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Abstract: Superheated steam temperature is one of the most important process variables for controlling 

the steam quality of thermal power units. In order to improve the accuracy of superheated steam 

temperature and the stability of valves for desuperheating water, this paper proposed a novel control 

strategy called united long short-term memory (LSTM) and model predictive control (MPC), which is 

weighted by particle swarm optimization. First, a deeply learnt inverse model is made to express the 

potential nonlinear dynamic characteristics of data and to predict the future valve opening in short-term. 

Secondly, model predictive control is used to control the secondary superheated steam temperature. 

Thirdly, the two predicted valve opening are weighted by particle swarm optimization. The combined 

deep learning inverse model control and MPC can make up the deficiencies of each other, i.e., over 

fitting of deep learning inverse model and linearity of MPC. The simulation experiments proved the 

advantage of LSTM-MPC in comparison with traditional PID and single MPC control. 

Keywords: long short-term memory, model predictive control, particle swarm optimization, superheated 

steam temperature 

 

1. INTRODUCTION 

In order to improve the flexibility of thermal power unit 

operation, it is necessary to improve the control 

performance of the unit, the effect of superheated steam 

temperature on unit efficiency, and the safety during fast 

load tracking. Superheated steam temperature is usually 

associated with the change of steam flow, the heat change 

of flue gas and flow change of desuperheating water which 

make it too cumbersome and complicated to build a 

nonlinear model. Also, the calculation speed is too slow 

for most of the current superheated steam models. 

Therefore, we use linear models to approximate actual 

nonlinear models. 

Because neural networks can theoretically approximate 

any characteristics of nonlinear models, it has been widely 

used in various applications. Intelligent algorithms such as 

long short-term memory, support vector machine, and 

deep belief network, etc. have been applied to predictive 

control or predictive modeling. EDM-LSTM algorithm 

(Ren, 2019) was used to predict short-term electrical load; 

A prediction model (Geng, 2019) was proposed for the 

state of charge of lithium-ion battery based on LSTM 

principle; Deep belief network and linear support vector 

machine (Chen, 2019) were combined to diagnose the fault 

of wind turbine pitch system. 

For the superheated steam model, this paper proposed a 

novel control strategy called the united long short-term 

memory and model predictive control (LSTM-MPC), 

consisting of the deep-learning inverse model control and 

model predictive control. First, a kind of recurrent neural 

network which is called long short-term memory is used to 

deeply learn the potential nonlinear dynamic 

characteristics of the secondary superheated steam 

temperature from field data for an inverse-model control. 

Secondly, an MPC with discrete model is established for 

the control on the secondary superheated steam 

temperature. Thirdly, the MPC and the LSTM are 

weighted, and the particle swarm optimization algorithm 

(PSO) is used to optimize the weights. The proposed 

LSTM-MPC control strategy not only solves the over-

fitting problem that may exist in the neural network 

prediction model, but also reduces the fluctuation of the 

controlled variables which is predicted by MPC. Besides 

that, through modeling more nonlinear characteristics in 

the control strategy，it produces more appropriate control 

actions while the computation load decreases. 

The rest of the paper is organized as follows. In Section 2, 

the secondary superheated steam temperature control 

system of a power plant in Nanjing is introduced. In 

Section 3, the LSTM-MPC is introduced. In Section 4, the 

advantages of LSTM-MPC is analyzed, and conclusion is 

drawn in Section 5. 

2. AN OVERVIEW OF SUPERHEATED STEAM 

TEMPERATURE SYSTEM 
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The secondary superheated steam is in the last stage of the 

steam-water process. The schematic diagram of the 

secondary superheated steam temperature control of a 

power plant in Nanjing is shown in Fig. 1. The secondary 

superheated steam temperature control has two 

desuperheaters and one superheater and uses cascade PID 

control. The steam is desuperheated by the desuperheating 

water to bring the temperature to θ1 and θ2. And then it is 

heated by the secondary superheater to reach the 

temperature θ3. Because desuperheating water is used to 

control superheated steam temperature, the whole system 

has characteristics such as large delay, time-varying, and 

nonlinearity. Furthermore, the water leakage of the valve 

at A side is terrible which is opposite to the valve at B side. 

In desuperheater, the input variables are the inlet steam 

temperature of desuperheater, total steam flow and 

desuperheating water valve opening. The outlet steam 

temperature of desuperheater is the output variable. In the 

secondary superheater, the input variables are the inlet 

temperature of secondary superheater of A and B and 

steam flow of A and B. The outlet temperature of 

secondary superheater is the output variable. 

 

Fig. 1. The schematic diagram of the secondary superheated steam temperature control. 

3. LSTM-MPC OF SUPERHEATED STEAM 

TEMPERATURE SYSTEM 

The conventional PID control structure is simple, and easy 

to implement. However, it is difficult for conventional PID 

to overcome the characteristics of secondary superheated 

steam. Based on the identified linear discrete model, this 

paper proposes a control strategy (LSTM-MPC), combined 

by LSTM and MPC and weighted by PSO, which can 

effectively control the superheated steam and provide the 

stability of the desuperheating water valve. 

3.1 Model Predictive Control  

Model predictive control is a model-based control 

algorithm. It was proposed for linear or quasi-linear 

system control in the early days and has been widely used 

in the process industry. The MPC includes prediction 

model, rolling optimization and feedback correction and 

uses the prediction model to predict the future output of 

the system. It has good ability to solve optimal control 

problem with constraints for large inertia and multi-

variable processes. The basic control structure of MPC is 

shown in Fig. 2.  

 

Fig. 2. The basic control structure of MPC. 

In Fig. 2, r(k) is set-point of output of the system, u(k) is 

the input of the system, and y(k) is the actual output of the 

system. In the use of MPC, the prediction horizon P, 

control horizon M, constraints and optimization objective 

functions should be set appropriately. 

The canonical MPC algorithm is weak at dealing with 

nonlinear dynamics and unknown disturbances. With some 

improvements on the algorithm, it can be used for 

optimization problems with uncertain factors (Xi, 2016), 
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and can achieve strong anti-interference ability (Cao, 2019) 

and robustness (Xiao, Fei, and Li, 2016). In this paper, a 

collaboration with neural network and deep learning is 

proposed to improve the MPC for controlling the plant 

with strong nonlinearity and unknown disturbances. 

3.2 Long Short-Term Memory 

The recurrent neural network (RNN) is proposed to solve 

the long-term dependence problem of sequence data. It can 

use the previous information for the current calculation 

and has the ability to approximate any nonlinearity 

theoretically. The structure of traditional RNN is shown in 

Fig. 3. xi is the input at time i; hi is the output at time i.  

 

Fig. 3. The structure of RNN. 

It can be seen from Fig. 3 that the input of the hidden layer 

A includes the outputs of the input layer and the hidden 

layer at the last time step. It means that the current and 

previous results can affect the hidden layer and the output 

of next time step by step.  With the increase of numbers of 

hidden layers, RNN can learn the characteristics of data 

deeply and predict the short-term future output. 

However traditional RNN encounters the gradient 

vanishing and the explosion (Rao, Huang, and Feng, 2018), 

so long short-term memory (LSTM) arises. As an 

improved RNN model, LSTM can learn long-term 

dependent information. Its network structure is similar to 

traditional recurrent neural network structure. Compared 

with the traditional RNN structure, LSTM introduces the 

concept of gate which is the key of it. The gate is used to 

control the disturbance of new information to the saved 

information of neural modules, so as to save the 

information for a long time. The neural module of LSTM 

is shown in Fig. 4.  

 

Fig. 4. The neural module of LSTM. 

The input data of the LSTM module is composed of the 

unit state Ct-1 transmitted from time t-1 and the output ht-1 

and the input Xt at time t. The output data are the unit state 

Ct and the output ht at time t. 

Each neural module contains three kinds of gate structures: 

forgetting gate ft, input gate it and output gate ot. The 

forgetting gate ft  determines the degree of influence of Ct-1 

on Ct, the input gate it determines how much input Xt is 

reserved to enter Ct, and the output gate ot determines how 

much state unit Ct remains in the output ht. Then Ct and ht 

are involved in the calculation of LSTM at time t+1. 

The specific calculation process of LSTM is as follows (1-

5): 

Calculation of forgetting gate ft: 

t f t-1 t f
f = sigmoid(W [h ,x ]+b )                                          (1)  

Calculation of input gate it: 

t i t-1 t i
i = sigmoid(W [h ,x ] +b )                                              (2) 

Calculation of unit state: 

t t t-1 t c t-1 t c
c = f c +i tanh(W [h ,x ] +b )                                 (3) 

Calculation of output gate ot: 

t o t-1 t o
o = sigmoid(W [h ,x ] +b )                                              (4) 

Calculation of output: 

t t t
h = o tanh(c )                                                                  (5) 

Where ft is the output of forgetting gate at time t; it is the 

output of input gate at time t; ot is the output of output gate 

at time t; W is the weight and b is the bias of the three 

gates.  

Sigmoid and tanh are two activation functions, as shown in 

the formula (6-7): 

1

1 -x
sigmoid(x)=

+e
                                                     (6) 

x -x

x -x

e - e
tanh(x)=

e +e
                                                         (7) 

Finally, the descending gradient method is used to get the 

optimal weight, so that the training result is close to the 

real result. 

3.3 LSTM-MPC 

In order to fully learn the potential nonlinearity and time-

varying features in the data, this paper uses field data to 

train the recurrent neural network for approximating the 

actual plant. And then MPC based on the identified 

discrete model is incorporated into the control strategy for 

predicting the future inputs. The structure of LSTM-MPC 

is shown in Fig. 5. 
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Fig. 5. The structure of LSTM-MPC. 

3.3.1 LSTM Training  

As shown in the structure diagram, the LSTM-MPC needs 

to train the valve opening of the desuperheater. So we need 

to establish an inverse model of valve opening. We built a 

deep RNN with four layers for the inverse model, and the 

LSTM is adopted for the inner two hidden layers, as 

shown in Fig. 6.  

 

Fig. 6. The structure of deep RNN. 

where Xi is the input at time i; hi is the output at time i. 

Firstly, we need to choose related variables including inlet 

steam temperature of desuperheater, the total steam flow, 

outlet steam temperature of desuperheater and outlet 

temperature of secondary superheater as the inputs, and 

valve opening of the desuperheating water valve as the 

output.  They form a variable set, with 17600 groups of 

field data. The first 8000 groups are selected as a training 

set and the rest 9600 groups are selected as a test set. 

Secondly, in order to facilitate the solution of neural 

network, the data need to be normalized. The following 

formula (8) is used for processing: 

i i

i

i

x x
x




     1 ~ 4i                                                         (8) 

Where xi is the i-th feature of input variables, σi is the 

variance of  xi. 

Thirdly, the recurrent neural network will be trained by the 

training set. As a fully interconnected network, there are 

four neurons in the input layer, one neuron in the output 

layer, five neurons in the forgetting gate, the input gate and 

the output gate respectively as the hidden layers. The 

biases of the three gates are three random numbers. 

At last, the weight of each neuron connection is optimized 

by the AdaGrad Optimization method (Duchi, Hazan, and 

Singer, 2011), so that the output data is fitted to the field 

data. 

The trained model is tested by the test set, and the results 

of test are shown in the following Figs. 7-8: 

 

Fig. 7. Valve opening comparison for A side. 

 

Fig. 8. Valve opening comparison for B side. 
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On one hand, as seen from Figs. 7-8, most of the points 

can approximately fit the field data. On the other hand, it 

also indicates that the recurrent neural network may have 

over-fitting problems, and the generalization ability needs 

to be further improved. 

3.3.2 Model Predictive Control 

Because of the unknown disturbances caused by the 

change of steam flow, the heat change of flue gas and flow 

change of desuperheating water, MPC can predict the 

future inputs within a certain range avoiding over-fitting. 

Thus, this paper introduces MPC control in the control 

strategy to solve the over-fitting problem of LSTM. 

According to the filed closed-loop data, the models of the 

two desuperheaters and the secondary superheater are 

respectively identified by using Prediction Error Method to 

establish prediction models. The transfer functions of 

models for two desuperheaters are shown as  

43.799*10 0.0085 0.0051
* * *

z 0.9910 0.9910 0.9910
1 2 3

y u u u
z z

 
  

  
                   (9) 

61.929*10 0.0025 0.0037
* * *

z 0.9947 0.9947 0.9947
1 2 3

y u u u
z z

 
  

  
                  (10) 

where y is the outlet steam temperature of the A and B side 

desuperheaters; u1 is the main steam flow; u2 is the valve 

opening; u3 is the inlet steam temperature of desuperheater. 

The transfer function of the models for the secondary 

superheater is shown as 

4 5

0.0011 0.0119
* *

0.9963 0.9963

1.3*10 5.598*10
* *

0.9963 0.9963

1 2

3 4

y u u
z z

u u
z z

 

 
 

 
 

                                       (11) 

where y is outlet steam temperature of the secondary 

superheater; u1 is outlet steam temperature of the 

desuperheater of A side; u2 is outlet steam temperature of 

the desuperheater of B side; u3 is the steam flow of A side; 

u4 is the steam flow of B side. 

According the transfer functions, the state-space 

expressions of the prediction model is established as 

formula (12). The valve openings of A and B side are 

taken as the input, and the outlet temperature of the 

secondary superheater is taken as the output. 

 0.9161   0.1780   -0.1629

-0.4133   1.9748   -0.9003

-0.4148   0.9838    0.0911

A

 
 


 
  

  
-0.0026   0.0003

0.0008    0.0038

0.0008   -0.0001

B

 
 


 
  

                        

 -0.0024   0.0000  -0.0076C        0     0D                              (12) 

Designing an optimization function shown as the formula 

(13) and considering the valve opening on the A and B 

sides as the constraints shown as the formula (14): 

( ) '* *( ) '* *J Yr -Yk Q Yr -Yk U R U                               (13) 

0 80

0 80
u

   
    

   

                                                             (14) 

where Yr is the set-point of output; Yk is the field output; Q 

is the error weight; R is the control weight; ΔU is the input 

increment. 

The objective function is transformed into the standard 

quadratic form and the optimization problem is solved by 

combining the constraints. The set-point of superheated 

steam temperature is 543 ℃, the prediction horizon is 30 s, 

and the control horizon is 5 s. 

3.3.3 Weight Optimization 

Particle swarm optimization algorithm has been widely 

used in various fields of life. In order to find the optimal 

ratio of model predictive control and recurrent neural 

network control, two control methods are weighted by 

particle swarm optimization in this paper. The initial value 

of two weights is [0.5, 0.5], the number of initial 

population is 30 and the maximum iteration is 15. The 

speed of particles is limited to [0, 0.1]. ITAE index is used 

as cost function of PSO. The optimization range is 

between [0, 1].  

After optimization, MPC control on A side accounted for 

60%, and MPC control on B side accounted for 53.8%. 

4. ANALYSIS OF LSTM-MPC CONTROL 

According to the above control strategy, the secondary 

superheated steam temperature control is simulated in 

SIMULINK and compared with the actual PID control and 

single MPC control. Parameters of outer loop of PID are 

kp=0.6, ki=0.005. Parameters of inner loop of A and B 

sides are kpa=2.4, kia=0.004, kpb=2.5, kib=0.0083. The 

parameters of single MPC are that the prediction horizon is 

30 s, and the control horizon is 5 s. Comparison between 

LSTM-MPC and PID control is shown in Figs. 9-10. 

 

Fig. 9. Valve opening of A and B sides. 
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Fig. 10. Outlet temperature of secondary superheater. 

As can be seen from Figs. 9-10, compared with the 

traditional PID control, the LSTM-MPC can significantly 

improve the outlet steam temperature of the secondary 

superheater. At the same time, it can better match the set-

point, and the fluctuation is less. The valve opening of A 

and B side has more small fluctuations, which is more 

consistent with the actual situation. 

Comparison between LSTM-MPC and single MPC control 

is shown in Figs. 11-12.   

 

Fig. 11. Valve opening of A and B sides. 

 

Fig. 12. Outlet temperature of secondary superheater.

As can be seen from Figs. 11-12, when using single MPC 

control, the valve opening fluctuates greatly, especially on 

side B. However, the LSTM-MPC can reduce the 

fluctuation of the valve and make the valve opening reach 

the practical state under the premise of ensuring the 

stability of the outlet temperature of secondary superheater. 

5. CONCLUSION 

In order to improve the accuracy of superheated steam 

temperature and the stability of valves for desuperheating 

water, we propose a control strategy (LSTM-MPC) 

combined by LSTM and MPC and weighted by PSO. The 

LSTM is used to learn potential characteristics in data and 

MPC is used to control the outlet temperature of secondary 

superheater. From the simulation results of this paper, the 

variability of the desuperheater valve is significantly 

reduced, and the outlet steam temperature of secondary 

superheater is closer to the set-point. 
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