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Abstract: In this paper, a controller for nonlinear systems with delay in the measurement using
a predictor-based strategy is proposed. The nonlinear systems considered in this work are the
class of mechanical systems of triangular form and which mathematical model can be obtained
by means of the Euler-Lagrange formulation. A predictor for the mechanical nonlinear system is
applied in order to get a delay-free system. Then, a tracking PD controller is designed using the
predictor to compensate the delay effect. In order to demonstrate the effectiveness of the control
scheme proposed, two examples are presented, one to show the performance of the predictor and
the other one to show the use of such predictor in order to control the system. Then, a tracking
controller for time-varying references is designed for mechanical systems with measurement
delay, and the performance is shown during simulation. Additionally, it is considered the case
when external disturbances are present in the system and to deal with them a method of
estimation of the disturbance is proposed. The results are shown and discussed and finally the
conclusions for this work are given and ideas for future work are proposed.
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1. INTRODUCTION

Industry 4.0 is the forth industrial revolution, by integrat-
ing the Internet of Things into factories they will interact
with other factories, suppliers, consumers, transportation
and smart grids. Even more, inside the factory different
cells and production stages will be interconnected, making
requests and giving notice of the production status, all of
these interactions supported by wireless sensor-actuator
networks (WSAN) Kagermann et al. (2013).

Nevertheless, one of the main withdraws that holds back
the implementation of these industrial paradigms is the
requirements of the wireless networks. According to Kager-
mann et al. (2016), the minimum required latency for
WSAN intended to perform motion control is 1 ms with
a reliability of 99.9999999% , however, current wireless
industrial networks such as ISA100, wirelessHART and
ZigBee are unable to fulfill these requirements.

Having that in mind, it is important to develop control
strategies that enables the use wireless technologies to be
implemented. In this paper it is proposed a strategy to deal
with delays in the measurement of the state process, which
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are caused mainly by the communication delay between
the sensors and the controller Fridman (2014).

Nonlinear mechanical systems constitute a good case of
study since most of the industrial robots belong to this
class of systems. Also, robots are popular because they
serve various practical purposes. Decker et al. (2017)

The control of systems with delay is a current challenge for
the control community Richard (2003). Delays complicate
the direct implementation of control techniques, because
the introduction of a delay in the output can down-perform
the controller or even destabilize the system when delays
are not taken into account.

The strategy proposed in this work is a predictor-based
approach which enables to compensate for the time delay
resulting in the delay-free closed-loop system, can be
applied Léchappé et al. (2015); Loukianov et al. (2017);
Caballero-Barragán et al. (2018, 2016).

Nevertheless, the predictors proposed in Léchappé et al.
(2015); Loukianov et al. (2017); Caballero-Barragán et al.
(2018, 2016) are designed for linear systems, and the
systems considered in this work are nonlinear, since they
are mechanical systems modeled using the Euler-Lagrange
formulation. So, for the proposed scenario, the considera-
tion of a delay in the measurement of a nonlinear system
complicates the design of a controller Richard (2003).

Still, there are in the literature predictors designed for
nonlinear systems such as Bresch-Pietri et al. (2015);
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Bekiaris-Liberis and Krstic (2016, 2017) that can be used
in order to design a controller for a robotic mechanical
system.

The rest of the paper is organized as follows. In Section
2 the main mathematical concepts used in this paper are
reviewed to give the reader a general idea of the applied
techniques. In Section 3 the statement of the problem is
made, lighting out the things aimed to solve in this work.
In Section 4, it is applied a predictor for mechanical non-
linear systems and the tracking PD controller is designed
using the predictor to compensate the delay effect, two
examples are presented. A tracking controller for time-
varying references is designed for mechanical systems with
measurement delay, and it is presented in the Section 5.
Then, the case for disturbed system with time delay is con-
sidered proposing a way to estimate and compensate the
external disturbances. Finally, in Section 7 the conclusions
for this work are given.

2. MATHEMATICAL BACKGROUND

2.1 Predictor for Nonlinear Systems

Consider the following nonlinear system:

ẋ(t) = f(x(t), u(t−D)) (1)

where x ∈ R2n is the state, u ∈ Rn is the control input, D
is a known scalar constant and f : R2n × Rn → R2n is a
locally Lipschitz vector field that satisfies f(0, 0) = 0.

The predictor ξ(t) = x(t+D) for the system (1) is designed
as follows Bekiaris-Liberis and Krstic (2017)

ξ(t) = x(t) +

t∫
t−D

f(ξ(θ), u(θ))dθ (2)

where ξ ∈ R2n is the predictor state.
Now, taking the time derivative of (2) along trajectories
of (1), the delay-free system reads as

ξ̇(t) = f(ξ(t), u(t)). (3)

The controller u can be designed using system (3).

3. STATEMENT OF PROBLEM

Consider the mechanical model using Euler-Lagrange for-
mulation
ẋ1(t) =x2(t)

ẋ2(t) =M(x1)−1(−C(x1, x2)x2(t)−G(x1) + τ(t)),

y(t) =x(t−D) =

[
x1(t−D)
x2(t−D)

]
,

(4)

where x1(t) ∈ Rn is the angular position vector, x2(t) ∈ Rn

is the angular velocity vector, M(x1) ∈ Rn×n is the inertia
matrix, C(x1, x2) ∈ Rn×n is the matrix of Coriolis and
centrifugal forces, G(x1) ∈ Rn is the vector of gravitational
forces, τ(t) ∈ Rn is the vector of control input, y(t) is the
available measurement state and D is the time-delay.

Assumption 1. The state vector x(t − D) =

[
x1(t−D)
x2(t−D)

]
is available.

Fig. 1. The control scheme.

Assumption 2. The system (4) is fully actuated and the
M(x1) matrix has full rank. Also, its inverse M(x1)−1

exists ∀x1.

The objective of this work is to design a controller using a
predictor for nonlinear systems and reduce the time-delay
effect. Fig. 1 shows the general control scheme proposed in
this work. Having a desired reference for the state of the
system and considering a delay D in the measurement,
the controller has to be designed in order to track said
reference by means of a predictor.

4. PREDICTOR AND CONTROL DESIGN

ξ(t) = x̄(t+D) = x̄(t) +

t∫
t−D

f(ξ(θ), τ(θ))dθ (5)

where
f(ξ(θ), τ(θ)) =[

ξ̄2(θ)
M(ξ̄1(θ))−1(−C(ξ̄1(θ), ξ̄2(θ))ξ̄2(θ)−G(ξ̄1(θ)) + τ(θ))

]
,

with ξ(t) =

[
ξ̄1(t)
ξ̄2(t)

]
.

4.1 Example 1.

The predictor’s performance is shown using the following
model of a two-link planar manipulator (see Craig (2005)
and Fig. 2)

ẋ1(t) =x2(t)

ẋ2(t) =M(x1)−1(−C(x1, x2)x2(t)−G(x1) + τ(t)),

where x(t) =

[
x1(t)
x2(t)

]
, x1(t) =

[
q1(t)
q2(t)

]
, x2(t) =

[
q̇1(t)
q̇2(t)

]
,

x(0) = [pi/2 0 0 0]T , τ(t) = 0.1[sin(0.5t) sin(0.7t)]T .

M(x1) =[
l22m2 + 2l1l2m2c2 + l21(m1 +m2) l22m2 + l1l2m2c2

l22m2 + l1l2m2c2 l22m2

]
,

C(x1, x2) =

[
−2m2l1l2s2q̇1 −m2l1l2s2q̇2
m2l1l2s2q̇1 0

]
and

G(x1) =

[
m2l2gc12 + (m1 +m2)l1gc1

m2l2gc12

]
,

with c1 = cos(q1), c2 = cos(q2), s2 = sin(q2), c12 =
cos(q1 + q2), g = −9.81 m/s2, l1 = 0.9 m, l2 = 0.7 m,
m1 = 0.4 kg, m2 = 0.3 kg and D = 100 ms.
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Fig. 2. Two-link planar manipulator.
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Fig. 3. Behavior of x̄(t) and ξ(t−D).
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Fig. 4. Behavior of q̄1(t), ξ1(t) and ξ1(t−D).

Fig. 3 shows the behavior of the complete state x̄(t) =
x(t −D) and the retarded state of the predictor in order
to compared the predictor and the measured state of the
system. In Fig. 4 presents the comparison between q̄1(t),
ξ1(t) and ξ1(t − D). The prediction error is presented in
Fig. 5 and the error is defined as ep(t) = x̄(t)− ξ(t−D).

4.2 Linear Feedback Control

In order to design the controller τ(t) it is necessary to
obtain a delay-free system using the predictor 5. Taking
the time derivative of (5), results

ξ̇(t) = f(ξ(t), τ(t)),
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Fig. 5. The predictive error ep(t) = x̄(t)− ξ(t−D).

or
˙̄ξ1(t) =ξ̄2(t)

˙̄ξ2(t) =M(ξ̄1)−1(−C(ξ̄1, ξ̄2)ξ̄2(t)−G(ξ̄1) + τ(t))
(6)

To make the tracking of the reference xref by the system
(4) output x1 the control law τ is chosen of the form

τ(t) = −Kpe(t)−Kv ξ̄2(t) +G(ξ̄1), (7)

where e(t) ∈ Rn is the vector of angular position error,
and it is defined as

e(t) = ξ̄1(t)− xref ,
with the positive defined matrices Kp ∈ Rn×n and Kv ∈
Rn×n.

To prove the convergence of the closed-loop system (4)
and (7), the following positive definite candidate Lyapunov
function is proposed:

V =
1

2
eTKpe+

1

2
ξ̄T2 M(x1)ξ̄2. (8)

Taking the time derivative of (8) along the trajectories of
the closed-loop system yields

V̇ = ξ̄T2 Kpe+ ξ̄T2 M(x1) ˙̄ξ2 +
1

2
ξ̄T2 Ṁ ξ̄2,

= ξ̄T2 Kpe+ ξ̄T2 M(ξ̄1)(M(ξ̄1)−1(−C(ξ̄1, ξ̄2)ξ̄2 −G(ξ̄1)

−Kpe−Kv ξ̄2 +G(ξ̄1))) +
1

2
ξ̄T2 Ṁ ξ̄2,

= −ξ̄T2 C(ξ̄1, ξ̄2)ξ̄2 +
1

2
ξ̄T2 Ṁ ξ̄2 − ξ̄T2 Kv ξ̄2.

(9)

Making use of the property for articular robots stated
in Kelly and Santibañez (2003) q̇T ( 1

2Ṁ − C)q̇ = 0, the
derivative (9) becomes

V̇ = −ξ̄T2 Kv ξ̄2. (10)

Since the function (10) is semi negative definite the LaSalle
invariance principle can be easily applied to show that the
equilibrium point e = 0 and ξ̄2 = 0 of the closed-loop
system is asymptotically stable.

4.3 Example 2.

To illustrate the performance of the proposed controller
(7), the closed-loop system is simulated using MATLAB
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Fig. 6. Response of x̄(t).
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Fig. 7. Reference tracking.

Simulink. The matrices for the system (4) are defined
accordingly to the robot structure depicted in Fig. 2.
Consider the parameters described in example 1 4.1.

The control gains are described by

Kp =

[
15 0
0 13

]
and Kv =

[
9 0
0 7

]
.

The constant reference is described as follows

xref =

[
pi/4

0

]
.

The control is defined as (7), reads as

τ(t) = −
[
15 0
0 13

]
e(t)−

[
9 0
0 7

]
ξ̄2(t) +G(ξ̄1),

where e(t) = ξ̄1(t)− xref .

Simulations results are presented in Figs. 6-8. Fig. 6
presents the behavior of the system state x(t). Fig. 7 shows
the tracking of the constant reference. The torque control
is presented in Fig. 8. The results without predictor are not
presented because the result is foreseeable and well-known
(instability or best-case scenario a bad transient behavior
in close-loop).
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Fig. 8. Torque control τ(t).

5. TRACKING OF TIME-VARYING REFERENCE

Consider the system (4) under Assumption 1 and using
the predictor (5), the delay-free system is obtained as (6)

˙̄ξ1(t) =ξ̄2(t)

˙̄ξ2(t) =M(ξ̄1)−1(−C(ξ̄1, ξ̄2)ξ̄2(t)−G(ξ̄1) + τ(t)).
(11)

To track time-varying references the controller τ(t) is de-
signed as follows. The time-varying references are obtained
by following exosystem:

xref (t) = p(g), ġ = d(g). (12)

Now, using the reference xref (t), the tracking error can be
defined as follows

e(t) = ξ̄1(t)− xref (t). (13)

Using the backstepping technique Krstic et al. (1995) the
tracking control is designed in two steps.

Step 1.
Taking the time derivative of (13), the dynamic of e(t) is
obtained

ė(t) = ξ̄2(t)− ẋref (t). (14)

Now, using the virtual control ξ̄2, the following change
variable is proposed

z1(t) = ξ̄2(t) +K1e(t)− ẋref (t), (15)

where K1 > 0 is a positive and symmetric matrix.
A candidate Lyapunov function is proposed and it reads
as

V1(t) =
1

2
eT (t)e(t). (16)

Taking the time derivative of (16) and using (14) and (15),
results

V̇1(t) =eT (t)ė(t) = eT (t)(−K1e(t) + z1(t))

=− eT (t)K1e(t) + eT (t)z1(t).
(17)

Step 2.
Now, taking the time derivative of (15) along the trajec-
tories (11) and (14), it read as

ż1(t) =M−1(ξ̄1)(−C(ξ̄1, ξ̄2)ξ̄2(t)−G(ξ̄1) + τ(t))+

+K1ξ̄2(t)−K1ẋref (t)− ẍref (t).
(18)

The control τ(t) is designed as follows

τ(t) =C(ξ̄1, ξ̄2)ξ̄2(t) +G(ξ̄1) +M(ξ̄1)(−K1ξ̄2(t)+

+K1ẋref (t) + ẍref (t)−K2z1(t)− e(t)), (19)
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where K2 > 0 is a positive and symmetric matrix.

The closed-loop system by the control 19 results

ė =− k1e(t) + z1(t)

ż1 =− k2z1(t)− e(t). (20)

A candidate Lyapunov function is proposed as follows

V2(t) = V1(t) +
1

2
zT1 (t)z1(t). (21)

Now, taking the time derivative of (21) and using (17) and
(20), it reads as

V̇2(t) =− eT (t)K1e(t)− zT1 (t)K2z1(t)

V̇2(t) ≤− λmin(K1) ‖e(t)‖ − λmin(K2) ‖z1(t)‖ .
(22)

The time derivative of (21) is negative defined then the
tracking control lim

t→∞
e(t)→ 0.

5.1 Example 3.

To test the effectiveness of the controller described in this
section the following model of two-link planar manipulator
(see Craig (2005) and Fig. 2) described in section 4.1 is
used:

ẋ1(t) =x2(t)

ẋ2(t) =M(x1)−1(−C(x1, x2)x2(t)−G(x1) + τ(t)),

with the same matrices description and parameters.

The exosystem that describe the references to track is
described by following system:

ġ(t) =

[
0 −α
α 0

]
g(t)

xref (t) =g(t) +

[
π/3
π/7

]
,

(23)

where g(0) = [0.2 0]T and α = 2. The state available is

x(t−D) = x̄(t). The control gains are K1 = K2 =

[
8 0
0 7

]
.

The simulation results are presented in Fig 9. The pre-
dictor tracks the reference xref (t) and the measurement
state x̄(t) tracks the retarded reference xref (t−D) as Fig.
9 shows. This is a natural situation when working with
systems with delay in the input and/or in the output.

6. TRACKING OF REFERENCE UNDER
DISTURBANCES

Consider now the system (1) under external disturbances,
such that the description of the dynamics result as

ẋ(t) = f(x(t), u(t−D),∆(t)) (24)

where ∆(t) is a disturbance vector of appropriate dimen-
sions and x is the state vector under disturbance.

Using as example the model described in section 4.1 under
disturbance:

ẋ1(t) =x2(t)

ẋ2(t) =M(x1)−1(−C(x1, x2)x2(t)−G(x1) + τ(t))+

+ ∆(t),

with the same matrices description and parameters and

setting the disturbance as ∆(t) = M(x1)−1
[
2.5
1

]
. Using
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Fig. 9. Tracking of time-varying reference, x̄(t) vs xref (t−
D).
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Fig. 10. Tracking performance under the effect of external
disturbances.

the controller described in (7) the tracking performance
can be seen in Fig 10, with the references set at 2π/3 and
−2π/3 for each angle. The blue and brown lines are the
tracking performance under disturbance.

The error in the tracking is present because predictors are
highly sensitive to external disturbances, as is reflected in
the predictor performance under disturbance ∆(t).

In order to deal with these undesired effects, it is necessary
to mitigate the effect of the disturbances in the predictor
so it does not affect the tracking performance. To do so,
an approximation of the disturbance ∆(t) is proposed as:

x̄ =

[
x1(t−D)
x2(t−D)

]
,

∆̂(t) =
x̄(t)− x̄(t− λ)

λ
− f(x̄, u(t−D)),

(25)

with λ a design constant. Using this ∆̂(t) approximation
in the predictor design

ξ(t) = x̄(t) +

t∫
t−D

[f(ξ(θ), u(θ)) + ∆̂(θ)]dθ. (26)
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Fig. 11. Tracking performance using estimation of distur-
bance in the predictor.
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Fig. 12. Tracking mean squared error with (blue) and
without (red) disturbance estimation used in the
prediction.

And, since the prediction improves, the tracking error also
diminishes as shown in Fig 11, where the purple and green
lines are the tracking performance of each joint and the
black lines are the references to be reached. In order to
compare the effect of the use of disturbance estimation on
the prediction, Fig 12 shows the mean squared error of
the tracking performance with and without the use of the
disturbance estimation.

7. CONCLUSIONS

In this work a predictor-based tracking control for me-
chanical systems with measurement delay is presented.
The predictor is applied in simulation to show the be-
havior in open-loop and near to an equilibrium point.
The predictor and tracking PD controller is designed to
control the mechanical system with measurement delay
and to track constant references. Simulation results are
presented. A tracking control for time-varying references
and a predictor for mechanical systems with measurement
delay is applied using an exosystem to get the time-varying
reference and the simulations results are shown as well.
Also, it is considered the case of the tracking performance
under disturbances. In order to diminish the effect of these
disturbances on the prediction error (and consequently
on the tracking error) an estimation of the disturbances
is proposed and the simulation results are shown. As a

future work is proposed to considered parametric variation
in the systems and to consider time-varying delays. This
is interesting because in this case there exist prediction
error and as a result the analysis is more challenging and
complex.
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