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Abstract: Synthesis of controllers for stochastic control systems ensuring safety constraints
has gained considerable attention in the last few years. In this paper, we consider the problem
of synthesizing controllers for partially observed stochastic control systems to ensure finite-time
safety. Given an estimator with a probabilistic guarantee on the accuracy of the estimations, we
provide an approach to compute a controller providing a lower bound on the probability that
the trajectories of the stochastic control system remain safe over a finite time-horizon. To obtain
such controllers, we utilize a notion of control barrier functions. We also provide an approach
to compute a probability bound on estimator accuracy by using a notion of so-called stochastic
simulation function. The proposed result is illustrated on a case study.
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1. INTRODUCTION

Safety is an important design objective in many con-
trol systems such as automobiles, aviation, energy, and
medicine. Failure in ensuring safety could result in loss
of life or damage to the system and environment. For
this reason research on formal synthesis of controllers
enforcing safety specifications has gained considerable at-
tentions in the last few years. The discrete abstraction
based techniques are quite popular for formal synthesis
of safety controllers (Tabuada, 2009; Belta et al., 2017;
Girard et al., 2015, and references therin). However, these
techniques suffer from the curse of dimensionality since the
computational complexity increases exponentially with the
dimension of the state-space.

On the other hand, the discretization-free approaches,
using barrier functions, has shown potential for solving
verification or synthesis of deterministic and stochastic
systems against safety specifications (see (Prajna et al.,
2007; Ames et al., 2014; Ames et al., 2019; Jagtap et al.,
2018, 2019, 2020; Anand et al., 2019; Huang et al., 2017)).
However, all the aforementioned results assume the avail-
ability of the full state information which is not the case in
many real-world applications. Assuming a prior knowledge
of the control barrier functions, (Clark, 2019) provides
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synthesis of controllers for stochastic control systems with
incomplete information. However, in order to provide infi-
nite time horizon guarantees, this result requires that the
control barrier functions exhibit supermartingale property
which presupposes stochastic stability and vanishing noise
at the equilibrium point of the system.

In this paper, we consider the problem of formal synthesis
of stochastic control systems with partial state informa-
tion ensuring safety specification over finite-time horizon
without requiring any assumption on the stability of the
stochastic system. In order to achieve this, we do not
require the supermartingale property on control barrier
functions.

Our main contribution is to provide a systematic approach
for computing a lower bound on the probability that the
stochastic control system with partial information satisfies
safety specifications over a finite-time horizon. Given an
appropriate estimator with a probabilistic guarantee on
the closeness of the estimator’s and system’s trajectories,
we provide sufficient conditions for control barrier func-
tions under which one can provide the lower bound on
the probability of satisfying safety specifications over a
finite time-horizon. Then, we provide sufficient conditions
for computing control barrier functions and correspond-
ing controllers. We also provide an approach to compute
probability bound on the estimator accuracy for a class of
stochastic control systems by utilizing a notion of so-called
stochastic simulation function (Julius et al. (2006); Julius
and Pappas (2008)).
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The rest of the paper is organized as follow: In Section
2, we define stochastic control systems with incomplete
information and the required assumptions. Then, we for-
mally define the problem statement. The notion of control
barrier functions and their computation are explained in
Section 3. Section 4 provides a systematic approach on
computing estimator accuracies by utilizing a notion of
so-called stochastic simulation functions. The case study
and conclusion are given in Sections 5 and 6, respectively.

2. STOCHASTIC CONTROL SYSTEMS

2.1 Notations

We denote the set of real, positive real, and non-negative
real numbers by R, R+, and R+

0 , respectively. We use Rn
to denote the n-dimensional Euclidean space and Rn×r
to denote the space of real matrices with n rows and r
columns. Given a matrix A ∈ Rn×n, Tr(A) represents
trace of A which is the sum of all diagonal elements of
A. We use λmin(A) to represent the minimum eigenvalue
of the symmetric matrix A. The zero matrix in Rn×m is
denoted by 0n×m. Given a vector x ∈ Rn, we denote by
‖x‖ the Euclidean norm of x. The diagonal set ∆ ⊂ R2n

is defined as ∆ = {(x, x), x ∈ Rn}. A continuous function
α : R+

0 → R+
0 belongs to class K if it is strictly increasing

and α(0) = 0; it belongs to class K∞ if α ∈ K and
α(r)→∞ as r →∞.

2.2 Problem Formulation

Let the triplet (Ω,F ,P) denote a probability space with a
sample space Ω, filtration F , and the probability measure
P. The filtration F = (Fs)s≥0 satisfies the usual conditions
of right continuity and completeness (Øksendal, 2000). Let
(Ws)s≥0 and (Vs)s≥0 be r̄- and r-dimensional F-Brownian
motions, respectively, which are independent of each other.

Definition 2.1. A stochastic control system with output is
a tuple Σ = (Rn,Rm,U , f, g,Rp, h, σ), where

• Rn is the state space;
• Rm is the input space;
• U is a subset of all F-progressively measurable pro-

cesses with values in Rm, (see (Karatzsas and Shreve,
1991));
• f : Rn × Rm → Rn satisfies the following Lipschitz

assumption: there exist constants Lx, Lu ∈ R+ such
that ‖f(x, u)− f(x′, u′)‖ ≤ Lx‖x− x′‖+Lu‖u− u′‖,
∀x, x′ ∈ Rn and ∀u, u′ ∈ Rm;
• g : Rn → Rn×r satisfies the following Lipschitz

assumption: there exists a constant Lg ∈ R+
0 such

that ‖g(x)− g(x′)‖ ≤ Lg‖x− x′‖, ∀x, x′ ∈ Rn;
• Rp is the output space;
• h : Rn → Rp satisfies the following Lipschitz assump-

tion: there exists a constant Lh ∈ R+ such that
‖h(x)− h(x′)‖ ≤ Lh‖x− x′‖, ∀x, x′ ∈ Rn;
• σ : Rn → Rp×r̄ satisfies the following Lipschitz

assumption: there exists a constant Lσ ∈ R+
0 such

that ‖σ(x)− σ(x′)‖ ≤ Lσ‖x− x′‖, ∀x, x′ ∈ Rn.

A stochastic process ξ : Ω × R+
0 → Rn is said to be a

solution process of Σ if there exists υ ∈ U satisfying the
stochastic differential equations (SDE)

Σ :

{
d ξ = f(ξ, υ) d t+ g(ξ) dVt,

d y = h(ξ) d t+ σ(ξ) dWt,
(2.1)

where y(t) taking values in Rp denotes the output of Σ and
represents the noisy partial information at each time t ∈
R+

0 P-almost surely (P-a.s.). A partially observed system is
considered since in most practical cases, the physical state
of the system can only be partially determined by direct
observation. Solution process of Σ exists and is unique
due to the assumptions on f and g (Øksendal, 2000).

We assume that the pair (∂f∂x (x, u), h(x)) is uniformly
detectable (Clark, 2019, Definition 6). Throughout the
paper, we use the notation ξaυ(t) to denote the value of
the solution process at time t ∈ R+

0 under the input signal
υ starting from the initial state ξaυ(0) = a P-a.s., in which
a is a random variable that is measurable in F0.

For the later use, we provide the definition of the infinites-
imal generator (denoted by operator D) for a stochastic
control system Σ using Ito’s differentiation (Øksendal,
2000). Let B : Rn → R be a twice differentiable func-
tion. The infinitesimal generator of B associated with the
system Σ for all x ∈ Rn and for all u ∈ U is given by

DB(x, u) =
∂B

∂x
(x)f(x, u) +

1

2
Tr
(
gT (x)

∂2B

∂x2
(x)g(x)

)
.

(2.2)

In order to provide the results in this paper, we raise the
following assumption on the existence of the estimator that
estimates the state of the partial information system (2.1)
with a probabilistic guarantee on the estimation accuracy.

Assumption 2.2. The states of the partially observed
stochastic control system Σ in (2.1) can be estimated by a

proper estimator Σ̂ represented in the form of stochastic
differential equation with the estimated state trajectory

ξ̂(t) which is described by:

Σ̂ : d ξ̂ = f(ξ̂, υ) d t+K
(

d y − h(ξ̂) d t
)
, (2.3)

where K ∈ Rn×p is the estimator gain. Moreover, the
probabilistic bound on the accuracy of the estimator is
given as (Reif et al., 2000):

∀δ ∈ (0, 1] ∃ε > 0 such that

P
(

sup
t≥0
‖ξaυ(t)− ξ̂âυ(t)‖ ≤ ε

)
≥ 1− δ. (2.4)

To find the relation between ε and δ, one can use the notion
of so-called stochastic simulation functions introduced in
(Julius and Pappas, 2009). The construction of stochastic
simulation functions and the probability bound for the
case of linear stochastic control systems is provided in
Section 4.

Now, we formally define the main synthesis problem in this
work.

Problem 2.3. Given a partially observed stochastic control
system Σ in (2.1), given an estimator (2.3) satisfying (2.4),
sets X0 ⊂ Rn, X1 ⊂ Rn, compute a controller (if existing)
and a real value ϑ ∈ (0, 1) such that the probability of the
solution process of Σ starting from X0 and not reaching
X1 over the finite time horizon T ∈ R+ is lower bounded
by ϑ (i.e., P{∀t ∈ [0, T ), ξaυ(t) 6∈ X1} ≥ ϑ, ∀a ∈ X0.

Finding a solution to Problem 2.3 (if existing) is difficult
in general. In this paper, we provide a sound method in
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solving this problem. To synthesize a controller, we utilize
the notion of control barrier functions introduced in the
next section.

3. CONTROL BARRIER FUNCTIONS

In this section, we provide sufficient conditions using so-
called control barrier functions under which we can provide
the lower bound on the probability that the trajectories of
system Σ start from any initial state in set X0 ⊂ Rn and
do not reach unsafe set X1 ⊂ Rn. In order to provide
this result, we first define an ε-inflated version of X1 as
Xε

1 :=
{
x̂ | ∃x ∈ X1, ‖x̂ − x‖ ≤ ε

}
. Now we provide

an intermediate result providing an upper bound on the
reachability probability for the trajectory of the estimator
Σ̂ in (2.3).

Theorem 3.1. Consider a partially observed stochastic
control system Σ in (2.1), an estimator Σ̂ with the accuracy
ε as in (2.4), and sets X0, X

ε
1 ⊂ Rn. Suppose there exists

a twice differentiable function B : Rn → R+
0 , constants

c ≥ 0 and γ ∈ [0, 1] such that

B(x̂) ≤ γ ∀x̂ ∈ X0, (3.1)

B(x̂) ≥ 1 ∀x̂ ∈ Xε
1, (3.2)

inf
u∈U

∂B

∂x̂
(x̂)f(x̂, u) + Lhε‖

∂B

∂x̂
(x̂)K‖

+
1

2
Tr
(
σT (x̂)KT ∂

2B

∂x̂2
(x̂)Kσ(x̂)

)
≤ c ∀x̂ ∈ Rn,

(3.3)

where Lh ∈ R+
0 is the Lipschitz constant for the function

h. Then, the probability that the solution process ξ̂ of
the estimator Σ̂ starting from an initial state â ∈ X0 and
reaching region Xε

1 within time horizon [0, T ) ⊂ R+
0 is

upper bounded by γ + cT .

Proof. Consider the infinitesimal generator associated
with the estimator Σ̂ as

DB(x̂, u) =
∂B

∂x̂
(x̂)
(
f(x̂, u) +K

(
h(x)− h(x̂)

))
+

1

2
Tr
(
σT (x̂)KT ∂

2B

∂x̂2
(x̂)Kσ(x̂)

)
.

If ‖x− x̂‖ ≤ ε, then one gets

∂B

∂x̂
(x̂)K

(
h(x)− h(x̂)

)
≤ ‖∂B

∂x̂
(x̂)K‖‖h(x)− h(x̂)‖

≤ ‖∂B
∂x̂

(x̂)K‖Lhε.

Hence, if (3.3) holds, then

inf
u∈U

∂B

∂x̂
(x̂)
(
f(x̂, u) +K

(
h(x)− h(x̂)

))
+

1

2
Tr
(
σT (x̂)KT ∂

2B

∂x̂2
(x̂)Kσ(x̂)

)
≤ inf
u∈U

∂B

∂x̂
(x̂)f(x̂, u) + Lhε‖

∂B

∂x̂
(x̂)K‖

+
1

2
Tr
(
σT (x̂)KT ∂

2B

∂x̂2
(x̂)Kσ(x̂)

)
≤ c.

Thus, one has infu∈U DB(x̂, u) ≤ c. Now by utilizing
(Kushner, 1967, Theorem 1), (3.1), and the fact that Xε

1 ⊆
{x̂ ∈ Rn | B(x̂) ≥ 1}, we have P{ξ̂âυ(t) ∈ Xε

1 for some 0 ≤
t < T | ξ̂âυ(0) = â} ≤ P{sup0≤t<T B(ξ̂âυ(t)) ≥ 1 |
ξ̂âυ(0) = â} ≤ B(â) + cT ≤ γ + cT which concludes the
proof. 2

The function B in Theorem 3.1 satisfying (3.1) - (3.3) is
usually referred to as the control barrier function.

Remark 3.2. The above theorem gives controller as the
infimum over u of the left-hand side of inequality (3.3).

The result of Theorem 3.1 guarantees that the following
inequality holds:

P
{
∃t ∈ [0, T ), ξ̂âυ(t) ∈ Xε

1

}
≤ γ + Tc, (3.4)

In the next theorem, we provide the upper bound on the
reachability property over the trajectory of the original
system Σ by utilizing the bound obtained in Theorem 3.1
and the estimator accuracy.

Theorem 3.3. Consider a partially observed stochastic
control system Σ in (2.1), an estimator Σ̂ with the ac-
curacy ε as in (2.4), the results in Theorem 3.1, and sets
X0, X1, X

ε
1 ⊂ Rn. Then for any a ∈ X0

P
{
∃t ∈ [0, T ), ξaυ(t) ∈ X1

}
≤ γ + Tc+ δ. (3.5)

Proof. The proof is inspired by the proof of Corollary
3.5 in (Lavaei et al., 2017). Given a, â ∈ X0, let us
define the events A1 := {∃t ∈ [0, T ), ξaυ(t) ∈ X1} and

A2 := {∃t ∈ [0, T ), ξ̂âυ(t) ∈ Xε
1}. Then, we have

P{A1} = P{A1∩A2}+P{A1∩Ā2} ≤ P{A2}+P{A1∩Ā2},
where Ā2 is the complement of A2. Notice that the term
P{A1 ∩ Ā2} is bounded by δ according to (2.4) and the
definition Xε

1. This concludes the proof. 2

Corollary 3.4. Given the results in Theorem 3.3, the prob-
ability that the trajectories of Σ start from any a ∈ X0 and
stay in Rn \X1 is lower bounded by

P
{
∀t ∈ [0, T ), ξaυ(t) 6∈ X1

}
≥ 1− (γ + Tc+ δ). (3.6)

3.1 Computation of Control Barrier Functions

Proving the existence of a control barrier function and
finding one are in general hard problems. However, one
can search for parametric barrier functions of the form
B(q, x̂) =

∑r
i=1 qibi(x̂) with some user-defined (possibly

nonlinear) basis functions bi(x̂) and unknown coefficients
qi ∈ R, i ∈ {1, 2, . . . , r}, and the parametric state feed-
back controller of the similar form. The following lemma
provides a set of sufficient conditions for the existence
of such a parametric control barrier function required in
Theorem 3.1, which can be solved as an optimization
problem.

Lemma 3.5. Consider compact sets X0, Xε
1, X ⊂ Rn as

given in Theorem 3.1. Suppose there exists a parametric
function B(q, x̂) and parametric functions ψui

(dui
, x̂) cor-

responding to the ith input in u = (u1, u2, . . . , um) ∈ U ⊂
Rm with vectors of parameters q and dui

of appropriate
sizes, respectively, constants c ≥ 0 and γ ∈ [0, 1] that
satisfy

B(q, x̂) ≥ 0 ∀x̂ ∈ X, (3.7)

B(q, x̂) ≤ γ ∀x̂ ∈ X0, (3.8)

B(q, x̂) ≥ 1 ∀x̂ ∈ Xε
1, (3.9)
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∂B

∂x̂
(q, x̂)f(x̂, u) + Lhε‖

∂B

∂x̂
(q, x̂)K‖+

m∑
i=1

(ui − ψui(dui , x̂))

+
1

2
Tr
(
σT (x̂)KT ∂

2B

∂x̂2
(q, x̂)Kσ(x̂)

)
≤ c ∀x̂ ∈ X,∀u ∈ U.

(3.10)

Then B(q, x̂) satisfies conditions in Theorem 3.1 and ui =
ψui

(dui
, x̂) is the corresponding control policy.

Proof. The first three conditions implies (3.1) and (3.2)
along with non-negativeness of the function B. Now,
if we choose control input ui = ψui

(dui
, x̂), condition

(3.10) implies (3.3) in Theorem 3.1 which concludes the
proof. 2

In order to search for the parameters q and dui in Lemma
3.5 satisfying (3.7)-(3.10), one can use existing nonlinear
optimization solvers such as (Gurobi Optimization, 2019).
Note that, the methods may run into local optima, how-
ever, one can utilize multi-start techniques (Marti, 2003)
to obtain global optima. For the final rigorous verification
step, one can use tools such as dReal (Gao et al., 2013)
or RSolver (Ratschan, 2006) to formally verify that the
computed functions indeed satisfy the required conditions.
In order to compute δ in (3.6), we utilize the notion of
stochastic simulation function which is introduced in the
next section.

4. STOCHASTIC SIMULATION FUNCTION

In this section, we define a notion of stochastic simulation
functions similar to the one defined by (Julius and Pappas,
2009) which can be used to quantify the distance (a.k.a.
error) between a system’s state and its estimation as in
inequality (2.4).

We first define the augmented process
[
ξ ξ̂
]T

, where ξ

and ξ̂ are the solution processes of Σ and Σ̂, respectively.
The corresponding augmented stochastic control system is
given as

d

[
ξ

ξ̂

]
=

([
f(ξ, u)

f(ξ̂, u)

]
+

[
0n×p 0n×p
K −K

] [
h(ξ)

h(ξ̂)

])
d t

+

[
g(ξ) 0n×r̄
0n×r Kσ(ξ)

] [
dVt
dWt

]
.

(4.1)

Next, we define a notion of stochastic solution functions
which can be used to obtain the probability bound in (2.4).

Definition 4.1. A continuous function φ : Rn × Rn → R+
0

that is twice differentiable on Rn × Rn \∆ is a stochastic

simulation function from Σ̂ to Σ if

(i) for all (x, x̂) ∈ Rn×Rn, φ(x, x̂) ≥ α(‖x− x̂‖), where
α is a K∞-function;

(ii) for all u ∈ Rm, (x, x̂) ∈ Rn × Rn there exists a
constant c̄ ≥ 0 and κ ≥ 0 such that Dφ(x, x̂, u) ≤
−κφ(x, x̂) + c̄, where the operator D is acting on the
augmented dynamics in (4.1).

The next result provides the probability bound on the
estimation accuracy by using the stochastic simulation
function.

Theorem 4.2. Consider stochastic systems Σ and Σ̂ with
dynamics as in (2.1) and (2.3), respectively, and a stochas-

tic simulation function φ : Rn × Rn → R+
0 from Σ̂ to Σ.

Then for any υ ∈ U , any ε ∈ R+, and any a, â ∈ Rn the
following holds:

P
(

sup
0≤t≤T

‖ξaυ(t)− ξ̂âυ(t)‖ ≥ ε | a, â
)

≤ 1−
(
1− φ(a, â)

α(ε)

)
e−c̄T/α(ε), if α(ε) ≥ c̄

κ
,

(4.2)

P
(

sup
0≤t≤T

‖ξaυ(t)− ξ̂âυ(t)‖ ≥ ε | a, â
)

≤ φ(a, â) + (eκT − 1)(c̄/κ)

α(ε)eκT
, if α(ε) ≤ c̄

κ
,

(4.3)

where T > 0 is the time horizon.

Proof. Since φ is a stochastic simulation function from Σ̂
to Σ, one obtains the following chain of inequality

P
(

sup
0≤t≤T

‖ξaυ(t)− ξ̂âυ(t)‖ ≥ ε | a, â
)

= P
(

sup
0≤t≤T

α(‖ξaυ(t)− ξ̂âυ(t))‖ ≥ α(ε) | a, â
)

≤ P
(

sup
0≤t≤T

φ(ξaυ(t), ξ̂âυ(t)) ≥ α(ε) | a, â
)

≤


1−

(
1− φ(a, â)

α(ε)

)
e−c̄T/α(ε), if α(ε) ≥ c̄

κ
,

φ(a, â) + (eκT − 1)(c̄/κ)

α(ε)eκT
, if α(ε) ≤ c̄

κ
.

The equality holds due to the fact that α is a K∞ function.
The second inequality holds based on condition (i) of
Definition 4.1, and the last inequality follows from the
result in (Kushner, 1965, Theorem 1). 2

Next, we provide sufficient conditions under which we
can construct a stochastic simulation function for linear
stochastic control systems. Consider the following linear
stochastic control system

Σ :

{
d ξ = (Aξ +Bυ) d t+ g(ξ) dVt,

d y = Cξ d t+ σ(ξ) dWt,
(4.4)

and the corresponding linear estimator as

Σ̂ : d ξ̂ = (Aξ̂ +Bυ) d t+K(d y − Cξ̂ d t). (4.5)

Next, we impose the following assumption in order to
provide the main result of this section.

Assumption 4.3. Consider the linear system Σ in (4.4). We
assume that there exist a positive definite matrix P , gain
K, and a constant κ ∈ R+

0 such that the following matrix
inequality holds

(AT − CTKT )P + P (A−KC) < −κP. (4.6)

Note that if pair (A,C) is observable, then there always
exists such choices of P and K.

From now on we assume that we are interested in studying
behaviours of Σ over compact set X ⊂ Rn. In the following
lemma, we provide sufficient conditions under which one
can have a quadratic stochastic simulation function from
Σ̂ to Σ.

Lemma 4.4. Consider a linear stochastic control systems
Σ and estimator Σ̂ as in (4.4) and (4.5), respectively.
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Assume Σ satisfies Assumption 4.3 and for all x ∈ X there
exists c̄ ≥ 0 such that

Tr
(

[g(x) −Kσ(x)]
T
P [g(x) −Kσ(x)]

)
≤ c̄. (4.7)

Then
φ(x, x̂) = (x− x̂)TP (x− x̂), (4.8)

is a stochastic simulation function from Σ̂ to Σ.

Proof. By following (2.2), the infinitesimal generator
acting on the function φ is as follows:

Dφ(x, x̂) =(x− x̂)T [(AT − CTKT )P

+ P (A−KC)](x− x̂)

+ Tr
(

[g(x) −Kσ(x)]
T
P [g(x) −Kσ(x)]

)
≤− κφ(x, x̂) + c̄.

The inequality follows from (4.6) and (4.7) which implies
condition (ii) of Definition 4.1 being satisfied. Condition
(i) of Definition 4.1 is satisfied by choosing

α(s) =
1

2
λmin(P )s2. 2

5. CASE STUDY

In this section, we consider a DC motor to demonstrate
the effectiveness of our results. Consider the dynamics of
a DC motor given using stochastic differential equation as
follows:

Σ :



d

[
ξ1
ξ2

]
=

( A︷ ︸︸ ︷ −
R

L
−Kdc

L

−Kdc

J
− b
J

[ξ1ξ2
]

+

[ 1

L
0

]
υ

)
d t

+

[
0.05 0

0 0.05

]
dVt,

d y =
[
0 1
]︸ ︷︷ ︸

C

[
ξ1
ξ2

]
d t+ 0.01 dWt,

(5.1)

where ξ1, ξ2, υ, R, L and J are the armature current, the
rotational speed of the shaft, the voltage source applied to
the motor’s armature, the resistance, the inductance, and
the moment of inertia of the rotor, respectively. Vt and
Wt denote the standard Brownian motions. Constant Kdc

represents both the motor torque constant and the back
emf constant. The values of the parameters are J = 0.01,
b = 0.1, Kdc = 0.01, R = 1, and L = 0.5, which are
adopted from (Jahanshahi et al., 2016). From matrices A
and C, one can readily see that the system is observable.
We consider the state set X = [−0.1 0.1] × [−0.5 0.5],
and regions of interest X0 = [−0.01 0.01] × [−0.2 0.2],
X1 = [−0.1 −0.05] × [−0.5 −0.3] ∪ [0.05 0.1] × [0.3 0.5] .
The aim is to compute a controller with a potentially tight
upper bound on the probability of the states starting from
the initial set X0 reaching the unsafe set X1 within time
horizon T = 10, as in (3.5).

We compute matrices

K =

[
0.0069
0.0027

]
, P =

[
0.0554 0.0053
0.0053 0.3209

]
,

and κ = 0.1 satisfying (4.6) by converting it to an
LMI using Schur complement. The stochastic simulation
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Fig. 1. A few realizations of the errors between concrete
state trajectories and estimated trajectories.

function according to Lemma 4.4 is given as φ(x, x̂) = (x−
x̂)TP (x− x̂) with α(s) = 0.02768s2 and c̄ = 3.7693×10−7.
By use of the results in Theorem 4.2 we obtain δ = 0.1272
by choosing ε = 0.01. The obtained probability that is
at least 87.28% is also empirically verified by computing
distance between trajectories of the concrete system and
the estimated system at time using 10000 realizations.
Several realizations are shown in Figure 1.

A quadratic control barrier function using the approach
discussed in Subsection 3.1 is obtained as follows:

B(x̂) = 290.9438x̂2
1 + 10.98940x̂1x̂2 + 1.1977x̂2

2,

and the corresponding control policy as

u(x̂) = 0.2721x̂1 + 1.3607x̂2. (5.2)

with the values γ = 0.099, c = 1 × 10−5, T = 10. All
the computations are done using GUROBI and YALMIP
(Löfberg, 2004). The lower bound in (3.6) is computed as:

P
{
∀t ∈ [0, T ), ξaυ(t) 6∈ X1

}
≥ 0.77369, ∀a ∈ X0.

Figure 2 shows a few realizations of the trajectories start-
ing from the initial region X0 under the control policy
(5.2).

6. CONCLUSIONS

We provided a framework for designing control barrier
functions for partially observed stochastic control systems
subjected to noisy measurements. The controllers asso-
ciated with control barrier functions provide the upper
bound on the probability that the system reaches an un-
safe region in a finite time horizon. This upper bound is
provided by utilizing the probability bound obtained for
the accuracy of the estimator via the notion of stochastic
simulation functions. The effectiveness of the results are
demonstrated on a case study.
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