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Abstract: This paper proposes Runge-Kutta neural disturbance observer to enhance the
robustness of PID control of a system with general multicompartment lung mechanics. It is
designed to observe the states of a particular type continous time, single-input single-output
system where the states cannot be measured but can be observed through the single output and
there exists parametric uncertainity or disturbance affecting the underlying system. It utilizes
artificial neural network to estimate the disturbance online. Once an accurate disturbance
estimation is obtained, it is incorporated in the system state equation and passed through
the well-known Runge-Kutta integrator to predict the state values. Hence, the predicted states
are obtained considering the disturbance and more robust state observation is achieved. The
proposed observer is simple and easy to implement. Adaptation of the neural network is
performed using gradient descent with an adaptive learning rate which guarantees convergence.
The simulation results demonstrate that the proposed observer gains a significant success
in enhancing the robustness of PID control at even high level of disturbance. Note that,
multicompartment lung mechanics system is a stand-in model that can mimic the behavior
of human lung. Thus, it is appropriate for hardware-in-the-loop simulation which opens a path
to the real-patient-tests of mechanical respiratory systems in the future.

Keywords: Multicompartment lung mechanics, PID, artificial neural network, disturbance
observer, robust control, Runge-Kutta discretization

1. INTRODUCTION

Human lungs may sometimes contract a serious illness.
Such phenomenon may cause malfunctioning of the lungs,
leading to a respiratory failure. It is the result of incapabil-
ity of the human respiratory system delivering an adequate
gas excahnge of carbon dioxide (CO2) and oxygen through
the network of capillaries alongside the alveoli. At that
point, mechanical ventilation systems arise as a solution.

Operation of the mechanical ventilators can be basi-
cally classified in three groups such as volume-controlled,
pressure-controlled and dual-controlled (Tobin, 2006). The
primary goal of mechanical respiratory systems is, by
applying a limited input pressure, to maintain adequate
minute ventilation which is the tidal volume multiplied
by number of breaths per minute (West and Luks, 2015).
In volume-controlled ventilation, both the tidal volume
and number of breaths are determined by the clinician
who is looking after the patient. Hence, the ventilator
operates in accordance to those pre-determined ventilation
parameters. However, in pressure-controlled ventilation,
the tidal volume is not directly controlled. Instead, the
ventilator determines the adequate input pressure that
will be able to inflate the lung and make it reach the
level of desired tidal volume. Note that, the tidal volume
is dependent on the pressure applied and the compliance
? This paper is supported by Pamukkale University Scientific Re-
seearch Projects Council (BAP).

of the lung. Thus, minute ventilation is dependent on the
compliance parmeters of the lung as well. If the compliance
is subject to change, then, change in the tidal volume, and
depending on that, change in the minute ventilation are
inevitable. Thus, robust control algorithms which takes
into account the parameter uncertainities are necessary in
the mechanical ventilation research.

In this paper, we propose a novel disturbance observation
approach for a particular type continuous time, single-
input single-ouput (SISO) system where the states are ob-
servable through the output. It exploits the Runge-Kutta
(RK) discretization method for obtaining a discretized ver-
sion of the original system. Observer dynamics are derived
using the system nominal model in combination with a
standard feedforward artificial neural network (ANN). At
each sampling time, we estimate the unknown disturbance
term affecting the underlying system. We use it within the
observer dynamics which is embedded into the RK for-
mulation. Thus, we observe the system states considering
the effect of disturbance by utilizing machine learning and
RK integration method in the state observation scheme.
The proposed observer structure is simple and easy to
implement in both computers and embedded hardware.
We employ it within PID control to demonstrate how the
proposed observer can enhance the robustness of PID at
even high levels of disturbance. Also, online training of
ANN is performed using gradient descent with an adaptive
learning rate which guarantees the convergence of ANN
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parameters. Consequently, convergence of the observer is
maintained as well.

Organization of the paper is as follows. In Sect. 2, problem
definition and fourth order RK discretization method will
be given. Sect. 3 briefly introduces ANN as the artificial
model employed for disturbance estimation in this paper.
Sect. 4 covers the proposed approach of robust state
observation in details. Also in that section, convergence of
the ANN parameters by using an adaptive learning rate is
presented. Sect. 5 presents the simulation results. Finally,
the paper is concluded in Sect. 6 where also the future
works are declared.

2. PROBLEM DEFINITION AND RUNGE-KUTTA
DISCRETIZATION

This section briefly explains the appraoch of how the ro-
bust state observation task is treated. For this, definition of
the problem and fourth order Runge-Kutta discretization
are given.

2.1 Problem Definition

Consider that we have a continous time, SISO system that
is subject to parametric uncertainities and disturbance. In
this case, its dynamics are governed by the combination
of nominal system model and the terms denoting the
parametric uncertainities and external disturbance respec-
tively. State space model for such a system is given below.

dx(t)

dt
=f(x(t)) + f̄(x(t))+

(g(x(t)) + ḡ(x(t)))u(t) + dext(t)

y(t) =h(x(t))

(1)

In (1), x ∈ <dx denotes the system state vector given
the initial value x0 = x(0) while u ∈ < denotes the
input. y ∈ < denotes the system output and h(·) is the
system function associated with output. Note the different
notations used for system functions in the state equation.
f(·) : <dx → <dx and g(·) : <dx → <dx represent the
system functions associated with the states and input in
the nominal model of the system. On the other hand,
f̄(·) : <dx → <dx and ḡ(·) : <dx → <dx denote the
uncertainity in the system model (1). Last, dext ∈ <dx
denotes the external disturbance on the system.

If we treat the parametric uncertainity as internal distur-
bance, dint ∈ <dx , and combine that internal disturbance
with the external one, we can rewrite (1) as follows.

dx(t)

dt
= f(x(t)) + g(x(t))u(t) + d(t)

d(t) = dint(t) + dext(t)

dint(t) = f̄(x(t)) + ḡ(x(t))u(t)

y(t) = h(x(t))

(2)

In (2), we collect the internal and external disturbances
within one disturbance term d ∈ <dx . Consequently, we
write the overall system model as a combination of the
nominal model and the total disturbance d. We assume
that we have measurements of the system output y but
we cannot measure the states individually. Hence, to
construct an appropriate control architecture, we need
to observe the states through the output. It is assumed

that each state xi, i = 1, . . . , dx, can be observed via
the measured output y. We can develop an accurate
state observer once we have an accurate estimate of d.
To develop a state observer, we first need to obtain
a descretized version of the originally continuous time
system (2).

2.2 Runge-Kutta Discretization

RK method enables us to descretize the continous time
system (2). With a sampling period Ts, the continous time
output y is sampled at the time instants nTs where n =
{0, 1, 2, . . .} ∈ Z (Iplikci, 2013). We can obtain discrete
samples of the input similarly as well. Let us show the
discrete time variables x[n] = x(nTs) and u[n] = u(nTs)
for the state vector and input respectively. Using the
fourth order RK method, we can write the discretized
system equations as follows.

x[n+ 1] = x[n] + δx
(
x[n], u[n+ 1],d[n+ 1]

)
δx
(
x[n], u[n+ 1],d[n+ 1]

)
=

1

6
K1 +

1

3
K2 +

1

3
K3 +

1

6
K4

y[n+ 1] = h
(
x[n+ 1]

)
(3)

where
K1 = Ts

(
f(x) + g(x)u+ d[n+ 1]

)
x=x[n],u=u[n+1]

K2 = Ts
(
f(x) + g(x)u+ d[n+ 1]

)
x=x[n]+ 1

2K1,u=u[n+1]

K3 = Ts
(
f(x) + g(x)u+ d[n+ 1]

)
x=x[n]+ 1

2K2,u=u[n+1]

K4 = Ts
(
f(x) + g(x)u+ d[n+ 1]

)
x=x[n]+K3,u=u[n+1]

(4)
The discretized system of equations (3) and (4) will be
utilized in Sect. 4 to obtain an accurate estimate of the
total disturbance term d by using ANN. Hence, a robust
observer for the system states x could be developed taking
into account the effect of total disturbance.

3. ARTIFICIAL NEURAL NETWORK

This section briefly introduces a standard feedforward
ANN which is adopted for estimating the total disturbance
term d in the discretized system given by (3) and (4).
ANN is one of the well-known function approximators that
is structured by artificial neurons. Mathematically, ANN
model output in response to a feature vector hn ∈ <dh ,
corresponding to the nth sampling time, n = {0, 1, 2, . . .} ∈
Z, can be written as

d̂n = woφ(whhn + bh) + bo (5)

where wo ∈ <dx×s and wh ∈ <s×dh are the output
layer and hidden layer weight matrices, respectively. Note
that, s denotes the number of neurons while dh denotes
dimension of the feature vector. Also, T denotes the
transpose operator for the vectors/matrices. In (5), bh ∈
<s and bo ∈ < are the vector of hidden layer biases and
output bias respectively. Note that, the actual input vector
to ANN is the feature vector h. Feature vector holds the
meaningful data to be presented to the ANN. The details
for that will be given in Sect. 4.2.

Remember that, we want to estimate the disturbance term
using ANN. Thus, output of the ANN is denoted by the

approximated disturbance, d̂ ≈ d, in (5). In (5), φ(.)
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denotes the activation function which fires the neurons.
A Gaussian function,

φ(a) = e−0.5((a−µ)./σ).2 (6)

is used as the activation function in this paper. In (6), µ ∈
<s and σ ∈ <s denote the center and width parameters
of the Gaussian activation function respectively for any
arbitrary input a ∈ <s. Since, exponential function is
computing with vectors, the notation ’./’ and ’.2’ stands for
the elementwise division and elementwise square operators
for the vectors. A single hidden layer, multi-input multi-
output (MIMO) ANN topology is shown in Fig. 1 as a
general representation. Last, we construct a parameter

Fig. 1. Feedforward ANN model with a single hidden layer.

vector θ ∈ <dθ which holds all the model parameters
coming from the weight matrices and bias vectors wh, bh,
wo, bo, µ and σ where dθ = s× (dh + dx + 3) + 1.

4. PROPOSED RUNGE-KUTTA NEURAL
DISTURBANCE OBERVER

This section presents the proposed approach of developing
a robust state observer which enables us to observe the
unmeasured states of an observable, continous time system
which can be represented by (2).

4.1 Proposed Observer Dynamics

What we propose is referred to as a disturbance observer
due to two reasons. First, it estimates the total disturbance
d on the system by utilizing the measured output data y
and the nominal model of the system. Output prediction
error is backpropagated to the artificial model which is
employed for estimating the total disturbance term in
the RK-discretized system given by (3) and (4). Note
that, in this study, the chosen artificial model is ANN.
Secondly, the proposed disturbance observer incorporates
the estimated disturbance in the observer dynamics to
yield a robust state observation. In other words, it actually
estimates the states x and the total disturbance term d
simultaneously. For the rest of the paper, when we say
’disturbance’ we will actually mean the ’total disturbance’.

Let us denote the estimated disturbance by d̂ and the
estimated states by x̂. Joint state and disturbance esti-
mation by the proposed RK neural (RKN) disturbance
observer can be written for the (n + 1)th sampling time
in three stages as follows. Note that, the function δx(·, ·, ·)

associated with RK discretization is adopted from (3) and
(4).

Error generation:

d̂
−

[n+ 1] = woφ(whhn+1 + bh) + bo

x̂−[n+ 1] = x̂[n] + δx
(
x̂[n], u[n+ 1], d̂

−
[n+ 1]

)
ŷ−[n+ 1] = h

(
x̂−[n+ 1]

)
e−[n+ 1] = y[n+ 1]− ŷ−[n+ 1]

(7)

ANN parameter update:

θn+1 = θn + ∆θn+1 (8)

Joint state and disturbance estimation:

d̂[n+ 1] = woφ(whhn+1 + bh) + bo

x̂[n+ 1] = x̂[n] + δx
(
x̂[n], u[n+ 1], d̂[n+ 1]

)
ŷ[n+ 1] = h

(
x̂[n+ 1]

) (9)

The term d̂
−

in (7) can be interpreted as an a-priori
disturbance estimate just created to obtain an output
prediction error which is necessary to update the parame-
ters of ANN, and thus, to obtain an accurate estimate of

the disturbance, denoted by d̂ in (9). In computation of

both d̂
−

and d̂, the feature vector hn+1 which is used as
input within the ANN output equation is constructed as
expressed in Sect. 4.2. Also note that, the ANN parame-

ters used for computing d̂
−

in (7) belongs to the ANN
parameter vector θn which was defined in Sect. 3 and
contains the parameters which were last updated at the nth
sampling time. After the parameter update (8) associated
with the sampling time n+ 1, the updated parameters of
ANN, which are contained in the vector θn+1, are used to
compute the accurate estimate of disturbance, denoted by

d̂n+1 in (9). The respective parameter update term ∆θn+1

is obtained by backpropagation of the output prediction
error e−[n+ 1] in (7) and given in Sect. 4.3.

4.2 Feature Vector Construction

Since we estimate the disturbance at each sampling time,
we actually desire to capture the trend in the disturbance
over time. We can achieve this goal using the measured
input-output history which is mostly the case in time
series prediction studies. Thus, we construct a nonlinear
autoregressive with exogeneous input (NARX) data model
to construct an approriate feature vector h to ANN whose
output equation is given by (5). Here, we make an intuitive
choice such that, instead of using the output history, we
prefer using the historical data of system states. Since they
are unmeasurable, we will use the history of estimated
states by the proposed RKN disturbance observer within
the NARX data. The adopted feature vector in this
paper associated with the (n + 1)th sampling time is
constructed as follows: hn+1 =

[
u[n + 1], . . . , u[n + 1 −

np], x̂1[n], . . . , x̂1[n + 1 − np], . . . , x̂dx [n], . . . , x̂dx [n + 1 −
np]
]T ∈ <dh where dh = np × (dx + 1) + 1. Note that, x̂i,

i = 1, . . . , dx, denote each individual state estimated by
the RKN disturbance observer while np denotes the past
horizon which is also referred to as the NARX data order.
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4.3 RK-Derived Equations of Backpropagation

We define a quadratic loss function of the output predic-
tion error at the (n+ 1)th sampling time.

min
θ
Ln+1 =

1

2
e−[n+ 1]2

e−[n+ 1] = y[n+ 1]− ŷ−[n+ 1]
(10)

We will use gradient descent method with an adaptive
learning rate for the update of ANN parameters. Hence,

∆θn+1 = −α∂Ln+1

∂θn
will be used where α > 0 is the

adaptive learning rate and will be detailed in Sect. 4.4.
Let us write the gradient expression.

∂Ln+1

∂θn
=

∂Ln+1

∂e−[n+ 1]

∂e−[n+ 1]

∂θn
= e−[n+ 1]

∂e−[n+ 1]

∂θn

= e−[n+ 1]
∂e−[n+ 1]

∂x̂−[n+ 1]

∂x̂−[n+ 1]

∂d̂
−

[n+ 1]

∂d̂
−

[n+ 1]

∂θn

(11)

In (11), ∂e
−[n+1]

∂x̂−[n+1]
= −∂h

(
x̂−[n+1]

)
∂x̂−[n+1]

. Also, the term ∂d̂
−
[n+1]
∂θn

is actually partial dervative of ANN output wrt its pa-

rameters since the term d̂
−

[n + 1] is computed by ANN
in (7). It is trivial to obtain that partial derivative and
due to the limited space, its explicit expression is omitted.

Other than that, the partial derivative term ∂x̂−[n+1]

∂d̂
−
[n+1]

is

computed utilizing the RK-discretized system formulation
by using (2), (3), (4) and (7) as follows. Let us show the

time indices as subscripts, e.g., x̂−[n+1] as x̂−n+1, d̂
−

[n+1]

as d̂
−
n+1 and so on, for simpler notation.

∂x̂−n+1

∂d̂
−
n+1

=
1

6

∂K1

∂d̂
−
n+1

+
1

3

∂K2

∂d̂
−
n+1

+
1

3

∂K3

∂d̂
−
n+1

+
1

6

∂K4

∂d̂
−
n+1

(12)
where

∂K1

∂d̂
−
n+1

= Ts
∂ẋ

∂d̂
−
n+1

,
∂d̂
−
n+1

∂x
=
∂d̂
−
n+1

∂x

∣∣∣∣
x=x̂n,u=un+1

∂K2

∂d̂
−
n+1

= Ts

(
0.5

∂ẋ

∂x

∣∣∣∣
K2

∂K1

∂d̂
−
n+1

+
∂ẋ

∂d̂
−
n+1

)
∂ẋ

∂x

∣∣∣∣
K2

=
∂d̂
−
n+1

∂x
+

(
∂f(x)

∂x
+
∂g(x)

∂x

)
x=x̂n+

1
2K1,u=un+1

∂K3

∂d̂
−
n+1

= Ts

(
0.5

∂ẋ

∂x

∣∣∣∣
K3

∂K2

∂d̂
−
n+1

+
∂ẋ

∂d̂
−
n+1

)
∂ẋ

∂x

∣∣∣∣
K3

=
∂d̂
−
n+1

∂x
+

(
∂f(x)

∂x
+
∂g(x)

∂x

)
x=x̂n+

1
2K2,u=un+1

∂K4

∂d̂
−
n+1

= Ts

(
∂ẋ

∂x

∣∣∣∣
K4

∂K3

∂d̂
−
n+1

+
∂ẋ

∂d̂
−
n+1

)
∂ẋ

∂x

∣∣∣∣
K4

=
∂d̂
−
n+1

∂x
+

(
∂f(x)

∂x
+
∂g(x)

∂x

)
x=x̂n+K3,u=un+1

(13)
In (12) and (13), the term ∂ẋ

∂x is actually partial derivative
of the state equation (2) for the continuous time system
wrt to the state vector. Based on that, the partial deriva-

tive ∂ẋ

∂d̂
−
n+1

= I ∈ <dx×dx where I denotes the identitiy

matrix. It should be noticed that, the term
∂d̂

−
n+1

∂x is actu-
ally the partial derivative of ANN output wrt to the state

vector since d̂
−
n+1 is computed by ANN in (7). The feature

vector hn+1 involves the most recent estimated states x̂n
due to the definition of feature vector construction in

Sect. 4.2. Note that,
∂d̂

−
n+1

∂x is computed only at the first
step of the fourth order RK discretization scheme and its
fixed value is used in the following steps through two to
four as seen in (13). We can expand that term as

∂d̂
−
n+1

∂x
=
∂d̂
−
n+1

∂x

∣∣∣∣
x=x̂n,u=un+1

=
∂d̂
−
n+1

∂hn+1

∂hn+1

∂x̂n

∣∣∣∣
u=un+1

(14)
Obtaining the explicit expression for (14) is trivial and
omitted due to the limited space.

4.4 Convergence of ANN Parameters

Let us adopt the quadratic, positive definite loss function
in (10) as our Lyapunov candidate function. For simple no-
tation, we will denote the sampling instants as a subscript.
Then, let us write a difference equation for the Lyapunov
function considering (11) and the parameter update term

∆θn+1 = −α∂Ln+1

∂θn
as follows.

∆Ln+1 = Ln+1 − Ln =
1

2

(
(e−n+1)2 − (e−n )2

)
= ∆e−n+1

(
e−n+1 +

1

2
∆e−n+1

) (15)

where

∆e−n+1 u

(
∂e−n+1

∂θn

)T
︸ ︷︷ ︸

JT
n+1

∆θTn+1 u −αJTn+1

∂Ln+1

∂θn

u −αe−n+1J
T
n+1Jn+1

(16)

Substituing ∆e−n+1 of (16) in (15), and after some algebraic
operations, we obtain the condition below which maintains
∆Ln+1 < 0 and thus, guarantees convergence of the ANN
parameters.

0 < α <
2

JTn+1Jn+1

(17)

Considering the condition (17), in this study, without loss
of generality we use the apative learning rate below

α =
1

JTn+1Jn+1 + ε
(18)

where Jn+1 is computed at each time instant n = 0, 1, . . .,
and so depending on that, the learning rate α is adaptive.
The term ε is a small positive number (e.g., 0.01) that pre-
vents zero-denominator situation. Hence, it is necessary for
numerical stability. Convergence of the ANN parameters
provide convergence of the estimated states to real values
in finite time.

5. SIMULATION RESULTS

In this study, we adopt a linear model (Hou et al.,
2014) of multicompartment lung mechanics as the nominal
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model in purpose. It involves the lung compliances and
air resistances as constant system parameters. However,
during control, we assume that the actual system has time-
varying compliances. In addition, we apply an artifical
external disturbance dext to the underlying system as
well. We test our proposed observer in the PID control
framework to assess its contribution to robustness.

5.1 Nominal System Model

Let us briefly explain the multicompartment lung mechan-
ics model. It has a dichotomoy that is inspired by human
lung where at each generation of a new airway, the airway
opens to a subsequent two-branch airway, and so on. If
we have a system of γ generations, then we have 2γ lung
compartments. A lung mechanics model for γ = 2 is given
in Fig. 2. In Fig. 2, Rinj,i denotes the airway resistance for

Fig. 2. Lung mechanics model with 4 compartments, γ = 2.

the ith airway of the jth generation for j = 0, . . . , γ and
i = 1, . . . , 2j . Note that, the superscript ’in’ stands for the
inhalation period and its exhalation counterpart is denoted
by Rexj,i. Also, xi and ci for i = 1, . . . , 2γ , denote the air
volume and the associated compliance of the compartment
i. Let us write the state space equations for the model.
Note that, the system has switched dynamics since the
parameters associated with the inhalation and exhalation
periods need not be the same.

ẋ(t) = Ax(t) + Bu(t)

y(t) = 1Tx(t)
(19)

where 1 ∈ <dx is a vector of ones, x = [x1 . . . xdx ]T ∈ <dx
is the state vector, dx = 2γ , x(0) = x0 and{

A = −R−1in C, B = R−1in 1, 0 ≤ t ≤ Tin
A = −R−1exC, B = R−1ex 1, Tin < t ≤ Tin + Tex

(20)
Tin denotes the inhalation period while Tex denotes the
exhalation period. Thus, a breathing period is computed
as T = Tin + Tex. System (20) is periodic with the
period T and the output y(t) is actually sum of the
states, which means, we measure the total lung vol-
ume as the system output. Input u(t) to the system
is the air pressure applied at the initial airway whose
resistance is denoted by Rin0,1. C = diag [1/c1 . . . 1/cdx ].

Note that, Rin =
∑γ
j=0

∑2j

i=1R
in
j,iZj,iZ

T
j,i and Rex =∑γ

j=0

∑2j

i=1R
ex
j,iZj,iZ

T
j,i where the lth element of Zj,i ∈ <dx

is 1 for all l = (i − 1)2γ−j+1, (i − 1)2γ−j+2, . . . , i2γ−j

and 0 otherwise. Last, let us give the parameters for
nominal model of the system. We should indicate that we
gave a general representation of the respective system by

Fig. 2. However, we use a two-compartment lung mechan-
ics model in the simulations (γ = 1). Rin0,1 = 9 cmH2O/l/s,

Rin1,1 = 16 cm H2O/l/s and Rin1,2 = 16 cm H2O/l/s. Rexj,i
counterpart is twice the Rinj,i, j = 0, 1 and i = 1, 2. Lung
compartment compliance nominal values are ci = 0.11/cm
H2O, i = 1, 2.

5.2 Illustrative Example

Initial compartment air volumes are set x0 = [0.5, 0]T

and initial observer states are x̂0 = [0, 0]T liters. Also,
input air pressure has an upper bound umax = 19 cm
H2O. Inhalation and exhalation periods are Tin = 2 s and
Tex = 3 s respectively while Ts = 0.1 s. ANN parameters
are initially set to 1e-3. Also, s = 3 and np = 3 are found to
bu suitable experimentally. In the simulation, in contrast
to the nominal model, the lung compliance parameters are
time-varying and denoted by ctvi , i = 1, 2. A time-varying
compliance by (21) has a profile which varies between half
and full value of the nominal compliance within any of the
inhalation or exhalation periods.

ctvi (t) = ci + c̄i(t)
c̄i(t) = −0.5ci + 0.5cisin(2πft′){
t′ = mod(t, T ), f = 0.5/Tin ,mod(t, T ) ≤ Tin
t′ = mod(t, T )− Tin, f = 0.5/Tex ,mod(t, T ) > Tin

(21)
The term c̄i in (21) corresponds to a hard parametric
uncertanity which is created artificially. It is used for
computation of the internal disturbance term dint defined
in (2). In the simulation, in addition to the internal
disturbance dint, an external disturbance dext given by
(22) is applied to the underlying system as well.

di,ext(t) = do +

3∑
k=1

dmksin
(
2π(1/Tdk)t

)
, i = 1, 2 (22)

where do = −0.2, Td = [2, 5, 10] s, dm = [0.03, 0.02, 0.01]
and dext = [ d1,ext, d2,ext]

T . The input signal produced by
the PID controller is formulated as follows where Kp =
202.34, Ki = 1.03 and Kd = 2.54 are found to be suitable
by a grid search.

u(t) = Kpe(t) +Kdė(t) +Ki

∫ t

0

e(τ)dτ

e(t) = yref (t)− y(t), ė(t) = ẏref (t)− 1T ˙̂x(t),1 ∈ <dx
(23)

Note that, the crucial term in (23) is ė(t) since it involves
˙̂y(t) = 1T ˙̂x(t). It is computed using the estimated state
vector x̂ in the system state equation given by (2). yref
denotes the reference respiratory pattern. Fig. 3 shows
the tracking result. y denotes the system output obtained
when PID control based on the proposed RKN disturbance
observer is performed, which means, ė in (23) is computed

substituting the estimated states x̂ and disturbance d̂ with
x and d in (2). On the other hand, ynom denotes the system
output for the case where the proposed observer is not
active, which means, ė(t) is computed in a similar way but
only the nominal model is considered and disturbance is
not taken into account. Note that, when RKN disturbance
observer is not used, since the system states are not
measurable, we prefer employing a standard Luenberger
oberver which is well-known from the literature. Due to
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Fig. 3. Tracking result.

the limited space, its details are omitted (Wang et al.,
2016). The root mean squarred tracking error values for
the cases where observer is active and not are 0.1468
and 0.1553 respectively. It is clear from ynom in Fig. 3
that, controlling a system which is under both internal
(parametric uncertainity) and external disturbances by
considering its nominal model is not enough to achieve
an acceptable tracking performance when the internal
and external disturbances are relatively at high level
given by (21) and (22). Fortunately, even in such hard
case, the proposed disturbance observer can contribute to
robustness of the control method employed, resulting in an
acceptable control performance. Fig. 4 shows the produced
control input signals where unom is the one produced by
considering the nominal model of the system while u is
produced when control is perfomed based on the RKN
disturbance observer. Fig. 5 shows us that, the proposed
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Fig. 4. Produced control input signal.

0 5 10 15 20 25 30 35 40

t (s)

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

Actual and Estimated disturbance d
1, int

, d
1, ext

, d
1
=d

1, int
+d

1, ext

d
1, ext

d
1, int

d
1
=d

1, int
+d

1, ext

d
1, est

Fig. 5. Disturbance estimation d1.

RKN disturbance observer can estimate the disturbance
d = dint + dext with an excellent performance and thus,
state estimate x̂ converges to the system states x in a finite
time, which leads to a state estimation error e = x − x̂

converging to zero, as seen from Fig. 6. Note that in Fig. 5,
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Fig. 6. State estimation error.

only the disturbance d1 is plotted since we have limited
space and disturbance d2 is similar.

It should be noticed that, output ynom in Fig. 3 tends to
approach the reference yref over time, which is possible
by the aid of the integrator term in PID. This may make
one think as if ynom could track the reference better when
Ki is incerased more. However, we tested several bigger
values of Ki and when it gets much bigger, it deteriorates
the tracking result.

6. CONCLUSION

In this paper, we propose RKN disturbance observer which
estimates the disturbance and system states simultane-
ously. It both takes into account parametric uncertainity
and external disturbance. Hence, it provides robust state
observation. It contributes to robustness of the adopted
control strategy. It is applied within PID control of a
multicompartment lung mechanics model. It manages to
capture well the modelling uncertainities in addition to
disturbance estimation. Simulation results demonstrate
that it can be a useful tool in robust control even at
high levels of parametric uncertainity and disturbance.
In the future, we plan to employ it within sliding mode
control of multicompartment lung mechanics in real time.
Also, it will be characterized with noise-filtering capability
utilizing the main principles of Kalman filtering technique
for noisy conditions.
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