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Abstract: In contrast to the well-developed gain analysis for multi-input-multi-output (MIMO)
linear time-invariant (LTI) systems, the research on the phase analysis does not share the same
status. In this paper, we introduce the phase response of a class of discrete-time (DT) LTI
multivariable system by exploiting a definition of matrix phases based on the numerical range.
Half-sectorial transfer matrices are defined, which can generalize the positive real and negative
imaginary systems. A sectored real lemma is obtained to characterize the phase information of a
half-sectorial system from a state-space realization. Motivated by finding a phasic counterpart to
the small gain theorem, we develop a small phase theorem for the internal stability of closed-loop

systems.
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1. INTRODUCTION

In classical control theory, it is common to conduct the
system analysis in the frequency domain. Graphic repre-
sentations such as Nyquist plot and Bode diagram offer
unique intuitions to control engineers, from which the
gain and phase information of a single-input-single-output
(SISO) LTI system can be directly obtained. Research
results related to the gain and phase of SISO systems are
well-established, and often come out in parallel. For ex-
ample, both the gain and phase margins provide valuable
information for the robustness of control systems due to
their clear physical meanings.

Their extension to MIMO systems is not trivial. The
singular values are widely accepted as the gains of a
matrix, thus the gain-based theory of MIMO systems has
flourished in the area of robust control. The H, norm, i.e.,
the peak magnitude of the frequency response, serves as a
performance measure of robust control design. The well-
known small gain theorem (Zhou et al., 1996, Theorem
9.1) lays the foundation for the development of H., control
theory. In contrast, the phase analysis has not shared the
same extent of popularity. An important reason is that the
definition of the matrix phases remains obscure over a long
period of time.

That being said, the notions of positive realness (passivity)
and negative imaginariness are in fact qualitative phase
type characterizations. Roughly speaking, the phase of
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a positive real system is restricted to [-7, 7] and that
of a negative imaginary system over positive frequencies
lies in [—m,0]. The positive real and negative imaginary
properties both originate from the observation of physical
system behaviour such as electrical circuits and mechanical
systems, see for example, Anderson (1967), Kottenstette
et al. (2014), Petersen and Lanzon (2010) and Ferrante
et al. (2017). Their research provides inspiration for the
phase analysis in this paper.

There are also multiple earlier attempts in defining quan-
titative phase related concepts. One approach is to define
the principal phases of a complex matrix from its polar
decomposition (Postlethwaite et al., 1981), (Bar-on and
Jonckheere, 1990). Another approach is to characterize
the phase information through the notion of numerical
range (Owens, 1984), (Tits et al., 1999). Recently, Wang
et al. (2020) proposed to adopt the canonical angles, in-
troduced by Furtado and Johnson (2001), as the phases of
a broad class of complex matrices, which can be derived
from a minimax approach over the numerical range. A
collection of interesting properties of such phases has been
established, hinting that phases defined this way provide a
suitable candidate for control system analysis and design.
Chen et al. (2019) adopts this definition of matrix phases
and conducts the phase analysis for a class of continuous-
time LTI MIMO systems, which are sectorial at each
frequency.

In this paper, we are interested in performing an analogous
development of Chen et al. (2019) for DT LTT multivari-
able systems. This is particularly important in view of the
pervasive role of digital control in modern applications.
Some results in Chen et al. (2019) are generalized to the
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frequency-wise semi-sectorial systems in this paper, the
concept of which will be explained in the later sections.
Furthermore, the systems with poles on the unit circle
are also considered. The rest of the paper is organized as
follows. In Section 2, phases of a semi-sectorial matrix are
introduced. In Section 3, the phase response of frequency-
wise semi-sectorial systems is given. In order to analyse
the closed-loop stability, a DT version of the small phase
theorem is established in Section 4, complementary to the
small gain theorem. The half-sectorial systems are defined
in Section 5, which exhibit some good properties. A sec-
tored real lemma is given in Section 6 to characterize the
phase information of half-sectorial systems in a state space
realization. The paper is finally concluded in Section 7.
Due to page limit, we omit all the proofs in this paper.

Notation : Most notations used in this paper are standard.
Let R and C be the set of real and complex numbers,
respectively. For a matrix A € C™*", AT denotes its
transpose, A* denotes its complex conjugate transpose and
A denotes its entrywise complex conjugate. The sets of
eigenvalues and their angles of A are denoted by A(A)
and ZA(A). The Euclidean norm and inner product are
denoted by ||-|| and (-, -), respectively. For a vector z € C",
z* denotes its complex conjugate transpose. The identity
matrix is denoted by I. Denote by R™*™ the set of m xm
real rational proper matrices and let RHL*™ C R™*™
contain all its stable elements. In this paper, we will adopt
the z-transform in discrete time. Therefore, RHL*™ is
the set of real rational transfer matrices with poles in
the open unit disk. This is different from the definition in
the complex function theory. We use £2(—00, 00) to denote
the Hilbert space of DT real-valued square-summable time
sequences and RLs (—7, 7] to denote the Hilbert space of
DT square-integrable rational frequency functions.

2. PHASES OF A MATRIX

Let a matrix A € C™ ™. It is widely accepted that the
magnitudes of A are given by its n singular values, denoted
by

o(4) = [o1(4) -+ ou(A)].

Without loss of generality, they are arranged in a non-
increasing order such that

7(A) = 01(A) = -+ = 0(A) = a(A).
The singular values have many useful properties, one of
which is that the product of the largest singular values of
A and B provides an upper bound for the largest singular
value of AB (Horn and Johnson, 1991, Theorem 3.3.4),
ie.,

(AB) < 5(A)7(B). (1)
Note that (1) lays the foundation for the famous small gain
theorem (Zhou et al., 1996, Theorem 9.1) in the control
theory.

Among the various attempts in defining matrix phases,
the canonical angles introduced in Furtado and Johnson
(2003) based on numerical range appear to hold the key to
generalize the phase results for SISO systems in the same
way as the singular values do in the small gain theorem.
In this paper, we adopt this definition of phases. A brief
review is given below.

Given a matrix A € C™ "™ let the numerical range of A
be defined as

W(A) ={z"Az : z € C",||z| = 1}.
This is a convex and compact subset of the complex plane
(Horn and Johnson, 1991, Section 1.2) and contains the

spectrum of A. Moreover, the angular numerical range of
A is defined to be
W'(A) = {z* Az : x € C",x # 0}

The matrix A is said to be semi-sectorial if the origin is
not in the interior of W(A). Furthermore, it is said to
be sectorial if the origin is not contained in W (A). Let
0(A) denotes the field angle of A, i.e., the angle subtended
by two supporting lines of W(A) at the origin (Horn and
Johnson, 1991, Section 1.1). Then it is clear that §(A) <=
for a semi-sectorial matrix A and §(A) < 7 for a sectorial
matrix A.

The phases can be defined for a nonzero semi-sectorial
matrix. A semi-sectorial matrix A may be singular. Let
m = rank A. We denote the range of A by R(A) and the
null space of A by N(A). Then A is unitarily similar to a

matrix of the form
1_ All 0

where Aj; is nonsingular semi-sectorial with dimension
m (Furtado and Johnson, 2003). It can be implied that
N (A) is the orthogonal complement of R(A). Since the
phase of 0 is undefined, we only confine our attention to
the nonsingular part. According to Furtado and Johnson
(2003), the matrix A;; can be written as

Ay = T*DT, (3)
where T is nonsingular and D is a unique matrix up to
permutation, which is of the form

Dy 0
25, (@
in which
eIt 0
Dl = . ’
0 eI
D5 is a direct sum of ks > 0 copies of the block
0|12
76
o]

with 6 +3 > 6y > --- > 6y, > 60— 3,0 € (—7, 7] and
m = k1 + 2ks. We call A € C™*™ rotationally indefinite
Hermitian if there exists an « such that e/* A is indefinite
Hermitian. If 0 is on the boundary of W (A1;), either Aqq
is rotationally indefinite Hermitian, in which case there
are two choices for 6, or # is uniquely determined. If
0 ¢ W (A1), then ko = 0 and there is a continuum choices
for #. In this paper we choose 6 = % and call it the
phase center of A.

Define the phases of A, denoted by

P(A) = [61(A4) -+ dm(A)],
to be 61,...,0k,, k2 copies of 0 + 5 and 0 — 5. Without
loss of generality, assume

P(A) = ¢1(A) = ¢2(4) = -+ = om(A) = ¢(A4).
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Note that the uniqueness of the phases also follows from
the following minimax and maximin expressions (Horn

et al., 1959):

i(A) = su inf Zx*Ax
¢i(4) = sup - inf

dim Sy @ Azr0

= inf
SCR(A),
dim S=m—i+1

sup Zx*Ax.

z€S,x#0,
z* Az#£0
Matrix phases and magnitudes are expected to have some
similar properties. In view of (1), it would be desirable
that there hold

$(AB) < ¢(A) + ¢(B),

H(AB) = ¢(A) + ¢(B).
However, the inequality fails even for positive definite
matrices A and B. Nevertheless, a weaker version holds
by considering the angles of eigenvalues of AB instead of
the phases. Let A 6 C™*™ be a semi-sectorial matrix with
phases in [0(A) — F,0(A) + F], where 0(A) € (—m, 7] and
B € C™*™ be a sectorial matrix with phases in (8(B) —
5,0(B) + %), where 0(B) € (—m,7]. Let \i(AB),i =

1,...,m, denote the nonzero eigenvalues of AB with m =
rank AB.
Lemma 1. If Z\;(AB),i = ., m, take values in (6(A)+

0(B) —m,0(A) +0(B) + 7], then there hold
B(A) + &(B) < LN(AB) < ¢(A) +¢(B).  (5)

Lemma 1 underpins the development of the small phase
theorem in Section 4.

3. PHASE RESPONSE OF DT LTI MIMO SYSTEMS

Let G(z) € R™*™ be the transfer function of an LTT sys-
tem, the frequency response of G(z) is defined to be G(e’)
for allw € (—m, 7]. The frequency response is convenient to
be used in engineering. For a SISO system, the frequency
response is conventionally represented by the Bode dia-
gram, containing both magnitude and phase plots. For
a MIMO system, the magnitude response o(G(e*)) is
a R™-valued function. The magnitude Bode diagram is
available in the MATLAB computing environment. Now
with the definition of the matrix phases from Section 2,
we can define the phase response of a system and obtain
the phase Bode diagram. Before that, we first define a class
of DT MIMO systems, called frequency-wise semi-sectorial
systems.

Definition 1. A system G(z) € R™*™ is said to be
frequency-wise semi-sectorial if the following conditions
are satisfied:

(1) G(z) has no poles in |z| > 1.

(2) §(G(e?¥)) < 7 for all w € [0, 7] satisfying e/ is not a
pole of G(z).

(3) If e/*0 is a pole of G(z), then it is at most a
simple pole of each entry and the residue matrix
Ko = lim,_, ju, (2 — €790)G(2) satisfies ¢p(e 7“0 Ky) €
(—m, 7).

Furthermore, we can also define the frequency-wise secto-
rial systems.

Definition 2. A system G(z) € RHL*™ is said to be

frequency-wise sectorial if the following conditions are
satisfied:

(1) G(z) has no poles in [z] > 1. 4
(2) G(e?¥) is nonsingular and 6(G(e?*)) < 7 for all
w e [0,m].

Note that the Definition 1 requires the poles of frequency-
wise semi-sectorial system G(z) to be in the closed unit
disk, while the Definition 2 requires the poles of frequency-
wise sectorial system G(z) to be in the open unit disk.

For a frequency-wise semi-sectorial system G(z), the phase
response is defined to be ¢(G(e’?)) for w € (-, 7,
which is a R™-valued function. Each element of ¢(G(e’*))
takes values in [0(G(e?¥)) — 5,0(G(e?¥)) + 5]. The phase
center 0(G(e’*)) is a real-valued continuous function,
which takes values in (—, 7). When G(e7*?) is rotationally
indefinite Hermitian, the value of #(G(e7“?)) is chosen to
be lim, ., 7(G(e’*)). The Bode diagrams now can be
completed by plotting the magnitude response o(G(e’*))
and the phase response ¢(G(e?%)).

It is clear that G(z) is conjugate symmetric, i.e., G(e/*) =
G(e=3%) for all w € (—m,n]. Therefore, W(G(e?*)) and
W(G(e™7¥)) are symmetrical about the real axis. The
symmetric property suggests that the positive frequency
phase response is sufficient to reflect the phase information
of the system within the entire frequency range.

For a frequency-wise semi-sectorial system G(z) with a set
of poles /¥ w; € W, on the unit circle, denote by

H(G) = sup H(G()),
wel0, 7] \W
4@ =__int | 9(Ge)

the maximum and minimum phase of G(z) over the
positive frequency, respectively. Then the H ., phase sector
of G(z) is defined to be
0o (G) = [¢(G), 6(G));
as a counterpart of the H., norm, given by
Gl = sup T(G(e’)).

wel0,n]
Ezxample 1. The Bode diagrams of the systems
223 + 322 +2.322 4+ 0.756 2+ 0.6

G(z) = 23 + OSzji—(())élz +0.32 g i 8 % (6)
z+0.8 z+0.8
and
22 —2+40.25
H(z) = 224 0.82 +0.15 2406 (7)
0 z—0.15

are shown in Fig. 1 and Fig. 2 respectively. And the
Ho phase sectors can be calculated as Poo(G) =
[—0.70067, 0.12507], ® oo (H) = [—0.24157, 0.53737].

The phase response can be used to characterize the be-
havior of positive real and negative imaginary systems.
Using the phase language, Ho, phase sector in [—-F, 7]
captures the positive real property. And the systems with
Hoo phase sector in [—m,0] are roughly the same with
negative imaginary systems. In fact, the frequency-wise
semi-sectorial systems contain a wider class of systems.

For example, Fig. 1 and Fig. 2 show that the systems (6)
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Fig. 1. Bode diagram of the DT MIMO system (6).

Bode Diagram

n
o

-
o
T

Magnitudes(dB)
5 o

N
= o
o
%
o
-
St
>
-
EN

o o
o ]
\

Phases (deg)
o
\‘
|
{
|
|

50 . .
102 107 10° 10
Frequency (rad/s)

Fig. 2. Bode diagram of the DT MIMO system (7).

and (7) are neither positive real nor negative imaginary;
however, they are frequency-wise semi-sectorial.

4. SMALL PHASE THEOREM

Consider a closed-loop system with negative feedback, as
shown in Fig. 3.
Definition 3. The feedback interconnection of G(z), H(z) €
R™*™ is said to be internally stable if the Gang of Four
matrix

(I+HG)™ (I+HG™'H
GUI+HG) " GUI+HG)™'H

is stable, i.e., G#H € RHZ™>**™,

G#H =

w1 U Y2

W)

U1 () w2

Fig. 3. Negative feedback interconnection of G(z) and

If both G(z) and H(z) are SISO systems, the internal
stability of G#K can be guaranteed if the critical point

(=1,0) is not encircled by the open-loop Nyquist plot
according to the Nyquist criterion. This means that the
Nyquist stability condition holds if the open-loop gain is
smaller than 1 or the open-loop phase is never equal to
+m. These conditions can be generalized to the MIMO
systems.

The well-known small gain theorem provides a gain stabi-
lization condition for MIMO systems, which states that for
G,H € RHZ*™, the closed-loop system G#H shown in
Fig. 3 is stable if 7(G(e7¥))a(H (e’*)) < 1. As the theorem
states, the system gains should be sufficiently small while
the phases can be arbitrary. The necessity of the small gain
theorem holds if H is only known to be in an uncertainty
set Blr(e/?)] = {H € RHL™ : 5(H(e?¥)) < |r(e?¥)]},
where 7(e7) € RHo. Then the feedback system G#H
is stable for all H € B[r(e’*)] if and only if 7(G(e*)) <
W(Vidyasagar, 2011).

In Postlethwaite et al. (1981), the authors give a small
phase theorem in an attempt to reduce the conservatism
of the small gain theorem by incorporating phase informa-
tion. However, the derived condition is a mixture of gain
and phase information. Now based on the system phases
defined in Section 3, we are able to derive the following
small phase theorem for MIMO systems, as a complement
to the small gain theorem.

Theorem 2. (Small phase theorem) Let G be a frequency-
wise semi-sectorial system with a set of poles e7*, w; € W,
on the unit circle, and H be a frequency-wise sectorial
system. Then the feedback system G#H is stable if

(8)

B(G(e7)) + G(H () <,
S(G (7)) + o(H (') > —m (9)

for all w € [0, 7T \W.

In the small phase theorem, the gains of the systems can
be arbitrarily large while the phases should be restricted
to a certain range. The theorem can be treated as a
generalization of passivity theorem, which states that the
negative interconnected feedback system shown in Fig 3 is
stable if G is positive real and H is strictly positive real.

Ezxample 2. Consider a negative feedback interconnection
as shown in Fig. 3, where G(z) and H(z) are given by
(6) and (7) respectively. It can be easily checked from
the Bode diagrams that the small gain condition is not
satisfied. However, by applying the small phase condition,
the closed-loop systems is guarateed to be stable. The
internal stability can also be confirmed by checking the
poles of (I + GH)~!. Since the poles of (I + GH)™! are
all inside the unit circle, the feedback system is stable.

In analogy to the small gain theorem, the small phase
theorem is necessary in the following sense. Define

Sl ()] = {H e RHZ ™ 3(H(e)) < T + 2f(e7),

G(H (%)) > —g L), w e [O,w]} ,

where f(z) € RH~ has no zeros on or outside the unit
circle.

Theorem 3. Suppose that G € R™*™ is frequency-wise
semi-sectorial with a set of poles e/¥i,w; € W, on the
unit circle, then the feedback system G#H is stable for
all H € &[f(e’*)] if and only if
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H(G(e)) <

H(G(e) 2 =5 = Lf(e7)
for all w € [0, 7]\W.

5. TIME-DOMAIN INTERPRETATION OF
HALF-SECTORIAL SYSTEMS

In this section we pay special attention to the following
half-sectorial systems.

Definition 4. A frequency-wise sectorial system G(z) is
said to be half-sectorial if there exists an open half plane,
which contains W (e?*) for all w € [0, 7].

A time domain interpretation can be provided for half-
sectorial systems. Before giving such an interpretation,
we first introduce the Hilbert transform, which is widely
used in the field of signal processing (Oppenheim and
Schafer, 1999, Chapter 11). It has also been used in control
theory to characterize the gain-phase relationship of SISO
systems (Anderson and Green, 1988). It turns out to be
a powerful tool here to separate the positive frequency
property from the negative frequency property and to
illustrate the time-domain interpretation of the system.

Denote F to be the Fourier transform on #5(—00, c0) and
F~! to be the inverse Fourier transform on RLy (—m, 7).
Recall that the Fourier transform is an isometry be-
tween fo(—00,00) and RLs (—m, 7). Any functions in
RLsy (—m, 7] can be uniquely decomposed into the sum of
functions in RLy (—7,0) and RLy [0, 7] as
RLy (—m, 7] = RLy (—7,0) & RL (0, 7],
which is an orthogonal decomposition. It is clear that the
following orthogonal decomposition holds:
lo(—00,00) = F*RLy (—m,0) & F 'RLy [0, 7]

Denote F1RLy [0, 7] by A and FRLy (—,0) by At.
We will use the commutative graph Fig. 4 to illustrate the
complete relationships of the signal spaces.

A L RL5[0, 7]

F
QT TP
la2(~00,00) 4= RLy(—m, 7]

o =

Al %) REQ(—TF,O)

Fig. 4. Relations of signal spaces. @) is the projection onto
A and P is the orthogonal projection onto RLs3[0, 7].

For a real signal u(k), its Hilbert transform is defined to
be

Hu(k) = Y h(k—u(l),

l=—00

2
h(k) = {zm
0,

The projection of u onto A is uy =
and the projection of u onto At is u_ =

where

k is odd,

k is even.

3 (u(k) + jHu(k)
3(u(k) —

JHu(k)). Here u is the complex-valued positive frequency
component of u. Note that ||uy|ls = [Ju_|j2 = %Huﬂg

Denote by G: fl3(—00,00) — fLo(—00,00) the bounded
time-domain operator corresponding to G € RHI*™.
Define the positive frequency angular numerical range G

Wi(G) = {{uy,Gu) : u € £y(—00,00),u # 0}.

Theorem 4. Given G € RHZ*™ and its corresponding
time-domain operator G : f2(—00,00) — £2(—00,0), we
have

cl. WL(G) = cl. Co{W'(G(e*)) : w € [0,7]},
where cl. denotes closure and Co denotes convex hull.

From Theroem 4, it can be inferred that a frequency-
wise sectorial system G is half-sectorial if cl. W/ (G) is
contained in an open half plane. Furthermore, we have

o(G) = SUP, e (@) 2y, ¢(G) = infyerr(G) Zy.
6. SECTORED REAL LEMMA

In gain analysis, how to compute the . norm is an
important issue. The well-known bounded real lemma
gives an efficient way to compute it in state space by
establishing an equivalence between frequency domain
inequalities and an LMI condition (Zhou et al., 1996,
Section 21.3). Likewise, to solve the computation problem
of H. phase sector, we wish to derive an analogus LMI
condition. The recently developed generalized Kalman-
Yakubovich-Popov (KYP) lemma appears to be the key in
finding such conditions (Iwasaki and Hara, 2005), as it can
deal with finite frequency intervals. The following sectored
real lemma provides a state-space characterization of Ho
phase sector for half-sectorial systems.

A|B .
Theorem 5. (Sectored real lemma) Let oD be a min-

imal realization of G(z) € RH*™ and a, 8 € (—2F, 3]
with 0 < 8—a < m. Then G is half-sectorial and <I>OO%G) C
(o, B) if and only if there exist Hermitian matrices P; and
Qi,1 = 1,2, satisfying

T
A B P, j0Q;| |A B
Qi >0, {I 0} [_jQi J_%J {I 0} +M; <0, (10)
where
0 —e7 I T
My |:_€jalc . (e—jalDT + eja1D>:| )
and
0 —e~ BT
M; = [_ej61c _ (e*jBIDT + ejﬁlD)] )
with a1 = =5 —aand 8, = § - 3.

7. CONCLUSION

In this paper, we introduce the notion of phase response for
frequency-wise semi-sectorial system by using a definition
of matrix phases based on the numerical range. A sectored
real lemma is derived to provide a state-space character-
ization of H., phase sector for half-sectorial systems. A
small phase theorem is also developed for the analysis
of feedback stability, as a counterpart to the small gain
theorem.
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Further research will be conducted on the H., phase syn-
thesis of DT LTI MIMO systems. The potential extension
of phase analysis to sampled-data systems will also be an
interesting direction.
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