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Abstract: In order to satisfy the real-time and large scale requirement of spacecraft non-
destructive testing using optical pulsed thermography, in this research, we propose a novel
approach based on image mosaic technique which can create large scale or panoramic image
mosaics from a set of ordered infrared reconstruction images with overlapping areas for defect
detection. First, infrared reconstruction images are extracted from the original thermal video
stream by the ICA method based on the idea of blind source signal processing. Then for this
research’s special mosaic object, a fast and accurate registration scheme is proposed. Abundant
scale rotation invariant feature points are quickly obtained by using the hybrid feature detector
and descriptor. Moreover, the feature matching process is realized by applying two-way FLANN
and MSAC, parameters of the geometric transformation matrix are estimated by MSAC, and
image mosaic is realized according to the geometric transformation model. The experimental
results convinced the validity and efficiency of the proposed method.

Keywords: Hypervelocity impact (HVI), Optical pulsed thermography, Defect detection, Blind
source signal processing, Image mosaic

1. INTRODUCTION

At present, the risk of hypervelocity impact (HVI) caused
by meteoroid/orbital debris (M/OD) has become one of
the main threats to spacecraft space activities, and will
have more serious impact on spacecraft, such as the
damage caused by surface craters and internal embedded
impurities(Price et al. (2013),Huang et al. (2016),Huang
et al. (2020)). Considering the randomness of the M/OD
impact event, the impact and extent of the impact are
uncertain, which will lead to complex and variable dam-
age, so the detection of potential damage to spacecraft
is an important research direction. In order to obtain an
effective M/OD impact evaluation, OPT(optical pulsed
thermography) as a NDT&E (non-destructive testing and
evaluation) method is widely used due to its high efficiency,
low loss and high safety. In the optical pulsed thermogra-
phy detection system, thermal radiation changes caused
by defects lead to different temperature variety rates in
different detection areas of the testing area(Yin et al.
(2019),Ibrahim and Zhuang (2017)). So in this paper, the
optical pulsed thermography is implemented in the defects
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Fig. 1. Development of space debris environment in Huang
et al. (2020).

detection of spacecraft. Researchers have made valuable
contributions about processing data in OPT, which can be
applied in NDT&E. Duan et al. (2013) utilized a quanti-
tative method for probability of detection analysis based
on optical pulsed thermography. Zhang et al. (2018) used
optical excitation thermography for inspecting multilayer
carbon fibre defects for the first time.

Nevertheless,the above methods are quantitative research
and systematic improvement of detection methods for
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smaller defect areas. For the spacecraft size and single
detection area is limited, it is necessary to understand
the defect information(such as distribution and extent)
of a large range of detection area firstly. Separating two-
dimensional image information from the collected infrared
video stream so as to evaluate the damage conveniently
and effectively. Similar to remote sensing image processing,
mosaics can be applied to detect the wide range of surface
of the spacecraft(Bell et al. (2015)). Image registration is
one of the key techniques for image mosaic and is the basis
of image mosaic(Jung et al. (2018),Wang et al. (2018)).
In recent years, scholars have proposed many feature ex-
traction algorithms and the corresponding improved algo-
rithms. From the earliest Moravec, to Harris, to SIFT,
SUSAN, and SURF algorithms(Lowe (2004),Bay et al.
(2008),Harris and Stephens (1988)), it can be said that fea-
ture extraction algorithms are emerging. Various improved
algorithms such as GLOH, BP-SIFT, MM-SURF, etc(Zhu
et al. (2013),Mikolajczyk and Schmid (2005),Zhao et al.
(2014)), also achieve their own strengths. However, feature
extraction is only a small part in the whole non-destructive
testing system, if the algorithm does not perform well in
real time, it will reduce the overall performance of the
testing system.

Aiming at obtaining images of research significance from
the original data, the reconstructed image that highlights
specific region information can be extracted by ICA(Khan
et al. (2008),Rajic (2002)). In order to meet the purpose
of real-time detection and considering the special mosaic
object, a hybrid feature extraction scheme is proposed.
The FAST algorithm is used for feature detection and the
SURF feature descriptor is generated so that the mosaic
algorithm still has rotation and scale invariance. Then,
the MSAC (M-estimator Sample Consensus) algorithm is
used to eliminate the error matching points and estimate
the geometric transformation model to realize the image
mosaic process(Torr and Zisserman (2000)). The experi-
mental results demonstrate the capabilities and potential
application value of the algorithm.

2. PROBLEM STATEMENT

The hypervelocity impacts should become inevitable
for spacecraft, because of the micro meteoroids and s-
pace debris particles that couldn’t be completely de-
tected and prevented. Hence,it is necessary to investi-
gate the impact damage evolution. Moreover, a simple
micro-scale M/OD hypervelocity impact could lead to
surface/internal-damages of thermal protection materials,
that would affect the normal operation of the spacecraft.
Therefore, it is necessary to detect and evaluate the HVI
impact damages with some effective non-destructive test-
ing technologies firstly.

In addition to not damaging the original item, the defect
detection method by OPT is fast and efficient. The spatial
thermal responses of detection area are recorded by IR
camera as an infrared thermal video. Although the thermal
video is rich in information, the calculation of video
information processing is more complex. Furthermore,
for the large range of requirements for spacecraft defect
detection, a single video can only reflect a small part
of the testing region and the video information of each

region cannot be easily united. If the image that highlights
the surface and internal defects of the spacecraft can be
extracted from the thermal video stream, the 2D image
is easier to be processed and interacted with images from
other regions, which can greatly speed up the detection
efficiency and carry out subsequent follow-up detailed
research on defects. The schematic diagram of the non-
destructive testing method is shown as Fig. 2. After
the infrared non-destructive testing of the spacecraft, it
is assumed that for a certain defect area detected, n
local regions are detected. The thermal video obtained
for each region are processed to extract images, which
are prominent defects and prominent background portions
determined by typical thermal responses, respectively.

spacecraft

A local region

A defect area

Defect  image and 

the corresponding  typical thermal response

Background  image  and 

the corresponding typical thermal response

A

B

C

D

A B

C D

IR camera

Infrared NDT

Fig. 2. Schematic diagram of infrared nondestructive test-
ing of spacecraft

Spacecraft is huge and complex in surface structure, cou-
pled with the subsurface defects that cannot be observed
directly. In order to make the HVI damage evaluation of
the spacecraft comprehensive and intuitive, the extracted
images highlighting the defect information are applied to
the image mosaic technology. And the goal of the mosaic
is to preliminarily evaluate the damage degree and under-
stand the location distribution of the detected area accord-
ing to the mosaic images, so as to realize the preliminary
defect localization and judgment of the spacecraft damage
assessment. Different from mosaic method of natural vis-
ible light image and small object image, in terms of the
special infrared thermal image object, the corresponding
effective and practical mosaic algorithm are needed.

3. INTRODUCTION OF PROPOSED ALGORITHM

For image sequence acquired by each infrared video, the
reconstructed image is extracted by using the ICA algo-
rithm. It should be pointed out that for the local region
with defects, the reconstructed image can highlight the
defect information. Then, the image mosaic scheme pro-
posed in this paper is applied to the reconstructed images
of local regions. Firstly, the hybrid feature detector and
descriptor is adopted to ensure the fastness and rotation
and scale invariance of feature extraction. Then, the two-
way FLANN algorithm is utilized to perform the feature
rough matching process and the MSAC algorithm is used
to eliminate the mismatching point pairs and estimate the
geometric transformation matrix model. Finally, according
to the geometric transformation model, the affine transfor-
mation is realized to get the mosaic result. The details of
the steps of the proposed registration scheme are presented
in the following sections and the algorithm flow chart of
this paper is shown in Fig. 3.
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Fig. 3. the flow chart of the image mosaic algorithm used
in this paper

3.1 Reconstructed image obtained by ICA algorithm

Different independent feature areas show different typical
thermal responses, which can help us extract independent
signal images and we call these typical independent sig-
nal images as reconstructed images. Combining the ICA
mathematical model and the relationship between the
signal characteristics of each defect area and the thermal
video signal, the reconstructed image of each region can
be extracted. Based on above analysis, the goal of ICA
is to separate several independent components from the
blind source signals of original image sequences. The basic
mathematical model of ICA in OPT can be described as:

Q′(t) =
L∑

i=1

miP
′
i(t) (1)

mi(i = 1, 2, 3..., L) is the mixing vector that describes
the contribution of the ith position to the recorded ther-
mography image. L denotes the number of desired re-
constructed images. P ′

i (t) denotes the independent image
signal generated by the area of position i at time t with
dimensional p by q. In this study, p by q are determined
by the infrared camera sensor array with setting as p =
512, q = 640. Q′(t) represents the data of the preprocessed
initial image sequence. The data is discretized and de-
composed to obtain a new matrix, such that continuous
transient slices of length N can be chopped out of a
set of image sequences from t to t + N − 1. Q′(t) =
[vec(Q′(t)), vec(Q′(t+ 1)), ..., vec(Q′(t+N − 1))]T The con-
structed image sequence is then described as a linear
combination of the signals generated by the independent

areas such that:
Q(t) = MP (t) (2)

where mixing matrix M = [m1,m2, ...,mL] and mi is
the ith mixing vector of the independent area. P (t) =
[vec(P1(t)), vec(P2(t)), ..., vec(PL(t))]

T. Assuming that L =
N and matrix M is full rank so that we can derive another
representation from this :

P (t) = WQ(t) (3)

where W = M−1 is inverse transforms. The purpose of the
ICA algorithm is to search for the linear transformation
that make the components as statistically independent
as possible. Maximizing the marginal densities of the
transformed coordinates for the given training data, which
is

⌢

W = argmax
w

∏
t
Pr(Q(t)|W ) = argmax

w

∏
t

∏
i

Pr(pi(t))

(4)
where pi(t) = vec(Pi(t)) and Pr(·) is its corresponding
probability. To solve equation (4) we use PCA whiten
to Q(t) by applying singular value decomposition of the
following equation.

Q(t)T = UR×RΣR×NV T
N×N (5)

where R = p × q, UR×R and V T
N×N are the orthogo-

nal matrices, ΣR×N contain the singular values and the
columns of UR×R represented by the PCA basis vectors.
Applying PCA method to achieve dimensionality reduc-
tion, choosing L ≤ N thus the UR×L basis vectors are
selected and determined by the information contained in
the non-zero singular values. The basis vectors obtained
by PCA method are only uncorrelated but not statistically
independent. Next, the independent basis vectors must be
derived by employing ICA algorithm where the PCA basis
vectors UR×L are referenced as the observations in ICA,
namely

UT
R×L = ML×LPL×R(t) (6)

ICA estimates the demixng matrix
⌢

W that is an approx-
imation of the inverse of the original mixing matrix. The
independent components can be obtained

⌢

PL×R(t) =
⌢

WL×LU
T
R×L (7)

For each estimated ICs, the reconstruction process of the
independent component image sequences generated by the
ith area can be expressed as

⌢

P i =
⌢
mi

⌢
p i(t)

T (8)

where
⌢
mi is the ith vector of estimated

⌢

M . The pseudo-

inverse matrix of
⌢

W describes the mixing matrix
⌢

M build-

ing with mixing vectors.
⌢

P i is the obtained image sequence
of the feature region highlighting each independent com-
ponent.

3.2 Hybrid feature detector and descriptor

The FAST detection algorithm is an algorithm with a fast
detection speed, which is an order of magnitude faster than
the SURF algorithm, but does not have scale and rotation
invariance. So in this paper, we choose the feature detector
based on FAST combined with the SURF descriptor to
make the feature points have anti-rotation characteristics
at the same time.
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Fig. 4. Schematic diagram of SURF algorithm

3.2.1 FAST feature detector FAST(Features accelerated
from Segment Test) algorithm is widely applied due to
its fast detection speed and simple algorithm structure.
The main method of FAST algorithm is to use a 16-
pixel circle(radius is 3 pixels) to determine whether the
center pixel is a corner or non-corner. It is the result of
comparing the intensity of all these pixels from the center
pixel, forming a corner. If at least 12 of the 16 pixels are
considered to be distinct, the center pixel will be defined
as a corner. That is, the equation (9) is satisfied:

D =

{
1 if |I(x)− I(p)| > ε
0 else

(9)

where:I(x) represents the gray value of a pixel point; I(p)
represents the gray value of the target pixel p; ε is a
predetermined threshold. If there are n (n is greater than a
given threshold ε) consecutive pixels, and the equation (9)
are fully satisfied, D = 1, which is the corner point,
and the center pixel is the feature point. The threshold
is initially chosen to be 12, which eliminates non-corner
points and has the advantage of faster speeds to meet real-
time matching needs.

3.2.2 SURF Feature descriptor In order to ensure
that the feature descriptor has rotation invariance, it is
necessary to assign a main direction to all the feature
points detected by FAST. The wavelet response of X and
Y directions is obtained by Haar wavelet template, which
is shown in Fig. 4. Because we calculate the Haar wavelet
response of the X, Y direction for each point, the sum
of the Haar wavelet responses included in this sector is a
vector. And the vector obtained by rotating the sector for
a circle is recorded. The angle corresponding to the vector
length is denoted as the direction of the feature point.

After determining the main direction, the next step is
to generate a feature descriptor. As shown in Fig. 4, in
the square window with the feature point as the center
20σ as the side length. The 20σ×20σ window is divided
into 4×4 sub-windows, each cell has 5σ×5σ pixels, and
25 samples are taken to obtain the wavelet response
value in the main direction Σdy and the wavelet response
value perpendicular to the main direction Σdx. Get the
vector of each sub-block V = [Σdx,Σ |dx| ,Σdy,Σ |dy|].
Counting the vector of 4×4 sub-block regions obtains a
64-dimensional vector, which is the feature descriptor.
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Fig. 5. The experimental schematic diagram

3.3 Feature matching and transformation model estimation

In order to improve the correct rate and speed of matching,
the two-way FLANN algorithm is first used to find the
matching point pairs with the nearest neighbor distance.
Euclidean distance is used as a measure of similarity.
Matched points that have been initially screened are
further purified by the m-estimator sample consensus
(MSAC) algorithm.

3.3.1 two-way FLANN algorithm Since the feature
vector is a high-dimensional vector, conventional matching
methods require a huge amount of computation. And the
FLANN(fast library for approximate nearest neighbors)
based on the accuracy of user input and high-dimensional
data automation is applied, which makes the search speed
significantly improved. In order to obtain reliable and
accurate unique matching point pairs, this paper uses
the two-way FLANN algorithm. Due to the fast speed
of the FLANN matching algorithm, the two-way FLANN
matching algorithm improves the matching accuracy by
wasting a small amount of time, which also provides
more accurate matching point pairs for the subsequent
algorithm of removing mismatches and speeds up the
following stitching algorithm.

3.3.2 MSAC algorithm The MSAC algorithm is a
method of searching for inner points. It uses the inherent
constraints of the feature point set to remove the wrong
matching point pairs. Compared with the more basic
RANSAC algorithm, MSAC uses M-estimator to estimate
the weight of the data, instead of simply assigning a zero
value to the inner points, so that the accuracy of the model
is further increased. Based on RANSAC, MSAC improves
the cost function with the following expression:

p(e2i ) =

{
e2i e2i < T 2

cons e2i ≥ T 2 (10)

C =
∑
i

p(e2i ). (11)

where e2i represents the difference between the ith actual
value of the data and the theoretical value, p(e2i ) is the
data error weight and C is the overall error of the model
sought, called the cost function. T 2 is a predetermined
threshold. The value of C is compared after the end of the
iterative process, and the minimum value of C is taken as
the best model. Compared with RANSAC, the calculations
are completely consistent, but the accuracy is increased
and the convergence speed is faster. Then suppose a pair
of correct matching points X and X ′ exist in the reference
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Fig. 6. Experimental set-up

image and the image to be spliced. The corresponding
homogeneous coordinate transformation is:

X ′ ∼ FX =

[
f0 f1 f2
f3 f4 f5
0 0 1

]
X (12)

Where: F is a 3×3 matrix, that is, the geometric transfor-
mation matrix. The six elements of the matrix f0 ∼ f5 are
unknown. The coordinate transformation between images
can be completed by solving the parameters. The purpose
of the MSAC algorithm is to find all the correct matching
points and obtain the most accurate geometric transfor-
mation matrix.

4. EXPERIMENTAL RESULTS AND DISCUSSIONS

4.1 Experiment setup

In our experiments, an optical pulse is generated and
the surface temperature of the sample is recorded in one
time and the experimental schematic diagram is shown
in Fig. 5. Heat radiation is generated by the optical
excitation source. Computer-controlled pulse generators
generate excitation and trigger signals to initiate optical
excitation source heating and infrared data acquisition.
We set the heating time to 0.1s for observation and study.

After these hypervelocity impact tests, the sample with
impact damages are collected for the further research of
detecting defects. The test piece is thermally excited, a
thermal image sequences is collected by using the infrared
thermal camera with a resolution of 512 × 640, as shown
in Fig. 6. The sample is divided into four local regions
(A1-A4) containing overlapping parts for infrared video
acquisition. The reconstructed images of each local region
were obtained by ICA algorithm section above.

4.2 Comparison and analysis

Aiming at the special mosaic object, the mosaic scheme
proposed in the theoretical part of this paper, the con-
ventional SIFT-RANSAC(the rough match processing is a
one-way matching) and the SURF-RANSAC scheme were
compared and analyzed. Fig. 7 shows the result of feature
detection and feature matching removing mismatches for
A3 and A4. As can be seen from the Fig. 7, there is no
mismatch in the method of this paper, and the correct
number of matches is obviously the most. At the same

SIFT-RANSAC

SURF-RANSAC

FAST-SURF-MSAC

SIFT

SURF

FAST-SURF [t]

Fig. 7. The contrastive result of feature detection and
feature matching removing mismatches

time, the matching time is much shorter, less than half of
the other methods. The statistical data in Table 1 shows
the specific experimental data comparison.

4.3 Image mosaic results

For applying the mosaic scheme proposed in this paper,
sample A is divided into four local regions containing
overlapping parts. First, the region A1 and A2 was spliced
to obtain the mosaic results of A1-A2, then spliced with
A3 to obtain the mosaic results of A1,2-A3, and finally
spliced with A4 to obtain the final mosaic results A1,2,3-
A4. As can be seen from the Table 2, the overall effect is
very good, which can directly observe the defect parts and
facilitate the follow-up research on the defect parts.

5. CONCLUSION

In this research, we propose a new image mosaic approach
for defect detection of and evaluation spacecraft in optical
pulsed thermography. The preliminary judgment of impact
evaluation using 2D images is realized, which is more
intuitive and convenient.Our future work will focus on
detailed analysis of the mosaic images, including defect
classification and other quantitative analysis.
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