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Abstract: Given the problem of static and dynamic contact stability of manipulators, this work
extends classical hybrid force/motion control by introducing an additional feedback part to allow
smooth environmental contact of the robot. The extension is the outcome of an in-depth stability
analysis of velocity-controlled manipulators in passive environments and can be considered the
first of its kind. In addition to this theoretical contribution, the application to a redundant
7-DoF robot confirms the achievable benefit compared to the classical implementation w.r.t.
transient effects (like positional deviation or exerted force) in the event of an environmental
contact.
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1. INTRODUCTION

For decades robots have been used on the shop floor of
factories. So far, their main purpose was to automatically
perform a given task, e.g., welding, dispensing, pick &
place applications etc. Independent of the specific appli-
cation, the foremost goal always was to precisely follow
a prescribed trajectory (e.g. dispensing) or to optimally
execute a certain motion and boost task productivity
(e.g. butterfly-like pick & place operation) (Brog̊ardh,
2009). Thus, the robot performance is dominated by a
pure motion task. Such tasks have been performed be-
hind fences to avoid direct interaction with the operator,
mainly for safeguarding reasons. For applications requir-
ing force-based interaction, a strategy known as hybrid
force/motion control (Craig and Raibert, 1979) is mostly
applied in industrial manipulators. Some Cartesian direc-
tions are controlled using standard position control ap-
proaches, whereas the remaining (orthogonal) Cartesian
directions are governed by an admittance-type indirect
force controller (Hogan, 1985).

With the advent of an ever-closer collaboration between
humans and robots, recently developed as HRC (Human-
robot collaboration) (Krüger et al., 2009; Thomas et al.,
2016), this set-up seems inappropriate. Firstly, this is be-
cause its transient behavior in the conversion from free mo-
tion to force-guided contact is hard to predict and difficult
to always ensure stability using the simple hybrid control
approach (Fisher and Mujtaba, 1992). Secondly, due to the
rise of HRC, the number of intended environmental inter-
actions between humans (as part of the environment of
the robot) and robots will increase significantly (Thomas
et al., 2016). Hence, manipulator applications transform
from a motion- to an interaction-dominated world.

Several force control approaches have been developed to
meet the requirements of interaction scenarios (see (Si-
ciliano and Khatib, 2016) and (Zeng and Hemami, 1997)
for an overview). Generally, the control schemes can be
categorized into direct and indirect approaches (Siciliano
and Villani, 1999) while indirect force control can in turn
be subdivided into impedance and admittance (Ott et al.,
2010). For interaction tasks in highly unstructured en-
vironments, impedance-based schemes benefit from their
stability properties in contact and contact-loss situations
(Schindlbeck and Haddadin, 2015). On the contrary, force-
controlled tasks requiring very high positioning accuracy
in position-controlled directions (cf. (Jonsson et al., 2013)),
hybrid force/motion schemes relying on admittance con-
trol still have a high potential.

Based on this motivation, this work proposes an extension
of the traditional hybrid control scheme. We follow up on
(Fisher and Mujtaba, 1992), which in turn extended the
original hybrid concept proposed in (Craig and Raibert,
1979) and we present a new perspective on the problem of
kinematic instability. Our results are based on a detailed
dynamical stability analysis of the position-controlled ma-
nipulator in free motion as well as the force-controlled
manipulator in contact with the environment. The contri-
bution is three-fold: i) we apply a corrected transformation
to properly update the hybrid control structure itself, ii)
an additional feedback is introduced for robust stabiliza-
tion of the scheme and iii) a constructive method for the
design of all control gains is proposed, resulting in a well-
tuned closed-loop behavior for robots interacting with the
environment.

To this end, the paper is organized as follows: In the next
section, the general hybrid force/motion control approach
is introduced together with common terminology used
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throughout the paper. Section 3 describes the problem at
hand to be studied in detail in the remainder of the paper.
The main results are presented in Section 4 and can be
divided into the derivation of the proposed extension of
the scheme, its stability analysis and a structured design
methodology for the tuning. An application to ABB’s dual-
arm robot YuMi R© is provided in Section 5 by performing a
force-controlled motion task in a compliant environment.
Finally, a conclusion is provided in Section 6.

2. BACKGROUND

2.1 System Description

The joint space dynamics of a rigid manipulator with n
joints and coordinates q ∈ Rn can be written as

M(q)q̈ +C(q, q̇)q̇ + g(q) = τ − τext. (1)

Herein, M(q) ∈ Rn×n is the inertia matrix of the robot,
C(q, q̇) ∈ Rn×n is the matrix containing factorized Corio-
lis and centrifugal terms, and the vector g(q) ∈ Rn repre-
sents the gravity torques. The motor torques τ ∈ Rn are
considered as the manipulator control input, and τext ∈ Rn

is the vector of joint torques associated with external forces
exerted from the robot end-effector on the environment.

The forward kinematics relate the joint coordinate vector
q with the Cartesian posture vector of the end-effector
x ∈ Rm, and is given by the mapping x := K(q), K :
Rn 7→ Rm. Accordingly, the differential kinematics for the
Cartesian end-effector velocities are given by

ẋ = J(q)q̇, J(q) =
∂K(q)

∂q
, (2)

where J(q) ∈ Rm×n is the Jacobian matrix.

For all manipulators with n ≥ m, the differential kinemat-
ics (2) can be treated as a system of (linear) equations of
the form Aχ = β, with A ≡ J(q). Then, all solutions
χ = q̇ are parametrized by

q̇ = J†(q)ẋ+
[
I − J†(q)J(q)

]
ζ, (3)

where J†(q) ∈ Rn×m is any pseudoinverse of J(q),
satisfying J(q)J†(q)J(q) = J(q), ∀q ∈ Rn and ζ ∈ Rn is
an arbitrary vector that is projected onto the null space
of the Jacobian, i.e.,

[
I − J†(q)J(q)

]
ζ ∈ ker(J). Given

(3), it is convenient to use the unique Moore-Penrose-
pseudoinverse, which is denoted with a superscript +,
as a special case of a generalized (right) inverse (Serre,
2010). Therefore, if motion or velocity related quantities
are considered, the Moore-Penrose-pseudoinverse J+(q) is
used in the remainder of the article, i.e., J†(q) = J+(q).

Similarly to the differential kinematics and its inverse
relation, the relationship between joint torques τext and
external operational forces fext ∈ Rm at the end-effector
is given by

τext = JT (q)fext +
[
I − JT (q)JT†(q)

]
ς, (4)

where JT (q)fext represents joint torques that are associ-
ated with forces acting at the end-effector and[

I − JT (q)JT†(q)
]
ς ∈ ker(JT ), ς ∈ Rm

takes internal motions into account. To avoid motions in
the null space that produce any acceleration of the end-
effector in the Cartesian space, the transposed generalized
inverse JT†(q) has to be dynamically consistent, satisfying

J(q)M−1(q)
[
I − JT (q)JT†(q)

]
ς = 0 (Khatib, 1995).

Hence, if Cartesian forces are mapped to joint torques,
the unique dynamically consistent (left) inverse JT#(q) ∈
Rm×n is used, i.e., (Khatib, 1995)

JT#(q) = JT†(q)

=
(
J(q)M−1(q)JT (q)

)−1
J(q)M−1(q).

(5)

2.2 Hybrid Force/Motion Control

Most of the present industrial manipulators are equipped
with independent joint-level PID controllers (Siciliano
and Khatib, 2016) or use some other kind of cascaded
position control structure for motion control tasks. If
besides pure motion control, operating forces are required,
hybrid force/motion control schemes are a traditional
approach(Craig and Raibert, 1979).

A diagonal selection matrix S ∈ Rm×m is employed to
specify which directions are force-controlled (correspond-
ing element in S is 1) and which are position controlled
(diagonal element in S is 0). We further introduce S⊥ =
(I − S), where I ∈ Rm×m is the identity matrix.

The desired manipulator joint configuration qd(t) ∈ Rn is
regulated by n proportional controllers, given by the gain
matrix Kp ∈ Rn×n

+ ,Kp = diag {Kp,1, . . . ,Kp,n}. In order
to select the joints according to the specified position-
controlled directions in Cartesian space, the joint error
qe ∈ Rn, qe = qd(t) − q is transformed to qeS⊥ ∈ Rn

using J+(q)S⊥J(q). Basically, the usage of the Jacobian
J(q) realizes a mapping onto Cartesian space in terms
of a first order approximation that transforms differential
motions in joint space q to differential displacements in
Cartesian space x. The pseudoinverse J+(q) accomplishes
a mapping (back) to joint space. Therefore, the matrix
J+(q)S⊥J(q) can be understood as a selection matrix in
joint space.

Additionally, a proportional controller with gain matrix
D−1 ∈ Rm×m acts as an outer loop force controller on the
Cartesian force error fe ∈ Rm,fe = fd(t) − fext between
desired forces fd(t) ∈ Rm and actual forces fext defined in
the robot base frame. This proportional controller D−1

represents an admittance in terms of the basic idea of
impedance control, proposed by Hogan (Hogan, 1985).
Hence, D is referred to as damping matrix throughout
this work.

Given the force controller output, ẋe is mapped to joint
space using the transformation matrix J+(q)S, which si-
multaneously takes the specified force-controlled directions
in Cartesian space into account.

The aggregated reference joint velocities q̇r(t) = q̇p(t) +
q̇f(t) with q̇r(t) ∈ Rn serve as control input of the under-
lying velocity-controlled manipulator. Here, q̇p(t) ∈ Rn

and q̇f(t) ∈ Rn represent the velocity components associ-
ated with the position- and force-controlled parts, respec-
tively. Referring to the control objectives in robot ma-
nipulation applications and to independent joint control
(or decentralized control) (Spong and Vidyasagar, 2008),
where each manipulator joint is considered as a single-
input/single-output (SISO) system, the velocity-controller
is tuned to accomplish well damped and sufficiently fast
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joint velocity movements. Thus, the input-output behavior
of the velocity-controlled manipulator is modeled as

TVRq̈ + q̇ = q̇r, (6)

with the diagonal matrix TVR = diag {TVR,1, . . . , TVR,n} ∈
Rn×n

+ containing the equivalent time constants, respec-
tively, and q̇r as reference control input. Measurements
show that this is a reasonable assumption (Hans, 2015).

Remark 1. In contrast to the described structure, the
original hybrid control scheme of Craig and Raibert (1979)
implements a force controller in joint space. The reference
torques for non-redundant manipulators are calculated
using the transposed Jacobian JT (q) and the relation
τext = JT (q)fext maps exerted Cartesian forces to the
joint space.

3. PROBLEM STATEMENT

During their research, An and Hollerbach (1987) experi-
enced that some hybrid force control structures become
unstable dependent on their (kinematic) configuration
only. In An and Hollerbach (1987), the authors investi-
gated how an exemplary two-joint-manipulator that imple-
ments a hybrid control scheme shows an unstable behavior.

Later, Fisher and Mujtaba (1992) found that the orig-
inal hybrid force/motion control scheme developed by
Craig and Raibert (1979) is based on the incomplete
and inappropriate mathematical formulation qeS⊥ =
J+(q)S⊥J(q)qe. Following basic lines of reasoning, Fisher
introduced the concept of kinematic stability and proposed
sufficient criteria that can be used to analyze robotic sys-
tems with respect to kinematic stability properties without
requiring a complete dynamical system analysis.

From a control engineering point of view, kinematic sta-
bility is related to the input/output stability of dynamic
systems. Depending on the manipulator configuration, the
presence of a Cartesian selection matrix S (or S⊥), asso-
ciated with the mappings from and into the joint space,
could cause a positive feedback or violate the small gain
theorem (Khalil, 2001), thus resulting in an unbounded
output. It should be highlighted that kinematic stability
does not imply dynamic stability. Conversely, the sys-
tem can show an unstable behavior (at certain operating
points) if the kinematic stability conditions are violated,
but can still be stable locally. The proposed kinematic
stability criteria rather impose requirements on the joint
space transformation that relate the vector qe to the vector
qeS⊥ omitting the closed-loop system dynamics.

Similar to the example in An and Hollerbach (1987), the
unstable behavior of a manipulator implementing the hy-
brid scheme can be illustrated considering a robot moving
in the unconstrained space, i.e., in free motion, where
fext = 0. For convenience, it is supposed that the velocity
controller is well tuned, whereby the dynamics of the
velocity-controlled manipulator can be treated as n decou-
pled first order lag systems of the form (6). Introducing

the state variable
[
eTq , ė

T
q

]T ∈ R2n, where eq = q − qd

is the error between the actual configuration q and some
constant desired position qd, the residual dynamics of the
manipulator in free motion with fext = 0 and position
controller KPJ

+(q)S⊥J(q) can be formulated in state
space representation as

d

dt

[
eq

ėq

]
=

[
ėq

−T−1
VR

(
KPJ

+(q)S⊥J(q)eq + ėq

)] , (7)

in case the null space component is omitted by choosing
ζ = 0. Considering small changes of the state variable,[
(∆eq)T , (∆ėq)T

]T
around the equilibrium / operating

point e∗q = 0, ė∗q = 0, the linearization[
∆ėq

∆ëq

]
=

[
0 I

−T−1
VRKPJ

+(qd)S⊥J(qd) −T−1
VR

]
︸ ︷︷ ︸

=:Γ
J+S⊥J

[
∆eq

∆ėq

]
(8)

can be calculated substituting J(q) := J(eq + qd).

To guarantee (local) stability of the linear system (8) at
the operating point, the eigenvalues of the system matrix
ΓJ+S⊥J must lie in the open left half plane. Otherwise,
referring to the indirect method of Lyapunov (Khalil,
2001), if at least one eigenvalue lies in the open right half
plane, the equilibrium point of both the linearized and the
nonlinear system is unstable. Note that for robots this is
posture dependent 1 .

As emphasized, it is not guaranteed that the examined
velocity-based hybrid control scheme results in a stable
closed-loop system for any non-singular configuration. As
a consequence, in the next section, a modification of the
structure is proposed and proven to be stable in the sense
of Lyapunov.

4. MAIN RESULTS

Based on the suggestions of Fisher concerning the modifi-
cation of the position-controlled part of the original hybrid
control scheme (Fisher and Mujtaba, 1992), the examined
velocity-based control structure can be corrected to result
in a kinematically stable system.

Starting with the differential kinematics (2) and left-
multiplying the selection matrix S, the force/velocity
related equation can be defined as

ẋeS = Sẋe = SJ(q)q̇eS. (9)

Interpreting (9) as a system of (linear) equations of the
form Aχ = β, with A ≡ SJ(q) and χ ≡ q̇eS as unknown
vector, the general inverse solution is given by

q̇g,eS = (SJ(q))+ẋeS +
[
I − (SJ(q))+(SJ(q))

]
ζ, (10)

which is denoted with a subscript g. Similarly, using the
Jacobian J(q) as differential motion transformation, the
position related equation is given by

xeS⊥ = S⊥xe = S⊥J(q)qeS⊥ , (11)

with the general solution (Fisher and Mujtaba, 1992)

qg,eS⊥ =(S⊥J(q))+xeS⊥ +
[
I−(S⊥J(q))+(S⊥J(q))

]
ζ.

Remark 2. Considering the force/velocity related equa-
tions (9), it is mathematically incorrect to omit the effect
of S on the Jacobian J(q) on the right hand side of
(9) and develop the inverse matrix J+(q)S. The matrix
SJ(q),S 6= I represents a singular matrix with a reduced
rank. In fact, the premultiplication with S in (9) reduces
the dimension of the image space of the respective mapping
and the transformation matrix SJ(q) maps the redundant
manipulator joints q̇eS onto this reduced image space. The
1 Think of a three-link planar manipulator with ”elbow-up” (stable)
or ”elbow-down” (unstable) configuration.
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same holds true for the position related equations (11). As
a consequence, the present derivation corrects this flaw in
the derivation of hybrid force/motion control schemes.

4.1 Modified Hybrid Force/Motion Control Scheme

Concerning the general force/velocity and position related
equations (10) and (4), we suggest the inverse relations

q̇eS = (SJ(q))+ẋeS +
[
I − J(q)+J(q)

]
ζ, (12a)

qeS⊥ = (S⊥J(q))+xeS⊥ , (12b)

to transform the Cartesian velocity/position errors ẋeS,
xeS⊥ that are associated with the selected Cartesian di-
rections into (selected) joint variables q̇eS, qeS. Herein,
the unique minimum Euclidean norm solutions of (10)
and (4) are considered as well as an additional orthogonal
component [I − J(q)+J(q)] ζ to explicitly allow null space
motions in case of redundant manipulators (n > m).

Using (12), the modified velocity-based hybrid force/ mo-
tion control scheme of Fig. 1 is proposed.

The proposed structure utilizes the idea of Craig and
Raibert (1979) to feed back the Cartesian end-effector
posture x instead of joint variables q. By doing this, all
reference signals can be defined in Cartesian space. Hence,
more intuitive strategies for the trajectory planning in
Cartesian space can be considered. Alternatively, an equiv-
alent joint variable feedback can be implemented using
the Jacobian J(q) as differential motion transformation,
yielding qeS⊥ = (S⊥J(q))+(S⊥J(q))qe.

As can be observed from Fig. 1, an additional feedback
part within the force-controlled part is introduced. The
proportional controller P ∈ Rm×m amplifies (or reduces)
the current end-effector velocity ẋ = J(q)q̇.

Remark 3. Admittance control can be implemented set-
ting (S⊥J(q))+ = J+(q) or (S⊥J(q))+(S⊥J(q)) = I,
respectively.

4.2 Dynamical Stability

Stability of Manipulator in Free Motion In order to
show the dynamical stability of the manipulator in free
motion, i.e., fext = 0, the residual dynamics of the
position-controlled robot (6) in joint space are considered.

Defining the state variable
[
e>q , ė

>
q

]> ∈ R2n with the
(time-dependent) error eq = q − qd(t), similar to (7), the
residual closed-loop dynamics in state space representation
are given by

d

dt

[
eq

ėq

]
=

[
ėq

−T−1
VR

(
KP(S⊥J)+(S⊥J)eq + ėq

)] , (13)

where the substitution J(eq, t) := J(eq +qd(t)) = J(q) is
utilized and no null space tasks are specified, i.e., ζ = 0.

As a prerequisite, it is assumed in the following sections
that the desired trajectory qd(t) ∈ QR ⊂ Rn is continu-
ously differentiable and defined such that only nonsingular
postures are contained (i.e. bounded velocities). Moreover,
in some equations, time- and state-dependencies are omit-
ted for brevity but should be kept in mind.

Applying Lyapunov stability theory for non-autonomous
systems, the continuous differentiable (time-invariant)
Lyapunov function candidate Vp(eq, ėq) : QR × Rn 7→ R

Vp =
1

2

[
eq

ėq

]>[
α1K

−1
P α1K

−1
P TVR

α1(K−1
P TVR)> K−1

P TVR

] [
eq

ėq

]
, (14)

where α1 ∈ R+ is a positive constant, shall be considered.
Herein, the diagonal matrix TVR contains the equivalent
time constants of the velocity-controlled robot and the
positive definite diagonal matrix K−1

P specifies the inverse
position controller gains. To show the positive definite-
ness of (14), Schurs‘ complement condition for positive
definiteness (Serre, 2010) is applied. By doing this, it
can be noticed that Vp(eq, ėq) is positive definite, if the
inequalities

α1K
−1
P

!
� 0n×n, (15a)

K−1
P TVR − α1(K−1

P TVR)>KP(K−1
P TVR)

!
� 0n×n, (15b)

are fulfilled. Therein, � denotes positive definiteness of the
corresponding matrices.

Note that (15a) is always true by construction. Since KP

and TVR are defined as diagonal matrices with positive
entries, (15b) can be simplified to

K−1
P TVR [I − α1TVR]

!
� 0n×n. (16)

Given (16), it can be observed that the inequality con-
straint can be satisfied choosing α1, such that α1I ≺ T−1

VR
holds. By doing this, Vp(eq, ėq) is positive definite for

any eq, ėq in QR × Rn. Further, regarding the stability
conditions for time-varying systems, there always exist
two time-invariant positive definite functions on QR ×
Rn that bound the Lyapunov function candidate, i.e.,
Wp,1(eq, ėq) ≤ Vp(eq, ėq) ≤Wp,2(eq, ėq).

The time derivative of the Lyapunov function candidate
(14) along the solutions of (13) is given by

V̇p(eq, ėq, t) =[
eq

ėq

]> [
α1(S⊥J)+(S⊥J) 1

2 (S⊥J)+(S⊥J)
1
2 (S⊥J)+(S⊥J) K−1

P − α1K
−1
P TVR

]
︸ ︷︷ ︸

=:ΓV̇p

[
eq

ėq

]
.

(17)

In order to investigate the sign of V̇p(eq, ėq, t), Schurs’
Lemma for positive semidefinite matrices is considered.
With respect to the positive semidefiniteness of the
projection matrix (S⊥J(eq, t))

+(S⊥J(eq, t)) (Fisher and
Mujtaba, 1992) and the properties of generalized in-
verses/pseudoinverses (Serre, 2010), the matrix ΓV̇p

in

(17) is positive semidefinite, if

α2
1K
−1
P TVR−α1K

−1
P +

1

4
(S⊥J(eq, t))

+(S⊥J(eq, t))
!
�0,

where similar to before ≺ is used to denote negative
definiteness.

Since the projection matrix (S⊥J(eq, t))
+(S⊥J(eq, t))

represents a positive semidefinite matrix, it can be
bounded using its smallest and largest eigenvalues, i.e.,
0n×n � (S⊥J(eq, t))

+(S⊥J(eq, t)) � I concerning the
idempotency property (Fisher and Mujtaba, 1992; Serre,

2010). Then, a sufficient condition for V̇p(eq, ėq, t) being
negative semidefinite is given by the inequality constraint

α2
1K
−1
P TVR − α1K

−1
P +

1

4
I

!
� 0. (18)
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-

D−1

(S⊥J)+ KP

(SJ)+

-

Forward
Kinematics

P

-

Velocity
Controller

Robot
and

Environmentτ
q̇r

τff

Force
Transform

J

(I − J+J)

-

q

f ′ext

q̇

xd

fd

xe

fe

qeS⊥

ẋe

q̇p

q̇f

ζ

ẋ q̇

fext

x

Fig. 1. Structure of the proposed velocity-based hybrid force/motion control scheme, where the modifications to the
original structure are highlighted by bold blocks, i.e., the nonlinear proportional controllers (SJ(q))+D−1 and
KP(S⊥J(q))+, the additional Cartesian velocity feedback PJ and a null space input.

Solving the quadratic inequality (18) with respect to the
parameter α1, it can be observed, that the sufficient
condition (18) is fulfilled choosing α1 within a range of

1

2
T−1

VR −
1

2
T−1

VR

√
Σ � α1I �

1

2
T−1

VR +
1

2
T−1

VR

√
Σ. (19)

Here, Σ ∈ Rn×n, Σ = I−KPTVR, which has to be positive
semidefinite, i.e., Σ � 0, avoiding complex solutions of
(19). Using (19) to select α1 appropriately, simultaneously
results in a positive definite Lyapunov function Vp(eq, ėq)
satisfying the condition (16).

With respect to present manipulators and high velocity
controller bandwidths, it can be assumed that TVR,i �
1, ∀i in real applications. Therefore, it is possible to find
a valid α1 that satisfies (18) for proper choices of KP.
In particular, tuning the position controllers to achieve
the same critically damped behavior for each position-
controlled joint, i.e., KP = 1/4T−1

VR, the parameter α1

can be chosen such that 1/2T−1
VR −

√
3/4T−1

VR � α1I �
1/2T−1

VR +
√

3/4T−1
VR.

Hence, the proposed Lyapunov function candidate (14) is
a valid positive definite Lyapunov function with a negative
semidefinite time derivative V̇p(eq, ėq, t) ≤ 0 in QR × Rn

for all t ≥ 0 and proper choices of KP and α1. According
to the Lyapunov theory, it can be concluded that the

equilibrium point
[
e>q , ė

>
q

]>
= 0 of the nonlinear system

(13) is uniformly stable (Khalil, 2001).

In order to prove asymptotic stability, it is proposed to
define the domain Dp ⊆ QR ⊂ Rn as

Dp :=
{
ξ1 ∈ QR | ∃eq ∈ QR : ξ1 =(S⊥J)+(S⊥J)eq

}
,

containing the origin eq = 0. By doing this, projections
onto the null space of (S⊥J(eq, t)) are excluded and only
joint configurations resulting in end-effector movements
in the Cartesian position-controlled directions are consid-
ered. 2

2 Since the matrix (S⊥J(eq, t)) is a continuous transformation and
(S⊥J(eq, t))+(S⊥J(eq, t)) represents a bijective transformation on

Then, considering the supposed Lyapunov function (14) to
be defined as Vp(eq, ėq) : Dp×Rn 7→ R, the stability anal-
ysis can be performed with respect to the state variables
eq ∈ Dp, ėq ∈ Rn. Since the elements of the state variable
eq are defined in the domain Dp, the projection matrix
(S⊥J(eq, t))

+(S⊥J(eq, t)) represents a positive definite
matrix (instead of a positive semidefinite matrix). As a
consequence, using Schurs‘ complement condition, it can
be observed that the matrix ΓV̇p

in (17) is positive definite

for proper choices of KP and α1.

Hence, the time derivative of the Lyapunov function
V̇p(eq, ėq, t) is negative definite, i.e., V̇p(eq, ėq, t) ≤
−Wp,3(eq, ėq) < 0, ∀t ≥ 0, ∀eq ∈ Dp, ėq ∈ Rn, and

thus, the equilibrium point
[
e>q , ė

>
q

]>
= 0 of the nonlinear

system (13) is UAS (in Dp × Rn).

Remark 4. The developed analysis is valid for any choice
of the selection matrix S⊥ 6= 0 and thus, does not
necessarily require that S⊥ = I,S = 0.

Passivity of the Force-Controlled Manipulator Consid-
ering the simplified robot model (6), the dynamics of the
force-controlled manipulator in joint space w/o additional
Cartesian velocity feedback, i.e −P ẋ, are given by

d

dt
q̇ = T−1

VR

[
(SJ(q))+D−1fe+

(
I−J+(q)J(q)

)
ζ − q̇

]
,

(20)
with the force error fe = fd(t)−fext and null space vector
ζ as control input.

As can be observed, the system dynamics (20) directly
depend on the state variable q̇, i.e., the joint velocities
in joint space, while the control variable fext(x) and
thus the control input fe represents a position-dependent
state in the Cartesian space. In order to avoid state
variables of different spaces, it is convenient to express

the set QR \ eq ∈ ker((S⊥J)+(S⊥J)), it can be assumed that Dp is
a partition of the set QR, which does not contain any unit sets. Thus,
the set Dp ⊂ Rn can be used in the stability analysis according to
the Lyapunov theory (Khatib, 1995).
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the Cartesian force error fe in terms of joint torques using
the dynamically consistent generalized inverse of (5), i.e.,
fe = JT#(q)τe, τe ∈ Rn, so that (20) becomes

d

dt
q̇ = T−1

VR

[
(SJ(q))+D−1JT#(q)τe

+
(
I − J+(q)J(q)

)
ζ − q̇

]
. (21)

Referring to the passivity definition, the following non-
negative (time-invariant) storage function Sf(q̇) : Rn 7→ R,

Sf(q̇) =
1

2
α2q̇

TTVRq̇, (22)

is considered, where α2 ∈ R+ is a positive constant. Thus,
the time derivative of Sf(q̇) along the solutions of (21) is
given by

Ṡf(q, q̇) = α2q̇
T (SJ(q))+D−1JT#(q)τe

− α2q̇
T q̇ + α2q̇

T
(
I − J+(q)J(q)

)
ζ. (23)

Since the transformation matrix

(SJ(q))+J(q) = (SJ(q))+(SJ(q))

(Fisher and Mujtaba, 1992), the matrix

(SJ(q))+D−1JT#(q)

= (SJ(q))+(SJ(q))J#(q)D−1JT#(q),

where J#(q) is used as a special generalized (right)
inverse, satisfying J(q)J#(q) = I. The first part
(SJ(q))+(SJ(q)) defines a projection matrix and

J#(q)D−1JT#(q)

represents a positive definite matrix for positive definite
inverse damping matrices D−1 (Serre, 2010). Since, ac-
cording to the idempotency property (Fisher and Mujtaba,
1992; Serre, 2010), per definition, the largest eigenvalue of
any projection matrix is 1 and thus, the largest singular
value is also 1, the matrix (SJ(q))+D−1JT#(q) can be
bounded from above using the induced spectral norm, i.e.,∥∥(SJ(q))+D−1JT#(q)

∥∥
2
≤

sup
q∈QR

σmax(J#(q)D−1JT#(q)) <∞, (24)

considering the boundedness properties of the Jacobian
J(q) in the non-singular space. Hence, it is always possible
to specify a controller gain matrix D−1 and find an α2,
such that the inequality constraint

α2

∥∥(SJ(q))+D−1JT#(q)
∥∥

2
≤ 1, q ∈ QR, (25)

is fulfilled, e.g., by selecting

α2 = sup
[
σmax(J#(q)D−1JT#(q))

]−1
, q ∈ QR.

Note that, the inverse damping matrix D−1 usually sat-
isfies

∥∥D−1
∥∥ � 1 in real applications involving stiff envi-

ronments. As a consequence, choosing an appropriate α2

and a ζ satisfying ‖ζ‖ ≤ ‖q̇‖, the time derivative Ṡf(q, q̇)
of (23) can be bounded by

Ṡf(q, q̇) ≤ q̇>τe−α2q̇
T q̇+α2q̇

T
(
I − J+(q)J(q)

)
ζ, (26)

with ‖ζ‖ ≤ ‖q̇‖ for any q ∈ QR and q̇ ∈ Rn.

Considering the differential dissipation inequality and the
passivity definition (Khalil, 2001), given (26), it can be
concluded that the nonlinear system (21) is passive with
respect to the supply rate s(τe, q̇) = q̇>τe, where τe

corresponds to the input u and q̇ corresponds to the
system output y. Furthermore, considering the positive
definiteness of the projection matrix (I − J+(q)J(q)), if

‖ζ‖ < ‖q̇‖, the system is output strictly passive. Hence, in
case of the trivial null space treatment ζ = 0, the nonlinear
system (21) is output strictly passive.

Stability of the Force-Controlled Manipulator Since the
proposed storage function (22) represents a positive defi-
nite function of the state q̇, the equilibrium point q̇ = 0
of the (unforced/ autonomous) nonlinear, passive system
(21) with input τe = 0 is stable in the sense of Lyapunov.
Moreover, choosing an appropriate ζ such that the sys-
tem is (output) strictly passive, e.g., ζ = 0, asymptotic
stability of the origin 0 can be concluded.

Furthermore, using the properties of passive systems, the
purely force-controlled manipulator interacting with its
environment can be understood as an interconnection of
passive subsystems, where the passive environment de-
scribes a mapping of the form q̇ → fext (Ott, 2008).
Thus, the overall system is passive. Particularly, the en-
vironment can be assumed to be strictly passive, which
is valid considering the environment as a connection of
passive (e.g., springs) and dissipative/strictly passive (e.g.,
dampers) elements (Hogan and Buerger, 2005). It can be
concluded that the equilibrium point q̇ = 0 of the feedback
interconnection of the strictly passive force-controlled ma-
nipulator and a strictly passive environment is (globally)
asymptotically stable for the reference signal τd = 0.

Concerning the modified hybrid control structure of Fig. 1,
an additional feedback part −PJ(q)q̇ is supposed in order
to add extra damping to the force-controlled system in case
of an environmental interaction. This controller can be
represented by the equivalent feedback −JT (q)DPJ(q)q̇,
which is a (mathematical) extension to close the feedback-
loop using JT (q) as right inverse of JT#(q). It inter-
connects the passive manipulator and the passive envi-
ronment. As can be observed from the previous analysis,
the modification is not mandatory in terms of achieving
(asymptotic) stability, but improves the dynamic closed-
loop behavior by dissipating energy (especially in case of
an unexpected impact). Thus, intuitively, the additional
feedback part cannot destabilize the closed-loop system.
On the contrary, considering the concept of asymptoti-
cally stabilizing a nonlinear passive system by means of
output feedback (Byrnes et al., 1991), the extension can
be interpreted as a controller of the form

τe = −Φ(q̇) = −JT (q)DPJ(q)q̇. (27)

Herein, the matrix JT (q)DPJ(q) represents a smooth
transformation, that can be designed to be positive defi-
nite, e.g., choosing D−1 and P as diagonal matrices with
positive elements. Since the interconnection of the force-
controlled manipulator with a strictly passive environment
is asymptotically stable (and thus zero-state detectable),
the control law (27) ensures the asymptotic stability of
the origin 0 and acts stabilizing additionally. Furthermore,
it can be assumed that the controller implies beneficial
robustness properties.

Remark 5. These results confirm the investigations of Col-
gate and Hogan (1988). Using transfer functions and the
Nyquist stability criterion, they showed that a passive ma-
nipulator interacting with a passive environment is stable.
Moreover, the closed-loop system is asymptotically stable
if either of the two systems is strictly passive (Hogan and
Buerger, 2005; Colgate and Hogan, 1988).
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In general, the target behavior during a manipulator-
environment-interaction can be chosen arbitrary to fulfill
certain criteria. From a practical point of view, it is
beneficial to specify the desired dynamics dependent on
the environmental characteristics and the manipulator
properties, such as the stiffness of the end-effector tool
gripping a workpiece. In this way, a priori knowledge of the
material stiffness and damping involved in the assembly
task are taken into account. Details of the design approach
are beyond the scope of this paper, but are included in
(Hans, 2015).

5. APPLICATION

For showing the effectiveness of the proposed approach,
an environmental interaction scenario is sketched using
ABB’s collaborative robot YuMi R© . It is a dual-arm, re-
dundant robot with 7 DoF on each arm that is designed for
small parts assembly and safe human robot collaboration.
It has a handling capacity of 500 g (including the gripper)
and a maximum task-space velocity of 1.5 m s−1. Given
these specifications we will use it to charge soft and guided
springs showcasing the performance of the proposed mod-
ifications for controlling environmental interaction.

The modified hybrid control scheme sketched in Fig. 1 was
implemented utilizing the (factory) settings of the inner
velocity controller and position controller gain matrix KP.
The remaining structure parts were supported by the
measured joint configuration q and joint velocity q̇ within
a sample period of Ts = 0.04 s, respectively. The exerted
forces were measured using a wrist-mounted force/torque
sensor. This is assembled below a gripper, that defined the
tool center point of the robot end-effector.

The experimental setup is depicted in Fig. 2. The purely
position-controlled manipulator, i.e., S⊥ = I6×6, ζ = 0,
tracks a pre-calculated reference trajectory qd(t) (gen-
erated by an integrated controller unit) that is trans-
formed to Cartesian space using the forward kinematics
xd(t) = K(qd(t)). After exceeding a force threshold/dead
zone of |ftext,z| = 0.3 N,, the controller is switched to force
control in the constrained direction setting Sz = 1, and
fd(t) = 0N.

Fig. 2. Experimental setup with end-effector motion in the
Cartesian z-direction hitting an unexpected environ-
ment with stiffness Ke = 1000 N m−1.

Utilizing a priori knowledge of the equivalent time con-
stants TVR and the environmental stiffness, the measured
end-effector positions and exerted force evolutions are
plotted in Fig. 3 through Fig. 5 for different force controller
designs. The force controller with D = 40 N s m−1 tuned
empirically, results in the evolutions of Fig. 3 and shows
a satisfactory interaction behavior. The exerted force de-
creases to zero with an overlaid oscillation. However, it
can be imagined that an inappropriately chosen force con-
troller gain matrix induces an oscillating behavior which
could result in an undesired bouncing of the end-effector
on the surface. In particular, a reduction of the gains to
D = 5 N s m−1 yields the predicted bouncing behavior
as shown in Fig. 4. Therefore, an improper empirical
design could lead to damage to the involved parts and
often involves additional attrition, which represent the
drawbacks of the simple trial and error design method.
Moreover, an overly conservative gain choice yields an
overcritically damped behavior and thus, increased settling
times and exerted forces. On the other hand, short settling
time can be achieved if a bouncing behavior is accepted.
Furthermore, if successful tuning was accomplished once,
the obtained parameters can readily be utilized as refer-
ence values in similar applications. Such trial and error
approaches describe the typical process of tuning robot
behavior in applications.

Fig. 5 shows the respective position and force evolutions
using the proper design method mentioned earlier (Hans,
2015). Here, the controller is tuned to result in a critically
damped system. Thus, the resulting force (Fig. 5) shows
an approximately critically damped behavior. However,
at this point, it should be highlighted that this design
method targets the automatic parameterization for re-
ducing oscillations, ending up with higher forces in some
configurations. In doing so, bouncing effects are avoided
and advantageous robustness properties can be deduced
with respect to uncertain stiffness estimates as well as the
errors resulting from the approximated velocity-controlled
robot behavior (first-order lag). These results strengthen
a possible application in small parts assembly.

6. CONCLUSION

In this article we revisited the classical problem of hybrid
force/motion control of manipulators and showed how to
improve applicability of such hybrid schemes in practical
applications for both redundant and standard 6 DoF
manipulators.

Basically, this is achieved using an in-depth stability anal-
ysis of the scheme leading to the introduction of an ad-
ditional feedback component for its robustification. Fur-
thermore, a design guideline is developed for tuning the
repsective controller parameters to achieve satisfactory
behavior. The effectiveness is then shown in a relevant en-
vironmental interaction scenario involving the redundant
industrial manipulator YuMi R© .

For the future, the authors seek to compare this set-
ting with other interaction-control architectures based on
impedance- or admittance-like approaches (e.g., Schindl-
beck and Haddadin (2015); Wahrburg and Listmann
(2016); Matschek et al. (2017)) in terms of robustness to
imperfections in the task-space and task performance.
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Fig. 3. Position and force measurements in setup 1 using
the trial and error method (Dz = 40 N s m−1) showing
a damped interaction behavior with risk to oscilla-
tions (dashed lines show references).
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Fig. 4. Position and force measurements in setup 1 using
the trial and error method (Dz = 5 N s m−1) showing
an unstable bouncing interaction with the environ-
ment (dashed lines show references).
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Fig. 5. Position and force measurements in setup 1 using
the generalized eigenvalue approach (δΛT,z = 1) show-
ing a critically damped interaction with a minimum
of exerted force (dashed lines show references).
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