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Abstract: We propose an approach to design a Model Predictive Controller (MPC) for
constrained Linear Time Invariant systems performing an iterative task. The system is subject to
an additive disturbance, and the goal is to learn to satisfy state and input constraints robustly.
Using disturbance measurements after each iteration, we construct Confidence Support sets,
which contain the true support of the disturbance distribution with a given probability. As
more data is collected, the Confidence Supports converge to the true support of the disturbance.
This enables design of an MPC controller that avoids conservative estimate of the disturbance
support, while simultaneously bounding the probability of constraint violation. The efficacy of
the proposed approach is then demonstrated with a detailed numerical example.
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1. INTRODUCTION

As data-driven decision making and control becomes ubiq-
uitous (Tanaskovic et al. (2017); Rosolia et al. (2018)),
system identification methods are being integrated with
control algorithms for control of uncertain dynamical sys-
tems. The uncertainty in these systems can be typically
attributed to two factors: (i) model uncertainty (eg. mod-
eling mismatch and inaccuracies), and (ii) exogenous dis-
turbances (eg. sensor noise). For such uncertain systems
subject to state and input constraints, Model Predictive
Control (MPC) (Mayne et al. (2000); Borrelli et al. (2017))
is a commonly used approach for ensuring robust con-
straint satisfaction.

The field of Adaptive MPC (Tanaskovic et al. (2014);
Köhler et al. (2019)) deals with learning the model un-
certainty to improve controller performance over time.
These methods rely upon Set Membership approaches,
which assume known set based bounds on the exogenous
disturbances. As these disturbance supports are actually
unknown in practice, conservative over-approximations are
used for control design. This results in the controller either
being infeasible, or incurring higher costs by following
highly sub-optimal trajectories. This motivates learning
the disturbance support over time in order to improve
controller performance. In such cases, it is necessary to
allow the possibility of failure, i.e, violation of imposed
constraints. Such violations are acceptable for certain non
safety critical robotic applications.

? † Authors contributed equally to this work.
??This work was partially funded by Office of Naval Research grant
ONR-N00014-18-1-2833, National Science Foundation under grants
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Research in Singapore.

To that end, numerous works in MPC literature have con-
sidered constructing probabilistic approximations of both
the model uncertainty and disturbance support (Zhang
et al. (2013); Hewing and Zeilinger (2017); Soloperto
et al. (2018)), allowing room for violations of imposed
constraints with a certain probability. Methods such as
(Hewing and Zeilinger (2017); Soloperto et al. (2018)),
utilize Gaussian Process (GP) Regression to model and
update the uncertainty in the system. However, they have
no theoretical bounds for rate of constraint violations by
the closed loop system over time.

Assuming the presence of only exogenous disturbances,
(Zhang et al. (2013)) addresses this issue by constructing
disturbance support sets offline using the scenario ap-
proach (Tempo et al., 2012, Chapter 12). This approach
involves solving a scenario program with potentially large
number of samples, which is computationally expensive.
Moreover, the rate of constraint violation is dependent
on the number of disturbance samples available offline. In
certain settings (for eg., iterative tasks), it is often the case
that one starts the controller having observed no samples
apriori. While learning the disturbance support over time
in such cases, it is desirable to have a user-specified upper
bound for probability of failure over all time. The approach
in (Zhang et al. (2013)) is unable to satisfy such an upper
bound at all times, since the required number of samples
could be unavailable during operation.

In this paper, we present an approach to design an MPC
controller for constrained LTI systems performing an it-
erative task (Rosolia and Borrelli (2017)). Like (Zhang
et al. (2013)) we consider an additive disturbance in the
system, under no uncertainty in the system matrices. In-
stead of considering a conservative over-approximation of
the disturbance support such as (Tanaskovic et al. (2014);
Köhler et al. (2019)), we learn this set from observed
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disturbance samples. While doing so, we guarantee a user-
specified upper bound on the probability of failure over all
iterations. Our main contributions can be summarized as:

• We introduce the notion of a Confidence Support,
which is guaranteed to contain the true disturbance
support with a specified probability. Constructing
and updating the Confidence Supports after each
iteration is computationally cheap, as opposed to
(Zhang et al. (2013)).
• Using these Confidence Supports, we attempt robust

MPC design and demonstrate satisfaction of desired
upper bound on probability of failure in each itera-
tion. For any value of user-specified upper bound on
probability of failure, the controller is able to learn
robust satisfaction of imposed constraints asymptot-
ically, without suffering conservatism that is inher-
ent to existing approaches (Tanaskovic et al. (2014);
Lorenzen et al. (2019)).

2. PROBLEM FORMULATION

We consider uncertain linear time-invariant systems of the
form:

xt+1 = Axt +But + wt, (1)

where xt ∈ Rd is the state at time step t, ut ∈ Rm is
the input, and A and B are known system matrices of
appropriate dimensions. At each time step t, the system
is affected by an independently and identically distributed

(i.i.d.) random disturbance wt
iid∼ P with a convex and

compact support W ⊂ Rd. We aim to satisfy state and
input constraints on the system robustly. We define Hx ∈
Rs×d, hx ∈ Rs, Hu ∈ Ro×m and hu ∈ Ro. We can then
write the imposed constraints for all time steps t ≥ 0 as:

Z := {(x, u) : Hxx ≤ hx, Huu ≤ hu}. (2)

Throughout the paper, we assume that system (1) per-
forms the same task repeatedly for J number of times.
Each task execution is referred to as iteration. Our goal is
to design a controller that, at each iteration j, solves the
finite horizon robust optimal control problem:

V j,?(xS) =

min
uj
0,u

j
1(·),...

T−1∑
t=0

`
(
x̄jt , u

j
t

(
x̄jt

))
s.t. xjt+1 = Axjt +Bujt (x

j
t ) + wjt ,

x̄jt+1 = Ax̄jt +Bujt (x̄
j
t ),

Hxx
j
t ≤ hx,

Huu
j
t ≤ hu,

∀wjt ∈W,

xj0 = xS , t = 0, 1, . . . , (T − 1),

(3)

where xjt , u
j
t and wjt denote the realized system state,

control input and disturbance at time t of the jth iteration
respectively, and (x̄jt , u

j
t (x̄

j
t )) denote the disturbance-free

nominal state and corresponding nominal input. Notice
that (3) minimizes the nominal cost over a time horizon of
length T � 0 in any jth iteration with j ∈ [J ]. Here we use
[J ] to denote the set {1, 2, . . . , J}. We point out that, as
system (1) is uncertain, the optimal control problem (3)

consists of finding [uj0, u
j
1(·), uj2(·), . . .], where ujt : Rd 3

xjt 7→ ujt = ujt (x
j
t ) ∈ Rm are state feedback policies.

As task duration T � 0, for computational tractability
we try to approximate a solution to the optimal control
problem (3), by solving a simpler constrained optimal
control problem with prediction horizon N � T in a
receding horizon fashion.

In this work, we consider the support W of disturbance wjt
to be an unknown convex and compact set. We estimate
W using observed disturbance samples. At the start of
iteration j, the estimated support is denoted by Ŵj .

3. ITERATIVE MPC PROBLEM

The MPC controller solves a finite horizon optimal control
problem at each time step t in the jth iteration. Since the
disturbance support W is unknown and is estimated with
Ŵj built from data, robust satisfaction of (2) along the
iteration is not guaranteed. This implies that the closed
loop task execution might fail. We will formally define this
notion of failure after defining the closed loop controller
in this section.

We attempt to design a robust MPC controller in the jth

iteration with our best estimate Ŵj of disturbance support
W, by solving the following optimal control problem:

V MPC,j
t→t+N (xjt , Ŵj , X̂ jN ) :=

min
Uj

t (·)

t+N−1∑
k=t

`(x̄jk|t, v
j
k|t) +Q(x̄jt+N |t)

s.t xjk+1|t = Axjk|t +Bujk|t + wjk|t,

x̄jk+1|t = Ax̄jk|t +Bvjk|t,

ujk|t =

k−1∑
l=t

M j
k,l|tw

j
l|t + vjk|t,

Hxx
j
k|t ≤ hx,

Huu
j
k|t ≤ hu,

xjt+N |t ∈ X̂
j
N ,

∀wjk|t ∈ Ŵj ,

∀k = {t, . . . , t+N − 1},
xjt|t = x̄jt|t = xjt ,

(4)

where in the jth iteration, xjt is the measured state at time

t, xjk|t is the prediction of state at time k, obtained by

applying predicted input policies U jt (·) = [ujt|t, . . . , u
j
k−1|t]

to system (1) and {x̄jk|t, v
j
k|t} with vjk|t = ujk|t(x̄

j
k|t) de-

note the disturbance-free nominal state and correspond-
ing input respectively. The MPC controller minimizes the
cost over the predicted disturbance free nominal trajec-

tory
{
{x̄jk|t, v

j
k|t}

t+N−1
k=t , x̄jt+N |t

}
, which comprises of the

positive definite stage cost `(·, ·), and the terminal cost
Q(·). Notice, the above uses affine disturbance feedback
parametrization (Goulart et al. (2006)) of input policies.

We use state feedback to construct terminal set X̂ jN =

{x ∈ Rd : Ŷ jx ≤ ẑj , Ŷ j ∈ Rrj×d, ẑj ∈ Rrj}, which is the
(T − N) step robust reachable set (Borrelli et al., 2017,
Chapter 10) to set of state constraints in (2), obtained
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with a state feedback controller u = Kx, dynamics (1)
and constraints (2). After solving (4), in closed loop, we
apply

ujt = vj,?t|t (5)

to system (1). We then resolve the problem (4) again at
the next (t + 1)-th time step, yielding a receding horizon
strategy.

Assumption 1. (Well Posedness). We assume that given
an initial state xS , optimization problem (4) is feasible
at all times 0 ≤ t ≤ T − 1 with true uncertainty support
Ŵj = W for all iterations j ∈ [J ].

Since W is unknown and is being estimated with Ŵj in the
jth iteration, we might lose the feasibility of (4) during
0 ≤ t ≤ T − 1. We formalize this with the following
definition:

Definition 2. (State Constraint Failure). A State Constraint
Failure at time step t in iteration j is the event

[SCF]
j
t : Hxx

j
t > hx. (6)

That is, a State Constraint Failure implies the violation of
imposed constraints (2) by system (1) in closed loop with
MPC controller (5).

Remark 3. Let T j < T denote the time step in the jth

iteration when a State Constraint Failure occurs. In that
case, problem (4) becomes infeasible at T j . We then stop

the jth iteration and update Ŵj update−→ Ŵj+1. When
T j = T , it denotes a successful iteration without any State
Constraint Failure.

Our aim is not only to keep the probability of State
Constraint Failure [SCF]jt low along each iteration, but
also to maintain satisfactory controller “performance”
during successful iterations (as defined in Remark 3). Let
the closed loop cost of a successful iteration j be denoted
by

V̂j(xS , w1:j) =

T−1∑
t=0

`(xjt , v
j,?
t|t ), (7)

where notation w1:j denotes the set
j
∪
i=1

T−1
∪
t=0

wit. We use the

average closed loop cost E[V̂j(xS , w1:j)] to quantify con-
troller performance. The goal is to lower the performance
loss defined as

[PL]j = E[V̂j(xS , w1:j)]− E[V?(xS , w1:j)], (8)

where E[V?(xS , w1:j)] denotes the average closed loop cost

of the jth iteration if W had been known, i.e., Ŵj = W for
all j ∈ [J ].

In the next section, we introduce two design specifications
(D1) and (D2) to formalize this joint focus on lowering
probability of State Constraint Failure and maintaining
satisfactory controller performance. We then show how the
sets Ŵj are constructed according to these specifications.

4. LEARNING ROBUSTNESS WITH BOUNDED
FAILURE

We consider the following design specifications:

(D1) Closed loop MPC control law (5) ensures that sys-
tem (1) in the jth iteration satisfies a user specified

upper bound α on probability of State Constraint
Failure (Definition 2),

(D2) Minimize [PL]j (as defined in (8)) over all iterations
j ∈ [J ] while satisfying (D1).

For satisfaction of (D1) we require,

P(Hxx
j
t > hx) ≤ α. (9)

Since the above probability is difficult to compute, we
consider an alternative notion of failure in order to upper
bound the probability of State Constraint Failure.

Definition 4. (Disturbance Support Failure). We define a
Disturbance Support Failure at time step t in iteration j
as the event

[DSF]
j
t : wjt /∈ Ŵj . (10)

As the MPC controller (4) is robust to all wjt ∈ Ŵj , we

have [SCF]
j
t ⊆ [DSF]

j
t . Therefore, probability of Distur-

bance Support Failure is an upper bound for probability

of State Constraint Failure, i.e., P([SCF]
j
t ) ≤ P([DSF]

j
t ).

Therefore, we focus on the following specification:

P(wjt /∈ Ŵj) ≤ α. (11)

In the next few sections, we discuss how such sets Ŵj

can be constructed based on disturbance samples observed
during the iterative task. For this purpose we make the
following assumption.

Assumption 5. We assume that the unknown distribution
P defined in Section 2 belongs to a finite dimensional
parametric family {Pθ : θ ∈ Θ,Θ ⊆ Rl}.

We next explore how to construct the sets Ŵj using As-
sumption 5, so that design specification (D1) is satisfied.
For that purpose, we introduce the notion of Confidence
Supports which are closely related to the notion of con-
fidence intervals in classical statistics. Subsequently in
Section 4.2 we present our algorithm.

4.1 Confidence Support of a Distribution

Consider i.i.d. samples Z1:n = (Z1, . . . , Zn) from a distri-

bution Pθ parametrized by θ ∈ R, i.e., Zi
iid∼ Pθ. In classical

statistics, the notion of confidence interval provides a con-
venient way to characterize the uncertainty of parameter
θ from the observed samples Z1:n.

Definition 6. (Confidence Interval). A set C(Z1:n) is a (1−
α)-confidence interval for the parameter θ of distribution
Pθ if

P(θ /∈ C(Z1:n)) ≤ α. (12)

If θ ∈ Rd, and d > 1, then the term confidence region is
used for the set C(Z) as defined above.

Remark 7. Note that C(Z) is a random set as it is a
function of the collection of random samples Z1:n, whereas
θ is an unknown deterministic parameter.

Definition 8. (Confidence Support). A set S(Z1:n) is a
(1 − α)-Confidence Support of a distribution Pθ with
support Sθ if

P(Sθ ⊆ S(Z1:n)) ≥ 1− α, (13)

i.e., S(Z1:n) contains the support Sθ of Pθ with probability
greater than or equal to (1− α).
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Using the above notion of Confidence Supports, we now
demonstrate how the disturbance support estimates Ŵj

(as defined in iterative MPC problem (4)) can be com-
puted based on observed disturbance samples.

4.2 Computing Ŵj

Consider i.i.d. disturbance samples wjt ∼ Pθ, θ ∈ Rl with

support W. Let wjt (q) denote the qth element of wjt ∈ Rd.
Recall that [d] denotes the set {1, 2, . . . , d}. We make the
following simplifying assumption:

Assumption 9. The elements of random vector wit ∈ Rd
are independently distributed,

wjt (q) ∼ P
q
θq
, q ∈ [d], (14)

where θ = (θ1, . . . , θd) and {Pqθq : θq ∈ Θq, Θq ⊂ Rl/d} is

the corresponding parametric family for the qth element.

At the start of the jth iteration, the collection of sam-
ples w1:j−1 would have been observed. As the uncertainty
distribution Pθ is completely specified by θ, we can com-
pute a (1 − α)-Confidence Support Ŵj

(
w1:j−1

)
by com-

puting confidence regions for the individual parameters
(θ1, . . . , θd). Note that the confidence regions and supports
are functions of the observed disturbance samples w1:j−1.
For notational convenience, we represent such sets without
explicitly showing this dependence.

Lemma 10. Let Θ̂j
q be a (1 − αq)-confidence region for

θq. Consider Ŵj
q =

⋃
θ̄q∈Θ̂j

q
Supp(Pq

θ̄q
), where Supp(Pq

θ̄q
)

denotes the support of distribution Pq
θ̄q

. Then, Ŵj = Ŵj
1×

· · · × Ŵj
d is a (1−

∑
q αq)-Confidence Support of Pθ.

Proof. By definition, W = Supp(P1
θ1

)× · · · × Supp(Pdθd).

As Ŵj = Ŵj
1 × · · · × Ŵj

d, we have

P(W 6⊆ Ŵj) = P(
d
∪
q=1

Supp(Pqθq ) 6⊆ Ŵj
q)

= P(
d
∪
q=1

θq /∈ Θ̂j
q),

≤
d∑
q=1

P(θq /∈ Θ̂j
q), (15)

≤
d∑
q=1

αq, (16)

where (15) follows from the union bound and (16) follows

from Θ̂j
q being a (1− αq)-confidence region for θq.

Thus, a (1 − α)-Confidence Support can be constructed
using (1 − αq)-confidence regions by setting αq = α

d . We
now show that such a Confidence Support has a bounded
probability of Disturbance Support Failure, as defined in
(10).

Proposition 11. Let Ŵj be a (1 − α)-Confidence Support
of Pθ computed using samples w1:j−1. Then, we have

P(wjt /∈ Ŵj) ≤ α, 0 ≤ t ≤ T − 1. (17)

Proof. Note that both wjt and Ŵj are random. Using the
law of total probability, we have

P(wjt /∈ Ŵj) = P(wjt /∈ Ŵj |W ⊆ Ŵj)P(W ⊆ Ŵj)

+ P(wjt /∈ Ŵj |W 6⊆ Ŵj)P(W 6⊆ Ŵj),

= P(wjt /∈ Ŵj |W 6⊆ Ŵj)P(W 6⊆ Ŵj),

≤ P(W 6⊆ Ŵj), (18)

≤ α, (19)

where (19) follows from the fact that Ŵj is a (1 − α)-
Confidence Support of Pθ.
Remark 12. As long as the confidence regions Θ̂j

q converge
to the true parameter θq in probability, the Confidence
Supports asymptotically converge to the true uncertainty
support, i.e., Ŵj →W in probability. The MPC controller
(5) thus asymptotically learns to satisfy (2) robustly.

4.3 The LRBF Algorithm

We present our Learning Robustness from Bounded Fail-
ure (LRBF) algorithm which uses Confidence Supports

Ŵj from Section 4.2 in MPC optimization problem (4).
This guarantees satisfaction of (9) (i.e., design requirement
(D1)) by system (1) in closed loop with controller (5).

Algorithm 1 Learning Robustness with Bounded Failure
(LRBF)

Inputs: Z, Ŵ1, xS .
for j = 2, . . . , J do

Computing Confidence Support Ŵj

for q = 1, . . . , d do
Compute (1− α

d )-confidence region Θ̂j
q for θq

Compute Ŵj
q = ∪θ̄q∈Θ̂q

Supp(Pq
θ̄q

)

Set Ŵj = Ŵj
1 × · · · × Ŵj

d

Solving MPC problem (4) using Ŵj

for t = 0,1, . . . , T − 1 do
Apply vj,?t|t from (5) with Ŵj as uncertainty set

We assume that for all iterations j ∈ [J ], at time step
t = 0, MPC problem (4) is feasible with disturbance

supports Ŵj constructed in Algorithm 1. In case such an
assumption is not satisfied, Ŵj can be scaled down (for
eg., by increasing α).

5. NUMERICAL SIMULATIONS

In this section we find approximate solutions to the follow-
ing iterative optimal control problem in receding horizon:

V j,? (xS) =

min
uj
0,u

j
1(·),...

T−1∑
t=0

10
∥∥∥x̄jt − xref

∥∥∥2

2
+ 2

∥∥∥ujt (x̄jt )∥∥∥2

2

s.t.

xjt+1 = Axjt +Bujt (x
j
t ) + wjt ,

x̄jt+1 = Ax̄jt +Bujt (x̄
j
t ),[−30

−30
−40

]
≤
[

xjt
ujt (x

j
t )

]
≤

[
30
30
40

]
, ∀wjt ∈W,

xj0 = xS , t = 0, 1, . . . , T − 1.
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We consider two parametric distributions:

Pqθq = Unif(−3, 3), (20a)

Pqθq = Ntrunc(0, 1, 3), (20b)

with q ∈ {1, 2}. In both cases, W = [−3, 3] × [−3, 3].
The methods to compute the Confidence Supports for
these distributions are discussed in (Bujarbaruah et al.,

2019, Section 4.5). System matrices A =

[
1.2 1.3
0 1.5

]
and

B = [0, 1]> are known. We solve the above optimization
problem with the initial state xS = [0, 0]> and reference
point xref = [27, 27]> for task duration T = 20 steps
over J = 30 iterations. Algorithm 1 is implemented with
a control horizon of N = 4, and the feedback gain K
in (5) is chosen to be the optimal LQR gain for system
x+ = (A + BK)x with parameters QLQR = 10I2×2 and
RLQR = 2. The goal is to show:

• Design specification (D1) is satisfied. Consequently,
a lower probability of Disturbance Support Failure
across all iterations using support Ŵj from Algo-
rithm 1, compared to that from the convex hull sup-
port estimate Chull(w1:j−1).
• The performance loss [PL]j rapidly approaches 0

within the first few iterations. However, in the ini-
tial iterations, there is a significant trade-off be-
tween a desired upper bound α on probability of
State Constraint Failure and average closed loop cost
E[V̂j(xS , w1:j)] (defined in (7)). That is, lower the
upper bound α, higher is the average closed loop cost
in the initial iterations. This suggests the need for
tailoring the confidence level (1 − α) in Algorithm 1
according to the application at hand.

5.1 Bounding the Probability of Failure (D1)

In this section, we demonstrate satisfaction of design spec-
ification (D1) by Algorithm 1 and compare the probabil-

ity of Disturbance Support Failure P(wjt /∈ Ŵj) for any

timestep t in the jth iteration, with Ŵj obtained using
Algorithm 1 and Ŵj = Chull(w1:j−1). This probability is
estimated by averaging over 100 Monte Carlo draws of
disturbance samples w1:J , i.e.,

P(wjt /∈Wj) ≈ 1

100

100∑
m̃=1

(1F (wjt ))
?m̃,

where

(1F (wjt ))
?m̃ =

{
1, if wjt /∈ (Ŵj)?m̃|(w1:j−1)?m̃,

0, otherwise,

and (·)?m̃ represents the m̃th Monte Carlo sample. Fig. 1
shows this comparison for uniformly distributed distur-
bance (20a). Using LRBF to construct Confidence Sup-

ports Ŵj allows for lowering P(wjt /∈ Ŵj), i.e., probability

of [DSF]
j
t as defined in (10) below a user specified bound α,

as opposed to simply utilizing Ŵj = Chull(w1:j−1). We plot

the probability of [DSF]
j
t for 2 different values of α = 0.05

and α = 0.70. We see that for α = 0.05 the probability

of [DSF]
j
t with LRBF is on average 94% smaller than that

from the convex hull support estimate for all iterations

j ∈ [30]. Similarly for α = 0.70, the probability of [DSF]
j
t
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Fig. 1. Probability of Disturbance Support Failure vs Iter-
ation Number for Uniformly Distributed Disturbance
on W.
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Fig. 2. Probability of Disturbance Support Failure vs
Iteration Number for Truncated Normal Distribution
of Disturbance on W.

is on average 61% lower than that with the convex hull
support estimate across all j ∈ [30].

The same trend is seen in Fig. 2 for truncated normal

distribution (20b), where probability of [DSF]
j
t is at least

99% and 96% lower than convex hull support estimate for
α = 0.05 and α = 0.70 respectively until iteration j = 3,
and reaches a value of 0 for both values of α afterwards.
The above trend in probability of [DSF]

j
t is explained

by Proposition 11, which relates the desired confidence

(1 − α) for support Ŵj to the probability of [DSF]
j
t .

Moreover, from Fig. 1 and Fig. 2 we see that in practice

probability of [DSF]
j
t is always at least 60% − 80% lower

than corresponding chosen α. This highlights satisfaction
of (D1) and also the conservatism in Proposition 11 arising
from the upper bound in (18).

5.2 Performance Loss Reduction Over Iterations

In Fig. 3 and Fig. 4, we approximate the average closed
loop cost E[V̂j(xS , w1:j)] of the jth iteration by taking an
empirical average over 100 Monte Carlo draws of w1:J as,
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E[V̂j(xS , w1:j)] ≈ 1

100

100∑
m̃=1

V̂j(xS , (w1:j)?m̃), (21)

for α = 0.05, and α = 0.70. The cost values are normalized
by V?(xS), which denotes the empirical average closed
loop cost of the jth iteration if W had been known, i.e.,
Ŵj = W. For both cases of α, we see that in Fig. 3
and Fig. 4 the average closed loop cost rapidly approaches
V?(xS). For (20a) in Fig. 3, cost (21) approaches to within
0.5% of V?(xS) after just 5 iterations whereas for (20b) in
Fig. 4, it is within 3% of V?(xS) in the same duration.

However, the average closed loop cost incurred in earlier
iterations has a trade-off with desired α. This trade-off is
also highlighted in Fig. 3 and Fig. 4 for (20a) and (20b)
respectively. We see from Fig. 3 and Fig. 4 that for lower

value of probability of [SCF]
j
t with α = 0.05, we pay a

maximum of 13% higher average closed loop cost for (20a),
and a maximum of 10% higher average closed loop cost for
(20b) compared to V?(xS) until iteration j = 5. Allowing

for higher probability of [SCF]
j
t with α = 0.70 proves to

be cost-efficient, where we only pay a maximum of 0.3%
higher average closed loop cost for (20a), and a maximum
of 4% higher average closed loop cost for (20b) compared
to V?(xS) in the same duration. This essentially reflects
the key trade-off between specifications (D1) and (D2) in

the initial iterations. Thus, the upper bound α of [SCF]
j
t

must be chosen in an application-specific manner.
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Fig. 3. Normalized Average Closed Loop Cost (21): Uni-
form Disturbance.
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