ρ = 0, uncorrelated signals with ρ = 0
are not necessarily independent. Ongoing work concerns
developing strategies to obtain estimates of the marginal
and joint distributions of the data in order to improve the
information content estimate without the assumptions that
have been considered in this work to render the approach
feasible for practical implementation of a real-time online
inertial parameter estimator.

3.3 Recursive least-squares estimation

The recursive least-squares estimator (Söderström and
Stoica, 1989) is implemented to recursively update the pa-
rameters estimate in each of the three estimation problems
of stage 1, 2 and 3. For simplicity of exposition, consider a
general data matrix Āb

k containing a sequence of values
of the measured acceleration and velocities ābk and v̄bk,
and consider a vector with measurements of the applied

excitation force f̄ bk , and let φ̂b0 be the initial estimate
obtained from the solution of the ordinary least squares
(OLS) problem (6). The recursive least-squares (RLS)

estimator of the parameters φ̂bk at instant k is computed by

adjusting the previous φ̂bk−1 according to the magnitude of
the residuals (estimation error ek) and the following steps:

ek = f̄ bk − Āb
kφ̂

b
k−1 (12)

Kk =PkĀ
b
k = Pk−1Ā

b
k

[
λI + Āb

k

T
Pk−1Ā

b
k

]−1

(13)

Pk = λ−1Pk−1 − λ−1KkĀ
b
k

T
Pk−1 (14)

φ̂bk = φ̂bk−1 +Kkek (15)

The standard initialization of estimator covariance matrix
λ2P0 is to set P0 = 1

σ2 I, where σ2 is the minimum variance

of the measurements data matrix Āb (Söderström and
Stoica, 1989). The forgetting factor λ is typically set to
values slightly smaller than 1. The smaller the value, the
quicker the past information will be forgotten.

3.4 Other estimation approaches

Two other parameter estimation approaches in addition to
OLS and RLS have been implemented for benchmarking
purposes. One is the Feasible Generalized Least Squares
(FGLS), which is an implementable practical generaliza-
tion of the weighted-least squares approach. The FGLS
estimator is similar to the OLS estimator of equation (6),
but includes the inverse of the covariance matrix of the
residuals Ω, (Baltagi, 2008):

φ̂b =
(
AbTΩ−1Ab

)−1

AbTΩ−1f bz (16)

For computational simplicity, the covariance matrix of the
residuals Ω is defined as Ω = diag(σ2

1 , σ
2
2 , . . . , σ

2
n) with

σi = ri =
[
f̄ bk − Āb

kφ̂
b
k−1

]
i
, where [v]i represents the i-th

element of vector v.

The other approach considered for evaluation is the Total
Least Squares method. This approach does not assume
that Ab

k is noise-free like the OLS does. A recursive
formulation can be found in (Kubus et al., 2008).

4. RESULTS AND DISCUSSION

4.1 Testing methodology

The proposed parameter estimation approach is evalu-
ated in simulations and experimentally using an industrial
compact skid-steer loader Catr262C shown in Fig. 1 (a),
which is equipped with two torque sensors by Manner Sen-
sortelemetrie (see Fig. 1 (b)), one Sensonor IMU, two Vec-
torNav IMUs, four SICK LMS511 lidars, one Piksi Swift-
Nav RTK-DGPS, TE Connectivity MEAS inclination sen-
sors, wheel encoders, a control and navigation computer
and wireless communication interfaces to make it semi-
autonomous. The control computer runs ROS Melodic to
acquire the sensors’ measurements at a rate of 100 Hz.

The skid-steer loader has a right and a left hydraulic gear
motor that drives a chain-pinion system for the right and
left wheels, respectively. The torque sensors are located
on the front wheels. The measured right and left wheel
torques are τr and τl. These torques are employed to
calculate the total longitudinal force fx and turning torque
τz, which are given by:
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(a)

(b)
Fig. 1. Experimental setup with Catr262C loader: (a)

Robotic skid-steer loader, (b) Front-right wheel
torque sensor.

fx =
τr + τl
rwheel

(17)

τz =
τr − τl
rwheel

Lbase

2
(18)

where rwheel is the wheel radius and Lbase is the length
of the front and rear axles. Complete details about the
dynamic model of the skid-steer loader employed can be
found in Aguilera-Marinovic et al. (2017).

4.2 Simulation results

The proposed approach was first tested in simulations
implemented in Python 3.6 using a physically accurate
model of the skid-steer Cat 262 developed in (Aguilera-
Marinovic et al., 2017). From the simulations it was pos-
sible to verify a suitable excitation signal and determine
the minimum signal-to-noise ratio required for adequate
estimation. Excitation torques in the form of a triangular
signal were employed because this ensures ab 6= 0, thus
preventing that ATb Ab does not become non-invertible. The
application of a triangular waveform produces a consistent
acceleration response that reaches a peak value due to
the viscous friction force, which limits the net acceleration
amplitude, as shown in Fig. 2. If T is the response time of
the machine to a step input, the simulation results confirm
that an adequate excitation waveform should have a period
Tf ≈ 3T to allow for the response to stabilize. The length
in time Tφ̂ of the estimation window should be selected

such that T ≤ Tφ̂ ≤ Tf . The simulation shows that

Fig. 2. Longitudinal applied force fx, acceleration ax and
speed vx for the simulated robotic skid-steer.

Fig. 3. Simulation results for a linear motion.

T ≈ 5 s, therefore Tf = 15 s. The mass estimation RMS
errors for different lengths Tφ̂ of the estimation window

are summarized in Table 1, which shows that Tφ̂ = 10 s is

an optimal window length that minimizes the estimation
error for LS, RLS, FGLS and TLS.

The evolution in time of the estimated inertial parameters
for each of the approaches was computed applying a
purely longitudinal motion force and using the optimal
window length Tφ̂ = 10 s. The results in Fig. 3 show

that the ordinary LS estimation approach has the fastest
convergence to the model mass m and behaves very
similar to FGLS and TLS. On the other hand, RLS is
slower to converge, but less sensitive to noise. Similarly,
applying forces that produce a purely rotational motion,
the approaches yield the rotational inertia and viscous
friction parameters as shown in Fig 4.

4.3 Experimental results

Analogous experiments to those performed in simulations
were carried out with the real skid-steer loader. A mea-
surement sequence of a longitudinal motion experiment is
shown in Fig. 5, which illustrates a typical velocity and
acceleration profile corresponding to a regular full throttle
starting and stopping maneuver. It is possible to observe
that the measured force is significantly noisier than in
simulations. Hence, a moving mean filter of 10 samples
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Tφ̂ [s] 2 3 4 5 6 7 8 9 10 15 20 25 30

LS 79.46 116.24 34.86 17.91 14.26 92.31 32.37 44.91 11.66 26.2 9.35 1.58 1.22

RLS 50.26 72.48 18.72 56.59 4.27 5.45 18.55 31.56 3.89 54.09 9.29 13.52 16.32

FGLS 79.99 115.61 34.79 18.47 14.04 93.79 32.17 45.25 11.62 26.03 9.34 1.63 1.45

TLS 189.95 310.4 84.82 68.74 92.11 187.35 12.24 64.72 3.25 48.42 12.38 23.42 23.65

Table 1. Estimation RMS error [kg] for each approach at different estimation window lengths
Tφ̂.

Fig. 4. Simulation results for a rotational motion.

(0.1 s) was applied to the measurements. On the other
hand, the response of the force to a change in the pulse-
width modulated signal driving the hydraulic servo-valves
does not follow the triangular waveform of the simulations.
This is due to the servo-valve characteristics. Nonetheless,
the real excitation produces a clear change in acceleration
and a corresponding change in speed, which are adequate
for estimating the inertial parameters. The mutual in-
formation criterion Î(ābk; f̄ bk) computed for the measured
acceleration and forces is shown in the fourth plot of Fig. 5.
It is possible to observe that information content is larger
during the acceleration or deceleration period. However,
the experiments show that the force during deceleration
is different to the force during acceleration. This is due
to the fact that the pump-motor and the motor-reservoir
hydraulic circuits are different and the associated time
constants are not the same. Moreover, the torque is located
between the actuated axle and the wheel, but during brak-
ing is not the motor the one that is applying the braking
force as when the motor is applying the acceleration force.
In fact, the energy is dissipated in the return circuit of
the hydraulic fluid. Therefore, for real applications only
acceleration maneuvers can be used to adequately estimate
the inertial parameters.

In order to validate the approach’s capacity to estimate
changes in the transported mass, as would occur in a real
loading task, five water drums weighing 50 kg each were
added gradually to the skid-steer loader whose mass ism =

Fig. 5. Measured longitudinal force fx, acceleration ax,
speed vx and mutual information criterion Î(ābk; f̄ bk)
for the robotic skid-steer loader.

Fig. 6. Non-calibrated predicted mass versus real mass.

3614 kg when it is not loaded. The experiments to identify
the inertial parameters were repeated 9 times with each
weight using the data satisfying the mutual information
criterion Î(ābk; f̄ bk) ≥ 0.7 and an estimation window Tφ̂ =

3.2 s (320 samples, sampled at fs = 100 Hz). The predicted
weight by LS, RLS, FGLS and TLS before calibration are
shown in Fig. 6. It is possible to observe estimates that
are consistent with a linearly increasing value. However,
the estimates do not match the true values. Therefore, a
calibration function is employed to adjust the estimates
and take into account gains and offsets in the signal
conditioning circuits employed to scale the torque sensor
voltage outputs to the right levels for analog-to-digital
conversion in the data-acquisition module.
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LS RLS FGLS TLS

α 0.146 0.140 0.146 0.191

β 3401.4 3459.9 3401.1 3208.8

Table 2. Coefficients of the calibration func-
tion (19).

Fig. 7. Corrected mass prediction versus real mass.

Fig. 8. Corrected prediction RMS errors for each load.

The calibration function for the mass estimate is defined
as:

m̂c = αm̂+ β, (19)

where m̂ is the original non-calibrated mass estimate and
m̂c is the calibrated estimate. The parameters α and
β are found as the solution to a least-squares problem
formulated to minimize the prediction error, i.e. α, β =

arg minα,β
∑N
i=0 |m∗i − m̂c(m̂i;α, β)|2, where m∗i is the i-

th calibration mass in a set of N = 5 calibration masses.
The coefficients α and β found are summarized in Table 2
and the predicted masses using the calibration function
are shown in Fig. 7. The predicted mass RMS errors for
each load and estimation approach are presented in the
bar plot of Fig. 8.

The analysis of the practical threshold for the mutual
information criterion and the estimation window size in
number of samples is summarized in Tables 3 and 4,
respectively. It is possible to observe from Table 3 that
most of the methods yield the smallest mass estimation
RMS error for a threshold of 0.7. Concerning the size of
the estimation window, the smallest estimation RMS error
for the mass is achieved with a 400 samples sliding window,
which is equivalent to 4 s of acquired data.

Î(āb
k; f̄bk) LS RLS FGLS TLS

0.5 22.6 36.4 22.6 25.6

0.7 5.1 42.6 4.9 21.3

0.9 4.9 10.4 4.9 21.3

1.1 20.4 11.1 20.4 31.7

1.3 15.2 9.8 21.8 19.9

1.5 30.7 10.7 26.2 30.6

Table 3. Mass estimation RMS error for differ-
ent threshold values for the mutual informa-

tion criterion.

N◦ samples LS RLS FGLS TLS

200 11.8 23.2 11.8 24.2

300 4.9 10.9 4.9 19.5

400 4.9 10.4 4.9 24.0

500 17.5 12.1 17.5 31.3

600 17.5 12.4 67.1 28.2

700 15.1 12.4 63.7 28.6

Table 4. Mass estimation RMS error for dif-
ferent threshold values for different estimation

window sizes.

5. CONCLUSIONS

An approach for online inertial and friction parameters
estimation of robotic loaders was presented. The approach
combines the least squares estimation with an information
content criterion and a suitable excitation. This methodol-
ogy is tested both in simulation and experimentally using
a semi-autonomous Catr262C compact skid-steer loader
equipped with inertial and torque sensors between the
actuated axle and the wheels. The results show that the
approach produces accurate estimates without degrading,
unlike the standard recursive least squares approaches.

On average, the estimation error in simulation was
0.0008%±0.03% and 0.15%±0.13% in the experiments,
with a 95% confidence level. These values are at least
80% smaller than those obtained using a traditional re-
cursive least squares estimator without the information
criterion. The use of the mutual information between the
excitation force and the measured acceleration is crucial
to handle low acceleration situations that render the esti-
mation problem ill-posed and often occur at the beginning
of motion or during constant velocity motion part of a
trajectory.

Ongoing work concerns the validation of the proposed
method using different trajectories, as indicated in Stages
2 and 3 of section 3.1, in addition to the purely linear
motion experiments. Thus to show that also the rotational
inertia and center of mass variations due to changes in
the load can be estimated in practice and not only in
simulation.

The proposed approach can be valuable for productivity
monitoring and adaptive motion control of autonomous
machines with variable loads, such as loaders, excavators
and trucks in construction, forestry and mining. Accurate
knowledge of the friction related parameters is also impor-
tant, as this can provide the basis for further research into
machine wear and predictive maintenance schemes.
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