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Abstract In this work, the admissibility analysis and the control problem are investigated for nonlinear
singular systems represented by interval type-2 Takagi-Sugeno (T-S) fuzzy models with time delay. First,
the interval type-2 fuzzy singular systems with time delay have been described. Second, the admissibility
analysis of the autonomous singular systems is studied. Third, the control problem has been investigated.
For this, an interval type-2 fuzzy control law is designed to guarantee the admissibility of the closed-
loop system despite the presence of uncertainties and time delay. To demonstrate the existence of the
proposed controller, by using generalised integral inequalities, sufficient delay-dependent conditions
are given in terms of Linear Matrix Inequalities (LMIs). Finally, an application to inverted pendulum
system presented by interval type-2 fuzzy models is afforded to show the effectiveness of the suggested
method.

Keywords: Interval type-2 fuzzy systems, singular systems, time delay, delay-dependent admissibility,
LMIs.

1. INTRODUCTION

Recently, the control problem for singular systems has been
studied in several researches due to their ability to describe
greatly many applications such as power systems and robot
manipulators. Studying singular systems is more complex be-
cause not only the stability should be guaranteed, but also the
regularity and non impulsiveness need to be verified Dai (1989).
Due to the effect of time delay on stability and system perfor-
mance, many researchers have focused on control problem for
singular systems with time delay Cui et al. (2013), Gassara et al.
(2014), Kchaou (2019). Several methods have been proposed
to deal with time delay such as Jensen inequality and Wirtinger
inequality which are special cases of generalized integral in-
equality Park et al. (2018).
In the last decades, the T-S fuzzy representation Takagi and
Sugeno (1985) has been considered to handle the control prob-
lem of nonlinear systems. Many results of controller synthesis
have been proposed using type-1 fuzzy model Chang et al.
(2012), Kchaou and Hajjaji (2017), Kchaou et al. (2018), Makni
et al. (2019). However, research results which consider type-
1 fuzzy model do not take into account uncertainties in the
membership functions. Thus, we should study the type-2 fuzzy
systems to solve the parametric uncertainties which are hidden
in the membership functions (we can cite Lam et al. (2013), Li
et al. (2017) and Tseng et al. (2017) and references therein).
For example, authors in Lam et al. (2013) have studied the
type-2 fuzzy systems where the time delay has not been taken
into account. Furthermore, in Li et al. (2017), singular systems

have not been considered for the investigation of control prob-
lem. Moreover, authors in Tseng et al. (2017) have focused
on type-2 fuzzy control design for singular systems with time
delay. However, they have considered a classical Lyapunov-
Krasovskii functional which is a restrictive method.
In this work, the admissibility analysis and the control de-
sign problem are investigated for interval type-2 fuzzy singu-
lar systems in presence of time delay. Based on Lyapunov-
Krasovskii theory and using generalised integral inequalities,
delay-dependent conditions formulated in terms of convex op-
timization problem are proposed to ensure the admissibility
of the closed-loop system. Furthermore, simulation results are
illustrated to show the convergence of the inverted pendulum
system which prove the efficiency of the proposed control de-
sign.
This paper is organised as follows. In section 2, interval type-2
T-S singular systems with time delay is introduced. In section 3,
the admissibility analysis is presented. In section 4, the control
design and delay-dependent conditions are given to guarantee
the admissibility of closed-loop system in presence of time
delay. Section 5 presents the simulation results to show the ef-
fectiveness of the proposed design method. To close this work,
some comments are given in section 6.
Notations Throughout this paper, we note that XT and X−1
are the transpose and the inverse of matrixX , respectively.X >
0 represents a positive definite matrix. sym(X) = X + XT .
In a matrix, ∗ denotes the transposed element in the symmetric
position. ? denotes elements that are not relevant to discussions.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

Copyright lies with the authors 5905



2. SYSTEM DESCRIPTION

In this paper, singular systems with time delay using the interval
type-2 T-S fuzzy approach have been investigated. This class of
systems can be represented as follows:Eẋ(t) =

r∑
i=1

µi(ξ(t))(Aix(t) +Ahix(t− τ) +Biu(t))

x(t) = φ(t), t ∈ [−τ, 0]
(1)

where x(t) ∈ Rn, u(t) ∈ Rm denote system state and control
input vectors, respectively. φ(t) denotes the initial condition for
−τ ≤ t ≤ 0. Ai, Ahi and Bi are system matrices. E is a
singular matrix which satisfies rank(E) = q < n, τ represents
a constant delay and ξ is the premise variable. Membership
functions are defined as
µi(ξ(t)) = vi(ξ(t))µi(ξ(t)) + v̄i(ξ(t))µ̄i(ξ(t))
r∑
i=1

µi(ξ(t)) = 1
(2)

where 0 ≤ vi(ξ(t)), v̄i(ξ(t)) ≤ 1, vi(ξ(t)) + v̄i(ξ(t)) = 1
in which vi(ξ(t)) and v̄i(ξ(t)) are weighting functions.
We have:

µ̃i(ξ(t)) = [µ
i
(ξ(t)), µ̄i(ξ(t))]

= [

p∏
j=1

hWij
(fj(ξ(t))),

p∏
j=1

h̄Wij
(fj(ξ(t)))]

with
h̄Wij

(fj(ξ(t))) ≥ hWij
(fj(ξ(t))) ≥ 0

in which 0 ≤ hWij
(fj(ξ(t))), h̄Wij (fj(ξ(t))) ≤ 1 represent

the lower and upper membership functions andWij are interval
type-2 fuzzy set of rules i; i = 1, . . . , r, j = 1 . . . , p.
Consider the following singular system with time delay.{

Eẋ(t) = Ax(t) +Ahx(t− τ)
x(t) = φ(t), t ∈ [−τ, 0]

(3)

Before starting, we recall the following definition and lemmas
which will be considered throughout the paper:
Definition 1. Dai (1989)
1. System (3) is said to be regular if det(sE − A) is not
identically zero.
2. System (3) is said to be impulse free if deg(det(sE −A)) =
rank(E).
3. System (3) is admissible if it is regular, impulse free and
stable.
Lemma 1. Park et al. (2018)
For a symmetric matrix M > 0, scalars a and b with a < b,
vector z, k = 1, . . . , 3 and by selecting p0,0(s) = 1, p1,0(s) =

s − a − b−a
2 and p2,0 = (s − a)2 − (b − a)(s − a) + (b−a)2

6 ,
the following result holds:

(b−a)

∫ b

a

ż(s)TETMEż(s)ds ≥
3∑
k=1

(2k−1)ΓTk (z)MΓk(z)

(4)
with
Γ1(z) = E(z(b)− z(a))

Γ2(z) = E(z(b) + z(a))− 2
b−a

∫ b
a
Ez(s)ds

Γ3(z) = E(z(b)− z(a)) +
6

b− a

∫ b

a

Ez(s)ds

− 12

(b− a)2

∫ b

a

∫ b

s

Ez(u)duds

Lemma 2. Uezato and Ikeda (1999)
Singular matrix E can be written as E = ELE

T
R where EL and

ER are full column ranks. Let U be full row rank and V be full
column rank such that UE = 0 and EV = 0. For symmetric
matrix P such that ETLPEL > 0 and non singular matrix X ,
we have PE+UTXV T is non singular and the following result
holds:

(PE + UTXV T )−1 = P̄ET + V X̄U (5)
with P̄ and X̄ are symmetric and non singular matrices, respec-
tively such that
ETRP̄ER = (ETLPEL)−1 and X̄ = (V TV )−1X−1(UUT )−1.
Lemma 3. Zhang et al. (2018)
Based on Lemma 2, we have:

(PE + UTXV T )TE(PE + UTXV T )−1 = ET

(PE + UTXV T )−TET (PE + UTXV T ) = E
(6)

In the following section, the admissibility analysis is studied.

3. ADMISSIBILITY ANALYSIS

In this part, the admissibility analysis of system (1) with u(t) =
0 has been studied. For this, we propose the following Theorem.
Theorem 1. System (1) with u(t) = 0 is admissible if there
exist symmetric matrices P > 0, X11 > 0, Q > 0, R > 0,
W1 > 0 and W2 > 0, for constant delay τ , such that the
following LMIs hold:

Ψi =


Ψ11i Ψ12i Ψ13i Ψ14i τA

T
i R

∗ Ψ22 Ψ23i Ψ24i τA
T
hiR

∗ ∗ Ψ33 Ψ34 0
∗ ∗ ∗ Ψ44 0
∗ ∗ ∗ ∗ −R

 < 0,∀i = 1 : r (7)

with

P =

[
P11 P12 P13

∗ P22 P23

∗ ∗ P33

]
Ψ11i = sym

(
(P11E + UTX11V

T )TAi
)

+ sym(ETP12E)

+sym(τETP13E) +Q+ τ2W1 +
τ4

4
W2 − 9ETRE

Ψ12i = (P11E + UTX11V
T )TAhi − ETP12E + 3ETRE

Ψ13i = τATi P12E + τETP22E + τ2ETPT23E − τETP13E
−24ETRE

Ψ14i = τ2

2 A
T
i P13E + τ2

2 E
TP23E + τ3

2 E
TPT33E + 30ETRE

Ψ22 = −Q− 9ETRE
Ψ23i = τAThiP12E − τETP22E + 36ETRE

Ψ24i = τ2

2 A
T
hiP13E − τ2

2 E
TP23E − 30ETRE

Ψ33 = −τ2ETP23E − τ2ETPT23E − 192ETRE − τ2W1

Ψ34 = − τ
3

2 E
TP33E + 180ETRE

Ψ44 = −180ETRE − τ4

4 W2

where U and V are defined in Lemma 2.
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Proof. The proof is divided into two parts. The first one deals
with the regularity and impulse freeness and the second one
analyses the stability of the system. Since rank(E) = q < n,
there exist two invertible matrices M and N such that

MEN =

[
Iq 0
0 0

]
Define

MAiN =

[
Ai11 Ai12
Ai21 Ai22

]
M−TRM−1 =

[
R11 R12

R21 R22

]
M−TP1jM

−1 =

[
P1j11 P1j12

P1j21 P1j22

]
, j = 1, 2, 3

M−TUT =

[
0
UT1

]
, V TN =

[
0 V T1

]
such that U1 and V1 are invertible.
From condition (7), it is easy to declare that Ψ11i < 0.
Considering positive matrices Q, W1 and W2, we get:

Ψ11i − (Q+ τ2W1 +
τ4

4
W2) < 0 (8)

Pre and post-multiplying equation (8) byNT andN , we obtain:[
? ?
? sym(ATi22U

T
1 X11V

T
1 )

]
< 0 (9)

Knowing that
r∑
i=1

µi(ξ(t)) = 1 and µi(ξ(t)) ≥ 0, we get:

r∑
i=1

µi(ξ(t))sym(ATi22U
T
1 X11V

T
1 ) < 0 (10)

So,
r∑
i=1

µi(ξ(t))Ai22 is non singular. Thus, according to Defi-

nition 1, the autonomous singular type-2 T-S system is regular
and impulse free. To study the stability, we consider the follow-
ing Lyapunov-Krasovskii functional:
V (x(t)) = V1(x(t)) + V2(x(t)) + V3(x(t)) + V4(x(t)) (11)

where
V1(x(t)) = ∆(t)TP∆(t)

∆(t) =

[
x(t)TET

∫ t

t−τ
x(s)TET ds

∫ 0

−τ

∫ t

t+θ

x(s)TET dsdθ

]T
V2(x(t)) =

∫ t
t−τ x(s)TQx(s)ds

V3(x(t)) = τ
∫ 0

−τ
∫ t
t+θ

ẋ(s)TETREẋ(s)dsdθ

V4(x(t)) = τ

∫ 0

−τ

∫ t

t+θ

x(s)TW1x(s)dsdθ

+
τ2

2

∫ 0

−τ

∫ 0

u

∫ t

t+θ

x(s)TW2x(s)dsdθdu

The derivative of V (x(t)) along the trajectory of autonomous
system (1) is given as
V̇ (x(t)) = V̇1(x(t)) + V̇2(x(t)) + V̇3(x(t)) + V̇4(x(t))

V̇1(x(t)) = sym(∆̇(t)TP∆(t)) = ∆1(t)Tπ∆2(t) (12)
where

∆1(t) =


Eẋ(t)

E(x(t)− x(t− τ))

τEx(t)−
∫ t

t−τ
Ex(s)ds



∆2(t) =


x(t)∫ t

t−τ
x(s)ds∫ 0

−τ

∫ t

t+θ

x(s)dsdθ


π =

 sym(P11E + UTX11V
T ) P12E P13E

∗ sym(P22E) P23E
∗ ∗ sym(P33E)


and

V̇2(x(t)) = x(t)TQx(t)− x(t− τ)TQx(t− τ) (13)

V̇3(x(t)) = τ2ẋ(t)TETREẋ(t)− τ
∫ t

t−τ
ẋ(s)TETREẋ(s)ds

(14)

V̇4 (x(t)) = τ2x(t)TW1x(t)− τ
∫ t

t−τ
x(s)TW1x(s)ds

+
τ4

4
x(t)TW2x(t)− τ2

2

∫ 0

−τ

∫ t

t+θ

x(s)TW2x(s)dsdθ

(15)
From (14) and using Lemma 1, we get:

−τ
∫ t

t−τ
ẋ(s)TETREẋ(s)ds ≤ ζ(t)TΛζ(t) (16)

with

ζ(t) =

[
x(t)T x(t− τ)T

1

τ

∫ t

t−τ
x(s)T ds

2

τ2

∫ 0

−τ

∫ t

t+θ

x(s)T dsdθ

]T
(17)

Λ =


−9ETRE 3ETRE −24ETRE 30ETRE
∗ −9ETRE 36ETRE −30ETRE
∗ ∗ −192ETRE 180ETRE
∗ ∗ ∗ −180ETRE


(18)

From (15) and using Jensen inequality, we have:

−τ
∫ t

t−τ
x(s)TW1x(s)ds ≤ −

(∫ t

t−τ
x(s)ds

)T
W1

(∫ t

t−τ
x(s)ds

)
(19)

and

−τ
2

2

∫ 0

−τ

∫ t

t+θ

x(s)TW2x(s)dsdθ

≤ −
( ∫ 0

−τ

∫ t

t+θ

x(s)dsdθ
)T
W2

( ∫ 0

−τ

∫ t

t+θ

x(s)dsdθ
)

(20)
Considering equations (12), (13), (16), (19) and (20), we obtain:

V̇ (x(t)) ≤
r∑
i=1

µi(ξ(t))ζ(t)T (Ψ∗i + τ2ΩTi RΩi)ζ(t) (21)

where

Ψ∗i =

Ψ11i Ψ12i Ψ13i Ψ14i

∗ Ψ22 Ψ23i Ψ24i

∗ ∗ Ψ33 Ψ34

∗ ∗ ∗ Ψ44

 ,
and

Ωi = [Ai Ahi 0 0 ] , ∀i = 1, 2, . . . , r

According to equation (7) and Schur complement lemma, for
i = 1, 2, . . . , r , V̇ (x(t)) ≤ 0. Thus, system (1) is admissible.

�
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Remark 1. Comparing with Tseng et al. (2017) and Li et al.
(2017), authors have chosen a classical Lyapunov-Krasovskii
functional. However, we have considered an augmented vector
and a triple summation to construct a new functional which
reduce the conservatism of the proposed methods.

4. CONTROL DESIGN AND ADMISSIBILITY
SYNTHESIS

In this section, a type-2 fuzzy control law has been designed
to not only compensate non linearities but also to stabilize the
closed loop singular type-2 fuzzy systems despite the presence
of time delay. For this, we construct the following control law:

u(t) =

r∑
j=1

µj(ξ(t))Kjx(t) (22)

in which µj(ξ(t)) is defined in equation (2). After that, consid-
ering equations (1) and (22) the singular closed loop system is
given as follows:

Eẋ(t) =

r∑
i=1

r∑
j=1

µi(ξ(t))µj(ξ(t))
(
(Ai +BiKj)x(t)

+Ahix(t− τ)
) (23)

System (23) is admissible if the condition presented in the next
Theorem holds.
Theorem 2. System (23) is admissible if there exist symmetric
matrices P̄11 > 0, P̄ ∗ > 0, X̄11 > 0, Q̄ > 0, R̄ > 0, W̄1 > 0
and W̄2 > 0 and matrices Hj , Lj , for constant delay τ , such
that the following LMIs hold:

Ψ̄ii < 0 (24)

Ψ̄ij + Ψ̄ji < 0 (25)
with

Ψ̄ij =


Ψ̄11ij Ψ̄12i Ψ̄13 Ψ̄14 Ψ̄15ij

∗ Ψ̄22 Ψ̄23 Ψ̄24 Ψ̄25i

∗ ∗ Ψ̄33 Ψ̄34 0
∗ ∗ ∗ Ψ̄44 0
∗ ∗ ∗ ∗ Ψ̄55

 (26)

P̄ ∗ =

[
P̄22 P̄23

∗ P̄33

]
Ψ̄11ij = sym

(
(P̄11E

T + V X̄11U)TATi
)

+ τ2W̄1 +
τ4

4
W̄2

+sym
(
(HjE

T + LjU)TBTi
)

+ Q̄− 9ER̄ET

Ψ̄12i = Ahi(P̄11E
T + V X̄11U) + 3ER̄ET

Ψ̄13 = τEP̄22E
T + τ2EP̄T23E

T − 24ER̄ET

Ψ̄14 = τ2

2 EP̄23E
T + τ3

2 EP̄33E
T + 30ER̄ET

Ψ̄15ij = (P̄11E
T + V X̄11U)TATi + (HjE

T + LjU)TBTi
Ψ̄22 = −Q̄− 9ER̄ET

Ψ̄23 = −τEP̄22E
T + 36ER̄ET

Ψ̄24 = − τ
2

2 EP̄23E
T − 30ER̄ET

Ψ̄25i = (P̄11E
T + V X̄11U)TAThi

Ψ̄33 = −τ2EP̄23E
T − τ2EP̄T23ET − 192ER̄ET − τ2W̄1

Ψ̄34 = − τ
3

2 EP̄33E
T + 180ER̄ET

Ψ̄44 = −180ER̄ET − τ4

4 W̄2

Ψ̄55 = −(P̄11E
T + V X̄11U)T − (P̄11E

T + V X̄11U) + R̄

Proof. According to Theorem 1, by setting P12 = 0 and
P13 = 0 and by replacing Ai with Ai + BiKj in equation (7),
we obtain the matrix Ψij . Let Υ = (P11E + UTX11V

T )−T ,
Hj = KjP̄11 and Lj = KjV X̄11. Pre and post-multiplying

Ψij by diag(Υ,Υ,Υ,Υ, R−1) and its transpose, equation (26)
holds using Lemmas 2 and 3 and the following expressions :
Q̄ = (P11E + UTX11V

T )−TQ(P11E + UTX11V
T )−1

R̄ = (P11E + UTX11V
T )−1R(P11E + UTX11V

T )−T

W̄1 = (P11E + UTX11V
T )−TW1(P11E + UTX11V

T )−1

W̄2 = (P11E + UTX11V
T )−TW2(P11E + UTX11V

T )−1

Then, the controller gains can be computed through the follow-
ing equation:
Kj = (HjE

T + LjU)(P̄11E
T + V X̄11U)−1.

�

5. SIMULATION RESULTS

In this section, the pendulum system (Lam et al. (2013), Su et al.
(2013)) described in this work by a Type 2 T-S fuzzy singular
model is provided to further demonstrate the performance of
the developed control scheme :

θ̈(t) =
−3ampLθ̇2(t)sin(2θ(t))/2 + 3gsin(θ(t)) − 3acos(θ(t))u(t)

4L− 3ampLcos2(θ(t))

with θ(t) represents the angular displacement of the pendulum,
g = 9.8m/s2,mc represents the mass of the cart,mp represents
the mass of the pendulum, a = 1/(mc + mp), L = 0.5m
which is the length of the pendulum and u(t) represents the
force applied to the cart. The system can be described as:
ẋ1(t) = x2(t)

ẋ2(t) = f1(t)x1(t) + f2(t)u(t)

0 = Lsin(x1(t))− x3(t)

(27)

where

f1(t) =

(
g − ampLx

2
2(t)cos(x1(t))

)
sin(x1(t))(

4L/3− ampLx22(t)cos2(x1(t))
)
x1(t)

f2(t) =
−acos(x1(t))

4L/3− ampLcos2(x1(t))

x1(t) denotes the angle of the pendulum from the vertical,
x2(t) denotes the angular velocity, x3(t) denotes the relative
horizontal distance from the pendulum center to cart. mp and
mc are uncertain parameters which satisfy mc min = 2Kg ≤
mc ≤ mc max = 3Kg and mp min = 1Kg ≤ mp ≤
mp max = 2Kg.
The interval type-2 fuzzy model with time delay is presented as
follows :

Eẋ(t) =

r∑
i=1

µi(ξ(t))
(
(1−γ)Aix(t)+γAix(t−τ)+Biu(t)

)
(28)

with

E =

[
1 0 0
0 1 0
0 0 0

]
, A1 =

[
0 1 0

9.2902 0 0
−0.483 0 −1

]

A2 =

[
0 1 0

9.2902 0 0
0.483 0 −1

]
, A3 =

[
0 1 0

23.52 0 0
−0.483 0 −1

]

A4 =

[
0 1 0

23.52 0 0
0.483 0 −1

]
, B1 =

[
0

−0.6667
0

]

B1 = B3, B2 = B4 =

[
0

−0.0792
0

]
Assume that x1(t) is measurable, the lower and upper member-
ship functions are given as follows:
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hW11
(x1) = 1− e−(x2

1/1.5), hW12
(x1) = 0.4e−(x

2
1/0.2)

hW21
(x1) = hW11

(x1), hW22
(x1) = 1− h̄W12

(x1)

hW31
(x1) = 1− h̄W11(x1), hW32

(x1) = hW12
(x1)

hW41
(x1) = hW31

(x1), hW42
(x1) = hW22

(x1)

h̄W11(x1) = 0.25e−(x
2
1/0.3), h̄W12

(x1) = e−(x
2
1/2.5)

h̄W21(x1) = h̄W11
(x1), h̄W22

(x1) = 1− hW12
(x1)

h̄W31
(x1) = 1− hW11

(x1), h̄W32
(x1) = hW12

(x1)

h̄W41
(x1) = h̄W31

(x1), h̄W42
(x1) = h̄W22

(x1)

For γ = 0.1, τ = 0.2, if equations (24) and (25) hold, we
get via yalmip toolbox the following controller gain matrices:

K1 = [ 61.1636 14.0391 0.0645 ]

K2 = [ 283.7181 69.2988 0.0022 ]

K3 = [ 92.0017 16.7493 0.0792 ]

K4 = [ 394.3674 96.6673 0.1035 ]

For the simulation results, the initial conditions are chosen as
x(0) = [π/6 − 1.4 0.25]T .
Figures 1-3 show the simulation results. Figure 1 illustrates the
state responses of the open-loop system. Figure 2 presents the
responses of the system state and the convergence of the control
force is demonstrated in Figure 3. Figure 1 shows that the
autonomous system is unstable. However, from Figure 2, it is
clear that the closed-loop interval type-2 fuzzy singular system
is stable. As a result, the designed interval type-2 fuzzy control
law can completely compensate the non linearities. Moreover,
the closed-loop system converges to zero in a small time even
the presence of time delay and the existence of uncertainties
considered in the membership functions. Thus, our control
design scheme is effective.
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Figure 1. State responses of autonomous system

0 1 2 3 4 5 6 7 8
−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

T ime(s)

 

 
x1
x2
x3

Figure 2. State responses

0 1 2 3 4 5 6 7 8
−200

−150

−100

−50

0

50

T ime(s)

 

 
u(t)

Figure 3. Control force of u(t)

6. CONCLUSION

In this work, a control design method has been elaborated for
an interval type-2 T-S fuzzy singular systems with time delay.
The proposed method allows the convergence of the state of
closed-loop system. For the admissibility analysis, sufficient
conditions have been presented in terms of LMIs. Finally, the
performance of the suggested method has been illustrated via an
application to inverted pendulum. As future work, we will focus
on the control problem for the same class of systems while
considering a time varying delays and mismatched membership
functions.
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