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Abstract: The inaccuracy of position and velocity controllers due to the vibration in the two-
mass system in industrial robots cause devastating problems in both safety and productivity. To
solve this problem, a method for tuning a cascade controller applied to two-mass systems based
on Iterative Feedback Tuning (IFT) is proposed. The proposed new iterative feedback tuning
method utilized a modified cost function to optimize the gains in a cascade control system and to
address the complexity of the two-mass system due to higher-order dynamics. The performance
of the proposed iterative feedback tuning method is verified through several simulations.
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1. INTRODUCTION

Most industrial robots have elastic elements, such as bear-
ings and gears, and the elasticity from these elements
can cause vibrations during the operation of the robot.
This problem makes it difficult for the robot to achieve
its desired position and velocity (Hillsley and Yurkovich
(1993)). The inaccurate position and velocity of industrial
robots have devastating impacts on productivity, including
product defects and production cycles. Hence, high preci-
sion on both position and velocity controllers is critical to
industrial robots.

The cascade controller has two feedback loops to control
the position and velocity of a robotic system. The outer
control loop of the cascade structure receives the position
data and then adjusts the set-point to be controlled by
the inner control loop, while the inner control loop controls
the set-point by receiving the velocity data. Therefore, the
controllers of the inner and outer control loops need to be
tuned separately, and it takes a lot of time and effort to
optimize each of the two controllers.

Research on controller tuning has been classified into
two categories in various literature. The first classification
is the model-based method. The model-based controller
utilizes the system model to generate control inputs that
achieve the desired performance. The controller design is
simplified because the model of the system is used for
the controller design(Huang et al. (2005)). Although the
model-based controller has these characteristics, various
papers have described specific situations in which it is
difficult to obtain the system model, and point out that
additional time and procedures are required to obtain the
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system model (Pintelon et al. (1994)). In this respect, the
data-driven method is proposed as an alternative method.

The data-based method is a model-free technique for
tuning controllers by processing data from several ex-
periments, such as virtual reference feedback tuning,
correlation-based tuning, and iterative feedback tun-
ing (IFT). Among these, IFT has been applied to mo-
tion controllers in various industrial applications such as
semiconductor equipment and precision stages due to its
flexibility to be used to various controllers. IFT updates
the control parameter set to reduce performance-relevant
cost function. By processing the data from a few ex-
periments to obtain an unbiased gradient estimate, the
gradient estimate is used to update a new set of control
parameters every iteration. Since the gradient estimate
has a direction of control performance change, changing
the control parameter in the direction of the gradient
estimate can update the control parameter set to minimize
the cost function. This IFT method can also be applied
to sophisticated controllers according to a specified set of
control parameters.

The application of IFT to cascade controllers is presented
in (Kissling et al. (2009)), however, this is not time efficient
because the inner loop and outer loop controllers were
tuned sequentially. To solve this problem, the method of
tuning the controllers of the inner and outer control loops
were studied at the same time, but the tuning freedom
was reduced by simplifying the performance-relevant cost
function (Tesch et al. (2016)).

In this paper, a novel IFT method of the cascade controller
is proposed. Also, the proposed technique is applied to a
two-mass system, shown in Fig. 1. Because these type of
systems have higher-order dynamics, both the design of
both position and velocity controllers becomes a challeng-
ing task Hu et al. (2014). However, the proposed tuning
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Fig. 1. Two-mass system.

Fig. 2. Cascade control for the two-mass system.

Fig. 3. Two-degree-of-freedom cascade control.

technique uses both position and velocity data from inner
and outer control loops and also considers the influence of
control effort.

2. POSITION AND VELOCITY OF TWO-MASS
SYSTEM CASCADE CONTROLLER

The cascade controller of the two-mass system is shown
in Fig. 2. Where Pv is the velocity output model of the
system, r, y, ẏ are the desired position reference, measured
position and measured velocity, respectively, and u and do
are respectively the control effort and outer disturbance.
The control objective of the cascade control is to minimize
e = r − y and ev = ṙ − ẏ. Where ṙ is the derivative
of the position command. Therefore, the outer control
loop uses a proportional controller Kpp to minimize e and
the inner control loop uses proportional Kp and integral
Ki controllers to minimize ev. Therefore, the closed-loop
transfer functions of the cascade control are

y

r
=

KppKiPv(s)

s2 + (Kps2 +Kis+KppKi)Pv(s)
(1)

y

do
=

s

s2 + (Kps2 +Kis+KppKi)Pv(s)
(2)

This cascade controller can be replaced with the equiv-
alent controller two-degree-of-freedom (TDOF) cascade
controller separately from controller Cr for command and
controller Cy for the output data.

uc = Cr(ρ)r(t)− Cy(ρ)y(t) (3)

where Cr and Cy are controllers of the TDOF cascade
control and are composed of the control parameters ρ =

[Kp Ki Kpos]. Kpos = KppKi is replaced to eliminate
between Ki and Kpp. Therefore, the transfer function of
TDOF cascade control Cr and Cy is as follows:

Cr(ρ) =
Kpos

s
(4)

Cy(ρ) =
Kps

2 +Kis+Kpos

s
(5)

Pp(s) =
Pv
s

(6)

where Pp is the system location output model. As a result,
Fig. 2 can be represented by TDOF cascade control which
is an equivalent controller, and the block diagram is shown
in Fig. 3. TDOF cascade control is the control structure
used in the general IFT tuning method (Hjalmarsson et al.
(1998)).

3. ITERATIVE FEEDBACK TUNING FOR CASCADE
CONTROLLER

3.1 Overview of Iterative Feedback Tuning Method

Iterative feedback tuning is used to solve the cost function
J(ρ) and H2 optimization problem to obtain optimal
control parameter (ρ?).

ρ? = arg min
ρ

J(ρ) (7)

where J(ρ) is a performance-relevant cost function de-
signed for the purpose of cascade controllers. The proposed
cascade control considers the control effort (u) of the servo
system while effectively minimizing e and ev. Therefore,
the performance-relevant cost function, which is proposed
in this paper, is as follows:

J(ρ) =
1

2N
[eT e+ λve

T
v ev + λuu

Tu] (8)

where e = [e(1) . . . e(N)]T , ev = [ev(1) . . . ev(N)]T , u =
[u(1) . . . u(N)]T is respectively the position error, velocity
error, and control effort. the data sampled signal as num-
ber of samples (N), and λv and λu are weights of velocity
error and control effort, respectively.

λv =
‖y − r‖
‖ẏ − rv‖

(9)

λu = λ (10)

where the λ is a positive scalar. To solve (7), an appropri-
ate ρ must be found for (8) that satisfies:

0 =
∂J

∂ρ
(ρ) =

1

N

[
∂eT

∂ρ
(ρ)e(ρ) + λv

∂eTv
∂ρ

(ρ)ev + λu
∂u

∂ρ
(ρ)u

]
(11)

If the gradient of the cost function, ∂J
∂ρ (ρ), is obtained,

the optimal control parameters can be found using the
following iterative algorithm.

ρi+1 = ρi − γiRi−1 ∂J

∂ρ
(ρ) (12)

where γi is a positive real scalar that determines the step
size, and Ri is an approximation of the Hessian.

γi =
µ

i
(13)

Ri =
1

N

∂JT

∂ρ
(ρ)

∂J

∂ρ
(ρ) (14)
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where µ is the initial step size. To obtain the optimal
set of control parameters using (12), the gradient of the
cost functions of (11) and (14) is calculated. In the
next subsection, the gradient of the cost function can be
introduced experimentally (Robbins and Monro (1951)).

3.2 Gradient of Cost Function

The control objective of the proposed cascade control
is divided in three-fold: 1) position tracking, 2) velocity
tracking, and 3) efficiency of control effort.

1) Position Tracking — e(ρ) is the difference between
the expected output yd(ρ) from the command input r and
the output y(ρ) in the closed loop.

e(ρ) = T (ρ)r + S(ρ)do − yd (15)

where T (ρ) and S(ρ) are the complementary sensitivity
and sensitivity functions of the closed-loop, respectively,
then

T (ρ) =
Cr(ρ)Pp(s)

1 + Cy(ρ)Pp(s)
(16)

S(ρ) =
1

1 + Cy(ρ)Pp(s)
(17)

yd = Td(ρ)r (18)

where Td(ρ) is the reference model. In order to obtain (11),
∂e
∂ρ (ρ) must be solved as follows:

∂e

∂ρ
(ρ) =

∂T

∂ρ
(ρ)r +

∂S

∂ρ
(ρ)do (19)

where the derivatives of T (ρ) and S(ρ) are:

∂T

∂ρ
(ρ) =

∂Cr

∂ρ (ρ)Pp

1 + Cy(ρ)Pp
−

∂Cy

∂ρ (ρ)Cr(ρ)Pp
2

(1 + Cy(ρ)Pp)2

=
1

Cr(ρ)

∂Cr
∂ρ

(ρ)T (ρ)− 1

Cr(ρ)

∂Cy
∂ρ

(ρ)T 2(ρ) (20)

∂S

∂ρ
(ρ) = −

Pp
∂Cy

∂ρ (ρ)

(1 + Cy(ρ)Pp)2
=

1

Cr(ρ)

∂Cy
∂ρ

(ρ)T (ρ)S(ρ)

(21)

Here, (19) is rearranged using (20) and (21) as follows.

∂e

∂ρ
(ρ) =

1

Cr(ρ)

[
(
∂Cr
∂ρ
− ∂Cy

∂ρ
)T (ρ)r +

∂Cy
∂ρ

T (ρ)(r − y)

]
(22)

where Cr,
∂Cr

∂ρ ,
∂Cy

∂ρ can be calculated mathematically

using (4) and (5). Therefore, only T (ρ)r and T (ρ)(r −
y) are the unknown terms. These unknown terms can
be obtained using the following sets of data from three
different experiments.

r1
i = r,

y1
i(ρi) = T (ρi)r + S(ρi)do1

i, (23)

r2
i = r − y1i(ρi) = e,

y2
i(ρi) = T (ρi)e+ S(ρi)do2

i (24)

r3
i = r,

y3
i(ρi) = T (ρi)r + S(ρi)do3

i, (25)

where the subscript is the number of experiments and
superscript is the number of iteration. If d0 is zero mean,

the unknown terms can be obtained by y2 and y3. So (22)
can be obtained as:[

∂e

∂ρ
(ρ)

]
=

1

Cr(ρ)

[
(
∂Cr
∂ρ
− ∂Cy

∂ρ
)y3(ρ) +

∂Cy
∂ρ

y2(ρ)

]
(26)

2) Velocity Tracking —ev(ρ) is the error of the inner
control loop and can be expressed as follows:

ev(ρ) = T (ρ)rv + S(ρ)dov − ydv (27)

∂ev
∂ρ can be obtained in the same way as described in 3.2.1.

∂ev
∂ρ

(ρ) =
1

Cr(ρ)

[
(
∂Cr
∂ρ
− ∂Cy

∂ρ
)T (ρ)rv +

∂Cy
∂ρ

T (ρ)(rv − ẏ)

]
=

s

Cr(ρ)

[
(
∂Cr
∂ρ
− ∂Cy

∂ρ
)T (ρ)r +

∂Cy
∂ρ

T (ρ)(r − y)

]
(28)

Since rv = r · s and rv − ẏ = (r − y) · s, (22) is multiplied
by s. Thus, data from (24) and (25) can be used without
further experimentation. Therefore, (28) can be rewritten
as:[

∂ev
∂ρ

(ρ)

]
=

s

Cr(ρ)

[
(
∂Cr
∂ρ
− ∂Cy

∂ρ
)y3(ρ) +

∂Cy
∂ρ

y2(ρ)

]
(29)

3) Efficiency of Control Effort —The closed-loop
signal of the control effort is as follows:

u(ρ) = S(ρ)[Cr(ρ)r − Cy(ρ)do] (30)

∂u
∂ρ in (11) is calculated as follows:

∂u

∂ρ
(ρ) = S(ρ)

[
(
∂Cr
∂ρ
− ∂Cy

∂ρ
)r +

∂Cy
∂ρ

(r − y)

]
=

1

Cr(ρ)

[
(
∂Cr
∂ρ
− ∂Cy

∂ρ
)S(ρ)r +

∂Cy
∂ρ

S(ρ)(r − y)

]
(31)

Here, u(t) is obtained by the command used in the
experiment of (23)∼(25) is as follows:

u1
i = Cr(ρ

i)S(ρi)r − Cy(ρi)S(ρi)do1
i (32)

u2
i = Cr(ρ

i)S(ρi)r

− Cr(ρi)S(ρi)y1
i − Cy(ρi)S(ρi)do2

i (33)

u3
i = Cr(ρ

i)S(ρi)r − Cy(ρi)S(ρi)do3
i (34)

(31) can be rewritten with u obtained from (32) (34).[
∂u

∂ρ
(ρ)

]
=

1

Cr(ρ)

[
(
∂Cr
∂ρ
− ∂Cy

∂ρ
)u3(ρ) +

∂Cy
∂ρ

u2(ρ)

]
(35)

4. EVALUATION OF THE PROPOSED METHOD
WITH SIMULATION

4.1 Description of Dynamics of Two-mass System

In this paper, the iterative feedback tuning of the devel-
oped cascade control is applied to a two-mass system as
shown in Fig 1. u and Fext are control effort and external
disturbance in Fig. 4, respectively, and θ̇m, θ̇s and θ̇l
are the angular velocity of the motor, spring and load,
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Fig. 4. Block diagram of two-mass system.

respectively. Pm, Ps and Pl are the dynamic models of the
motor, spring, and load, respectively.

Pm(s) =
1

Jms+Bm
=

1

2.50 · 10−5s+ 2.84 · 10−5
(36)

Ps(s) =
s

Ks
=

s

1.80
(37)

Pl(s) =
1

Jls+Bl
=

1

2.17 · 10−5s+ 7.50 · 10−5
(38)

As aforementioned, there is an accuracy problem in both
position and velocity controllers because of the flexible
link, which is described by Ps(s). This flexibility of the
link causes oscillations when the motor is transmitting
force to the load. The effect of flexibility is also shown in
the transfer function from the motor torque to the motor
angular velocity:

P (s) =
Pm(Ps + Pl)

Ps + Pm + Pl

=
s2 + 5.53s+ 76600

2.5 · 10−5s3 + 9.87 · 10−4s2 + 3.56s+ 6.40
(39)

In this transfer function, the resonance is at 63 Hz, and the
antiresonance is at 46Hz, which makes the tuning of the
controller difficult. In the next subsection, the proposed
iterative feedback tuning of the proposed cascade control
is verified by simulation.

4.2 Simulation with Different Cases of Cost Functions

The purpose of the proposed cascade control is to minimize
the positional and velocity errors of the system. For
this purpose, the cost function of the developed iterative
feedback tuning method is designed to include position
error, velocity error and control effort.

The effect of the inclusion of the velocity error in the
cost function is demonstrated. The initial control param-
eter (ρ1 = [0.01 0.1 40]) and the weight of control ef-
fort (λ1u = 0.01) are set to be equal and then compared
according to the following case (C1 is case number 1, and
C2 is case number 2).

C1 —the cost function of the new iterative feedback
tuning method is the same as (8) and the initial step
size (µC1) is set to 17.

C2 —the weight of velocity error (λv) is set to 0 to elimi-
nate the velocity error in the cost function. Therefore,
the cost function and cost function derivative under
C2 are given as

1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
1.8

1.9

2

2.1

2.2

postion reference
C1 : iteration #1
C1 : iteration #30
C2 : iteration #30

Fig. 5. Position control performance comparison according
to C1 and C2.
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Fig. 6. Velocity control performance comparison according
to C1 and C2.
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Fig. 7. Parameter convergence diagram with C1 and C2.

J(ρ) =
1

2N
[eT e+ λuu

Tu] (40)

∂J

∂ρ
(ρ) =

1

N

[
∂eT

∂ρ
(ρ)e(ρ) + λu

∂u

∂ρ
(ρ)u

]
(41)

Note that µC2 is set to 7.

The reason why µ is different in C1 and C2 is that the
aspect of parameter convergence changes rapidly depend-
ing on the value of µ in C2. Although the µ of C1 is
greater than that of C2, it can be seen that the control
gain changes more rapidly in C2.

The results, which is shown in Fig. 5 and Fig. 6 show that
the vibration remains in C2 after 30 times of iteration
because the control gains in Fig. 7 were not updated
in balance under C2. In particular, the Kpp increased
sharply and did not settle even in the above 15 of iteration.
However, the cost function of C2 is lower than C1 in Fig. 8
because it does not include velocity error.
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Fig. 8. Cost function reduction from iteration 1 to 30 with
C1 and C2.
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Fig. 9. Position control performance comparison according
to C1 and C3.
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Fig. 10. Velocity control performance comparison accord-
ing to C1 and C3.
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Fig. 11. Parameter convergence diagram with C1 and C3.

4.3 Simulation with Different Initial Values

Here, simulations are performed to verify that the pro-
posed iterative feedback tuning algorithm drives the con-
trol parameter to converge to the optimal parameter. The
initial control parameters in C3 are set to 95 % of the
optimal control parameters obtained from C1 and then the

0 5 10 15 20 25 30
0

100

200

300

400

parameters of C1
parameters of C3

Fig. 12. Cost function reduction from iteration 1 to 50 with
C1 and C3.
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model parameter of C6

10-2 10-1 100 101 102 103

-50

0

50

Fig. 13. Frequency characteristics of C1, C4, C5 and C6.

control parameters were seen to converge to the optimal
control parameters. In addition, λv is activated and both
case are set equal to λu = 0.2.

C3 —the value of 95 % of the optimal control parameter
obtained from C1 is ρ1 = [0.00585 0.473 135.3] and
step size to µC3 = 40.

Since the initial values of C1 and C3 are different, the
results of Fig. 9 and Fig. 10 show that the initial data of
C1 has errors and vibrations. But after 30 times in both
C1 and C3, Fig. 9 and Fig. 10 show similar performance,
because the control parameters converged to the optimal
point in both C1 and C3 as shown in Fig. 11. Since the
initial control parameter of C1 is set to a different value
from the optimal parameter, these caused a drastic change
in the cost function as shown in Fig. 12, However, control
parameters in C3 did not change significantly, so the cost
function of C3 was modest.

4.4 Simulation with Different Model Parameter

Here, the proposed IFT is verified to be applicable to
various system models. Because iterative feedback tuning
algorithm is a model-free method, it should be applicable
regardless of any model change. For this, the two-mass
system model was changed according to C1 and additional
cases below. Fig. 13 is the frequency characteristic accord-
ing to the model change of the two-mass system.

C4 —Jm
∗ = 2 · Jm in (39) reduces the resonance fre-

quency and DC gain.
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Fig. 14. Position control performance comparison accord-
ing to C1, C4, C5 and C6.
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Fig. 15. Velocity control performance comparison accord-
ing to C1, C4, C5 and C6.
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Fig. 16. Parameter convergence diagram with C1, C4, C5
and C6.
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Fig. 17. Cost function reduction from iteration 1 to 50 with
C1, C4, C5 and C6.

C5 —Jl
∗ = 2 · Jl in (39) reduces the resonance and anti-

resonant frequencies and also reduces DC gain.
C6 —Ks

∗ = 2 ·Ks in (39) raises the resonance and anti-
resonance frequencies and reduces the DC gain.

The increase of the errors in C4 and C5 can be seen in
Fig. 14 and Fig. 15. Therefore, it can be seen that there

Table 1. Optimal parameter after 30 iteration

Condition Kp Ki Kpp

C1 0.005964 0.04396 136.2
C2 0.006936 0.02978 235.2
C3 0.006083 0.04393 141.9
C4 0.005921 0.06283 096.7
C5 0.005895 0.06047 100.1
C6 0.005924 0.04047 148.7

are more constraints on the controller design of the two-
mass system with a low resonance point. On the other
hand, C6 decreased DC gain and increased resonance anti-
resonance, but C6 seems to have more controller design
margin than C4 and C5

Model changes of Jm and Jl produce optimal parameter
changes as shown in Fig. 16 and Fig. 17 . Notice that the
cost function increases at a limited iteration.

5. CONCLUSION

This paper has proposed a novel iterative feedback tuning
method of cascade control. Since the cascade control aims
to control both position and velocity simultaneously, the
cost function of the proposed iterative feedback tuning
method includes the position and velocity errors. By
analyzing the frequency characteristics of the system,
the resonance and antiresonance frequencies has been
considered in the IFT. In the verification using three
different kinds of simulations with different conditions,
the proposed method optimally tunes the position and
velocity controllers of cascade controls applied to two-mass
systems.
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