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Abstract: This paper presents different approaches to optimize battery electric vehicles (BEVs) fast 

charging strategy. A rule-based model was built to simulate BEV charging behavior. Monte Carlo analysis 

was performed to explore the potential variance of congestion at fast charging stations, which could cause 

longer than four-hour waiting at the most congested station. Genetic algorithm was performed to explore 

the potential minimum waiting time at fast charging stations, and it can decrease the waiting time at the 

most congested station to be shorter than one hour. A deterministic approach results in feasible suggestions 

that people could consider to take fast charging as soon as the state of charge is approaching 40-miles range 

while remaining relative short waiting time at charging stations.  

Keywords: Optimal operation and control of power systems, Modeling and simulation of power systems, 
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1. INTRODUCTION 

California State Government proposed to have 1.5 million 

zero-emission vehicles (ZEVs) on the state’s roads by 2025 

(Brown, 2013). In order to achieve this goal, a large number of 

battery electric vehicles (BEVs) must be sold. However, one 

major consideration for consumers to adopt BEVs is range 

anxiety (Lin and Greene, 2011).  

In recognition of this, the U.S. Department of Energy (DOE) 

announced 16 electric vehicle planning grants totaling $8.5 

million in 2011 to help preparing for plug-in electric vehicles 

(PEVs) and charging infrastructure in 24 states (U.S. DOE, 

2011) in order to extend the limited range of BEVs. There are 

three common charging levels: AC level I uses a standard 120 

volt alternating current to provide slow charging (typically of 

1.4 kW – 1.9kW); AC level II uses a 208/240 volt alternating 

current to provide charge power of 1.5 kW – 19.2kW; “fast 

charging” typically refers to DC level II and uses a high 

voltage direct current to provide power from 36 to 90 kW, 

although DC level I—which is less than 36kW—could be 

considered as fast charging as well (SAE Hybrid Committee, 

2011). Taking the 2015 Nissan Leaf with its 84-mile range and 

24-kWh battery capacity (U.S. DOE, 2015) as an example, it 

could take around half an hour to fully charge it by fast 

charging and two to twelve hours by  AC level I/II. There are 

148 CHAdeMO fast charging stations in California by 2013 

(United States Department of Energy, 2014). Considering the 

limited number of fast charging stations and relative longer 

time to fully charge an electric vehicle using fast charger than 

to refuel a gasoline vehicle, the waiting time at fast charging 

stations could easily become too long, leaving users with bad 

experience and discouraging them from using fast charging. 

There are many factors that could influence a person’s decision 

on whether to use fast charging or not. Tour distance, which is 

the total travel distance after the driver leaving home till he/she 

gets back to home, is one of the primary factors. Since fast 

charging usually has higher cost than level II charging and fast 

charging stations are usually along freeways instead of at 

destinations, it makes the waiting time at fast charging stations 

more boring. Thus, it is reasonable to assume that people will 

not use fast charging unless the tour distance exceeds the 

battery range. 

According to previous studies about PEV drivers (Nicholas et 

al., 2013a), the number of fast charging required to complete a 

tour will influence people’s decision on using BEVs. Non-

routine tours within one-charging-event distance is acceptable 

for most BEV drivers; half of the respondents will drive BEVs 

for occasional tours which require twice fast charging events, 

and the willingness decreases along with the increase of fast 

charging events required to complete a tour.  

The battery state of charge (SOC) when a vehicle approaches 

a fast charging station could also influence people’s decision 

on whether to do fast charging or not. The design of traditional 

internal combustion engine (ICE) vehicles makes drivers 

accustomed to not consider refueling unless the level of 

gasoline is less than a certain threshold. This habit will 

influence drivers’ decision on when to use fast charging as 

well, and it is reasonable to assume that the probability to use 

fast charging increases as the SOC drops.  

What’s more, the availability of fast charging stations is also 

an important factor. Unlike quick gasoline refueling, fast 

charging could take half an hour even longer to complete 

depending on charging power and battery SOC. Therefore, 

congestion at fast charging stations could easily get much 

worse than at gasoline stations, and bad experience at charging 

stations could impact drivers’ impression on fast charging and 

might discourage them from taking BEVs. 

There are studies regarding the possibility of building 

conceptual models to simulate charging demand of large PEV 

population based on game theory (Ma et al., 2013), to optimize 

charging activity based on time-of-use price and state of 

charge (Cao et al., 2012), and to build decentralized protocols 

to shift peak electric vehicle charging demand (Gan et al., 
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2013). But most of these studies are theoretical analyses 

without validation on real data. This paper presents rule-based 

models based on real travel data to simulate and optimize fast 

charging activity for non-commute purpose trips. 

Optimization of fast charging decision is expected to help 

reduce congestion at charging stations and to improve user 

experience, so as to encourage electric vehicle driving.  

2. DATA EXPLORATION  

Based on existing survey (Nicholas et al., 2013a) about 

households who own BEVs, it was found that most of 

households have at least one conventional gasoline vehicle 

besides the BEVs. Based on this finding, it is expected that, in 

the near future, most households who possess BEVs will also 

have at least one conventional gasoline vehicle. Thus, people’s 

travel patterns won’t be significantly different from current 

situation, and they will choose a BEV or conventional vehicle 

based on their travel needs. 

The California Household Travel Survey (CHTS) dataset 

(CalTrans, 2013) was used in this study to analyze California 

residents’ travel patterns and to examine what travel demand 

can be satisfied by BEVs. The CHTS dataset has one-day 

travel diary from 42,431 households. The travel diary has 

detailed information about all trips that sample households 

made on the assigned day including trip origin and destination, 

start and end time, trip purpose, travel mode, etc. Each sample 

household is assigned with a sample weight to make sure the 

weighted sample is representative in terms of the socio-

demographic characters of the population. 

Since the primary charging location of most BEV drivers is 

their home (Lin and Greene, 2011), trips are re-organized into 

tours. All trips that happened between driver leaving home and 

getting back home belong to the smae tour. As a result, there 

are totally 71,000 tours being generated based on the CHTS 

travel diary data.  

In terms of travel purposes, tours can be classified as commute 

tours and non-commute tours. If one tour contains at least one 

commute trip, that tour is considered as a commute tour. 

Considering the weight of each sample household, one-third of 

tours are for commute purpose while the other two-thirds are 

for non-commute purpose.  In terms of travel distance, 79.47% 

of tours are within 30 miles, 13.1% of tours are between 30 

miles and 60 miles, 3.88% of tours are between 60 miles and 

90 miles, and 3.55% of tours are over 90 miles (Fig. 1). 

 

Fig. 1. Composition of Tour Distance  

It is assumed that people’s travel pattern remains the same 

when they shift from conventional gasoline vehicles to BEVs. 

Thus, travel diary data from the CHTS dataset including 

gasoline vehicle drivers’ travel dairy is used for the fast 

charging strategy analysis. Since home is the primary charging 

location for most BEV drivers (Lin and Greene, 2011), only 

tours that start and end at home will be analyzed, and 93.2% 

of tours in CHTS dataset are home based (Table 1). 

To simplify the analysis, it is assumed that all travelers are 

driving BEVs with a 100-mile range (BEV100). Since 

commute tours are usually routine travel and are less likely to 

use fast charging, so only non-commute tours are used for fast 

charging analysis. Considering the inconvenience of extra 

charging and the effective driving range of BEVs, it is assumed 

that people with BEV100 will not use fast charging for tours 

shorter than 80 miles. Besides, people’s willingness to use 

BEVs decreases along with the increase in the number of 

charging events required to complete the tour (Nicholas et al., 

2013b). It means that, taking BEV100 as an example, people 

are significantly less likely to drive BEVs for a tour longer than 

300 miles. Therefore, there are only 1,567 tours that are for 

non-commute purpose and with a distance between 80 and 300 

miles, and those tours will be considered for further analysis 

(Table 1).  

Table 1. Criteria of Choosing Sample Tours for Analysis 

Criteria to Choose Tours 

Number of 

Qualified 

Tours 

Percent 

of Total 

Sample 

Tours from CHTS Travel Diary 71,000     100% 

Home-based Tour 66,162 93.2% 

Non-commute purpose, 80-300 

miles distance 

1,568 2.2% 

Chargers available along route 

(5 miles radius) 

1,252 1.8% 

Interval between chargers and 

from/to home within range 

1,173 1.7% 

According to the U.S. DOE, there are 148 existing CHAdeMO 

fast charging stations in California along with 53 proposed fast 

charging stations by 2013 (United States Department of 

Energy, 2014). Locations of these stations are used for station 

availability and congestion calculations. The service radius of 

each charging station is assumed to be 5 miles. For each 

charging station, a 5-mile buffer was created. If the buffer 

intersects with a tour line, it means the corresponding charging 

station is accessible for this tour. Based on the location of 

existing and proposed fast charging stations, there are 1,252 

sample tours out of the 1,568 candidate tours that have 

accessible charging stations along the road. Considering the 

distance between home and fast charging stations and the 

distance between adjacent charging stations, 1,173 of the 1,252 

tours can be completed with a BEV100. Therefore, there are 

eventually 1,173 sample tours being used for later analysis. 

For simplification purposes, all sample tours have a weight of 

one, so they represent only themselves. This ensures 

consistency and makes the results comparable among different 

optimization approaches. 
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3. MODELS 

Similar to the process of conventional gasoline vehicle drivers 

to determine when to refuel based on gasoline level, it is 

assumed that the primary factor influencing a person’s 

decision on whether to use a fast charging station or not is the 

SOC when approaching charging stations. Assuming the 

service radius of a fast charging station is 5 miles, all fast 

charging stations within service radius along the tour are 

within acceptable detour distance, so they are considered as 

potential locations to charge. SOC when reaching each 

potential location is calculated based on vehicle efficiency and 

previous charging events.  

Taking the route in Fig. 2 as an example, the tour distance from 

Roseville to Fairfield and back to Roseville is 122.6 miles. It 

requires at least one fast charging event to complete the tour 

using a BEV with a 100-mile range. There are three potential 

fast charging stations along the tour: one located in Davis and 

two in Vacaville. The probability of using each station is 

inversely proportional to the SOC when reaching that station. 

A detailed description about how to calculate the SOC is given 

in Equation (1). On the way back from Fairfield to home, the 

SOC when reaching Davis is about 10%, which is the lowest 

among all potential stations, so the driver is most likely to use 

the Davis fast charging station on his/her way back from 

Fairfield to Roseville. 

 

Fig. 2. Model Demonstration 

A rule-based model was built to simulate battery SOC 

(Equation 2), to predict charging decisions at each charging 

station (Equation 1), and to calculate the waiting time at 

chosen charging stations (Equation 3-5). For simplification 

purpose, all sample households are assumed to drive BEVs 

with a 100-mile range. Notations used for later equations are 

given as following:  

 𝑣 Vehicle ID 

 𝑡 Trip ID 

 𝑠 Charging station ID 

 𝑠𝑝𝑟𝑒𝑣  Previous used charging station 

 𝑆𝑂𝐶𝑣,𝑡 State of charge of vehicle 𝑣 after trip 𝑡 

 𝐶𝑣,𝑠 A binary variable which is the charging decision of 

vehicle 𝑣 at charging station 𝑠; 1 means charge and 0 

means not charge. 

 𝑅𝑣 Range of vehicle 𝑣 

 𝐷𝑣⋅𝑡 Distance of trip 𝑡 of vehicle 𝑣 

 𝐷𝑣,𝑠,𝑠+1 Distance between charging station 𝑠 and 𝑠 + 1 

for vehicle 𝑣 

 𝐸𝑇𝑣,𝑠 Charging event end time for vehicle 𝑣 at charging 

station 𝑠 

 𝐴𝑇𝑣,𝑠 Arrival charging station time for vehicle 𝑣 at 

charging station 𝑠 

 𝐶𝑇𝑣,𝑠 Charging time for vehicle 𝑣 at charging station 𝑠 

 𝑊𝑇𝑣,𝑠 Waiting time for vehicle 𝑣 at charging station in 

order 

3.1 Monte Carlo approach  

The Monte Carlo approach is implemented to examine the 

performance of each charging station. The charging decision 

is described as Equation (1). If the distance between this 

station and the next available station is longer than current 

vehicle remaining range, the vehicle will be charged at this 

station. If there is more than one station available within the 

current vehicle remaining range, the probability that the 

vehicle will use each potential charging station decreases 

proportionally along with the distance from current location to 

corresponding charger location. One of the potential charging 

stations will be chosen after the previous charging decision is 

made based on the probability to charge at each potential 

station. 

𝐶𝑣,𝑠~𝑃 (𝐷𝑣,𝑠,𝑠+1, 𝐷𝑣,𝑠,𝑠𝑝𝑟𝑒𝑣
, 𝑅𝑣 , 𝑆𝑂𝐶𝑣,𝑠) =

{

1,                                𝐷𝑣,𝑠,𝑠+1 >  𝑆𝑂𝐶𝑣,𝑠 
𝐷𝑣,𝑠,𝑠𝑝𝑟𝑒𝑣

∑ 𝐷𝑣,𝑠,𝑠𝑝𝑟𝑒𝑣
𝑠

,    ∀𝐷𝑣,𝑠,𝑠𝑝𝑟𝑒𝑣
< 𝑅𝑣, 𝐷𝑣,𝑠,𝑠+1 ≤  𝑆𝑂𝐶𝑣,𝑠

          (1) 

SOC at a specific location is calculated based on the number 

of charging events that happened before arriving at that 

location and the total travel distance from home, as Equation 

(2) shows.  

𝑆𝑂𝐶𝑣,𝑡 = (1 + ∑ 𝐶𝑣,𝑠𝑠
) ⋅ 𝑅𝑣 − ∑ 𝐷𝑣⋅𝑡𝑡                 (2) 

After all tours make their charging decision, the waiting time 

of each charging event at the corresponding charging station 

can be calculated based on the driver’s arrival time and the 

occupation situation when he/she arrives, as shown in 

Equation (3)-(4). The congestion status at each charging 

location is represented as the total waiting time of all charging 

events at each location over one day, as Equation (5) illustrates. 
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𝐸𝑇𝑣,𝑠 = 𝑓(𝐸𝑇𝑣−1,𝑠, 𝐴𝑇𝑣,𝑠) =

{
𝐸𝑇𝑣−1,𝑠 + 𝐶𝑇𝑣,𝑠, 𝐸𝑇𝑣−1,𝑠 > 𝐴𝑇𝑣,𝑠 

𝐴𝑇𝑣,𝑠 + 𝐶𝑇𝑣,𝑠, 𝐸𝑇𝑣−1,𝑠 ≤ 𝐴𝑇𝑣,𝑠
                                 (3) 

𝑊𝑇𝑣,𝑠 = 𝐸𝑇𝑣,𝑠 − 𝐴𝑇𝜈,𝑠 − 𝐶𝑇𝑣,𝑠                     (4) 

𝑊𝑇𝑠 = ∑ 𝑊𝑇𝑣,𝑠𝑣
                              (5) 

Fifty datasets were generated based on the Monte Carlo 

approach as described above. The only uncertain parameter is 

the charge decision among all accessible potential charge 

stations. Random numbers were generated obey the 

probability from Equation (1) to determine charge decisions in 

each dataset. The results of these fifty datasets were used to 

explore the possible extremum of the system performance. 

Based on the Monte Carlo results, 80% of charging stations 

have an average waiting time shorter than one hour. But there 

are some stations with an average waiting time over two hours, 

which would results in worse user experience.  

3.2 Genetic algorithm  

Genetic algorithm has been widely used for optimization 

especially for non-linear models (Deb, 2001). A genetic 

algorithm is performed to minimize the longest waiting time 

among all charging stations while ensuring the tour can be 

made, as Equation (6)-(8) show. 

𝑊𝑇𝑚𝑎𝑥 = max(𝑊𝑇𝑠) , ∀𝑠              (6) 

min(𝑊𝑇𝑚𝑎𝑥)                          (7) 

S. T.               𝑆𝑂𝐶𝑣,𝑡 > 0,           ∀𝑣, 𝑡      (8) 

Fifty independent datasets generated through the Monte Carlo 

approach are used as the initial population, as Stage 0 in Fig. 

3.  

The strategy of the genetic algorithm to minimize the longest 

waiting time is to find out the most congested charging station 

and reassign some tours, which charge at the most congested 

station, to less congested stations. Detailed process for each 

evolution iteration is as following: 

1. The first step is to select the most congested station in each 

dataset as the potential target station.  

2. The average waiting time among all potential target stations 

is calculated, and those potential target stations with waiting 

time longer than the average waiting time are called target 

stations. The dataset whose potential target station has the 

shortest waiting time among all datasets is called the example 

dataset, and there is only one example dataset among all. For 

example, the average waiting time of all potential target 

stations in Fig. 3 is 2.5 hours, so station 35 in dataset 2 and 

station 26 in dataset 50 are target stations, and dataset 3 is the 

example dataset, as step 2 shows.   

3. All tours that charge at the target station are target tours. All 

target tours will “clone” the charging decision of the 

corresponding tour in the example dataset. For example, Tour 

00203 in dataset 2 charged at station 35 in stage X. But this 

tour in dataset 2 will be assigned to charge at station 64 in stage 

X+1 because the tour 00203 in dataset 3 charged at station 64 

in stage X and dataset 3 is the example dataset in stage X, as 

step 3 shows. For non-target dataset, there will be no 

modification. 

These three steps described above are considered as one 

evolution. After twenty evolutions, the system performance 

got steady with no further significant improvement as Fig. 6 

shows and the evolution was then stopped. 

 
Fig. 3. Illustration of Genetic Algorithm 

3.3 Deterministic approach  

A deterministic approach is proposed to find out a universal 

SOC threshold, so that it can be easily implemented from the 

policy perspective. The idea is to recommend BEV drivers to 

use first accessible fast charging after its SOC is below the 

proposed threshold, and this recommendation aims to 

minimize potential congestion at fast charging stations. To 

determine the SOC threshold, a rule-base model is built as 

shown in Equation (9), tour completion and congestion at fast 

charging stations under different SOC thresholds are 

calculated, and these results are compared with the optimized 

situation achieved through the Monte Carlo and genetic 

algorithms. 

𝐶𝑣,𝑠~𝑃(𝑆𝑂𝐶𝑣,𝑠, 𝑆𝑂𝐶𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑) =

{
1,         𝑆𝑂𝐶𝑣,𝑠 ≤ 𝑆𝑂𝐶𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

0,         𝑆𝑂𝐶𝑣,𝑠 > 𝑆𝑂𝐶𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑
                                      (9) 

4. RESULTS AND DISCUSSION 

The Monte Carlo approach generated 50 datasets based on the 

charging decision model described in Equation (1)-(5). Fig. 4 

shows the distribution of waiting time at each charging station 

in one dataset. As the figure shows, most charging stations 
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have an average waiting time (before start to charge) shorter 

than half an hour, while the longest waiting time is around two 

hours. Taking the longest waiting time as the measure of 

dataset’s performance, two-hour longest waiting time is the 

average performance among all 50 datasets (Fig. 5). Among 

the 50 datasets using Monte Carlo, the best performance is a 

dataset in which the longest waiting time is between 0.04-0.05 

days (one hour). The average longest waiting time among all 

datasets is about 0.08-0.1 days (two hours). The worst cases 

have a waiting time between 0.16-0.17 days (four hours). 

 

Fig. 4. Frequency of Waiting Time in One Dataset by Monte 

Carlo 

 

Fig. 5. Frequency of the Longest Waiting Time of All Datasets 

by Monte Carlo 

The genetic algorithm was then implemented to optimize the 

results from the Monte Carlo approach. The 50 datasets 

generated by Monte Carlo were used as the initial population 

(stage 0 in Fig. 6). By taking the evaluation algorithm, 

performance of all datasets gets steady after 15 times of 

evolution (stage 15 in Fig. 6). At stage 20, the average longest 

waiting time is shorter than 0.04 days, and all datasets have 

consistent performance. 

Although the genetic algorithm improves the performance of 

the most congested stations, the results also show that the most 

congested stations are similar among different evolution stages 

(Fig. 7). In stage 0, charging station 11 is the most congested 

station in 37 datasets, and in stage 20, charging station 11 is 

still the most congested station in most datasets. This indicates 

that congestion is driven by demand. Even with optimization, 

stations with higher demand are still more likely to be 

congested than other ones with lower demand. 

By comparing the results of the Monte Carlo and genetic 

algorithm, it can be found that the best result of Monte Carlo 

is close to the final results of genetic algorithm. In other words, 

Monte Carlo can give a pretty good indication of what the 

extreme performance could be. Another advantage of Monte 

Carlo is this algorithm is relatively easy to implement and 

understand. However, genetic algorithm can give even better 

performance and much steadier performance among all 

datasets by reassigning charging demand at congested stations 

to other accessible stations with less congestion. 

 

Fig. 6. Genetic Algorithm Results 

 

Fig. 7. Most Congested Station by Genetic Algorithm 

From the policy perspective, both Monte Carlo and genetic 

algorithm approaches help to show the usage at each charging 

location in an optimized situation. However, there is a 

drawback of both approaches that the optimized charging 

strategy is like a black box that cannot be described clearly and 

easily. The steady result of the genetic algorithm requires all 

tours to be known in advance in order to calculate the best 

charging strategy, while the fifty datasets from Monte Carlo 

shows the wide range of possible system performance variance 

if everyone randomly choose their charging stations. In other 

words, the optimized results can be difficult if not impossible 

to achieve in the real world since we are unable to foresee all 

future tours.  

A deterministic approach examined the performance of 

different SOC thresholds following the charging strategy as 

Equation (9). As a result, higher SOC threshold could achieve 

a higher percentage of tour completeness but also longer 

waiting time (Fig. 8). By comparing different SOC thresholds, 

it was found that the system achieved a relatively high 

(days) 

(days) 
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percentage of tour completeness (90%) with a relatively low 

waiting time (nearly 0.045 days) when the SOC threshold is 40 

miles. What’s more, the average charge interval with SOC 

threshold of 40 miles is 70 miles, which is similar to the 71.7 

miles charge interval achieved based on the genetic algorithm. 

A similar deterministic approach was also performed 

assuming BEV range is 150 miles, and the best performance is 

also achieved when the SOC threshold is 40 miles. Thus, a 40-

mile SOC could be the universal threshold, and BEVs with 

different ranges are recommended to use fast charging when 

their SOC drops below 40 miles unless the remaining range 

can afford to get to destinations where drivers can take level II 

charging. 

However, BEV ranges are determined by not only the SOC but 

also many other factors such as driving behavior, A/C usage, 

and aerodynamic factors. Therefore, it would be helpful if 

there are instructions about how to achieve maximum vehicle 

efficiency when the SOC is low. 

 
Fig. 8. SOC Threshold Influence on System Performance 

5. CONCLUSION 

This paper presents three approaches to optimize the fast-

charging strategy for non-commute tours. Monte Carlo is 

relatively easier to implement and understand than the genetic 

algorithm, and it gives a fairly good indication of what the 

extreme performance could be. The best performance by 

Monte Carlo is close to the optimized results achieved by the 

genetic algorithm, while the genetic algorithm gives better and 

steadier results. The genetic algorithm optimized the overall 

charging strategy by reducing waiting time at the most 

congested stations to be shorter than one hour. However, one 

drawback of both genetic algorithm and Monte Carlo 

approaches is that the optimized charging strategy is hard to 

implement in the real world. Therefore, a deterministic 

approach was performed to generate a feasible while less 

optimized fast charging strategy. It was found that a 40-mile 

threshold will help achieve generally shorter waiting time and 

relatively higher tour completeness at the same time.  
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