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Abstract: In this paper, least-squares support vector machine (LS-SVM), whose parameters
are updated by unscented Kalman filter (UKF), is adopted in the generalized predictive control
(GPC) of a system with general multicompartment lung mechanics. Gaussian kernel function
is employed since it presents a good approximation to the inner product of nonlinear mapping
possessed in the SVM formulation. In the SVM literature, it is well known that the width
parameter σ of the Gaussian kernel function has an important effect on the performance.
However, it is not possible to train that parameter together with the other parameters of
SVM when using linear least squares. This is why we use UKF for parameter adaptation in
the SVM formulation. At each time instant of the control task, all parameters of the LS-SVM
model, including σ, are tuned simultaneously. Another reason to employ UKF is; it avoids
the suboptimal solutions caused by linearization based filters, e.g., extended Kalman filter.
Due to these facts, we train the SVM model using UKF and it will be referred to as the
UKF-SVM model. Simulation results concerning the application of UKF-SVM based GPC to
a multicompartment lung mechanics model yields plausible performance using small amount
of support vectors even when there are time-varying lung parameters and disturbance of high
level affecting the system. The adopted approach can also be useful when there is not any
knowledge of the system dynamics, i.e., black box. Note that, multicompartment lung mechanics
system is a stand-in model that can mimic the behavior of human lung. Thus, it is appropriate
for hardware-in-the-loop simulation which opens a path to the real-patient-tests of mechanical
respiratory systems in the future.

Keywords: Multicompartment lung mechanics, robust control, LS-SVM, UKF, generalized
predictive control

1. INTRODUCTION

Generalized predictive control (GPC) is a subclass of
model predictive control. In this control scheme, unkown
dynamics of the underlying system should first be approxi-
mated in the regression framework. The regressor model is
utilized to both predict future behavior of the system and
to provide necessary gradient information to update the
control input signal vector. At each time instant, first one
of the produced control signals is applied to the system
(Clarke et al., 1987).

The conventional support vector machine (SVM) performs
quadratic programming (QP) to minimize a convex cost
function with inequality constraints. (Suykens et al., 2002)
proposed least squares SVM (LS-SVM) which is based
on linear equations with equality constraints. This is
an alternative to the conventional QP-based one and it
has a simple algebraic expression. Moreover, the optimal
solution can be obtained simply by least squares.

It is a critical issue to determine the optimum parameters
of the kernel function used in SVM. Because, classification
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or regression performance is highly effected by the kernel
parameter selection. Simultaneous adaptation of all model
parameters (including the kernel parameter) is performed
in the studies (Dilmen and Beyhan, 2017, 2018) which were
published by the authors and included online classification
and regression. In those studies, LS-SVM formulation is
treated as a multi-input multi-output (MIMO) optimiza-
tion problem where the parameters α, b and the Gaussian
kernel width parameter σ are tuned by unscented Kalman
filter (UKF) at each time instant when a new sample
arrives.

Multicompartment lung mechanics models are used for
hardware-in-the-loop simulation of human lung. It is useful
in especially for developing mechanical respiratory systems
which are used in cases of respiratory system failures in
human beings. Mechanical ventilation systems arise as a
solution to that problem. The primary goal of mechan-
ical respiratory systems is, by applying a limited input
pressure, to maintain adequate minute ventilation which
is the tidal volume multiplied by the number of breaths per
minute. Modelling of human lung tackles subtle problems
such as determination of the lung compliance and air
resistance parameters over the entire range of the lung
volume. Also, the variable patient physiology affects the
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modelling adversely. As a result, parametric uncertainity
or disturbance is inevitable. Thus, robust control algo-
rithms are of great importance.

This study introduces a remedy with significant quality to
the literature and researchers of mechanical ventilation.
In this paper, UKF-SVM is adopted responsible for online
approximation of the dynamics of multicompartment lung
mechanics model in the GPC scheme. UKF-SVM is both
utilized for predicting the future outputs of that model and
to update the control signal applied to that model. Hence,
in this study, previous work of the authors by (Dilmen and
Beyhan, 2017) which is about online system identification
is extended so as to include an adaptive control perfor-
mance. Simulations include time-varying parameters and
external disturbance of high level affecting the system.

The remainder of the paper is organized as follows.
Sect. 2 details the conventional LS-SVM regressor, UKF
algorithm, UKF-SVM regressor and adaptive window-
ing algorithm. Sect. 3 reviews the GPC and UKF-SVM
based GPC. Sect. 4 presents the simulation of UKF-SVM
based GPC on multicompartment lung mechanics. Finally,
Sect. 5 summarizes this paper.

2. ONLINE SUPPORT VECTOR MACHINE

2.1 Batch LS-SVM Regressor

Conventional batch LS-SVR (LS support vector regressor)
(Suykens et al., 2002) will be briefly given in this sub-
section. Consider that N data pairs {xn, yn}Nn=1 where
xn ∈ <d and yn ∈ < exist. Equality constraint based
quadratic programming problem is given by

min L =
w,b,e

1

2
wTw + λ

1

2

N∑
n=1

e2n

Const. : yn = wTϕ(xn) + b+ en, n = 1, . . . , N.

(1)

where en is the error variable and λ is the regularization
parameter which penalizes the error. ϕ(·) is a nonlinear
mapping from the input space to a higher dimensional
feature space. w is the weight vector in the dimension of
feature space and b is the bias term. Lagrangian equation
is obtained as follows.

£(w, b, e,α) = L(w, b, e)−
N∑
n=1

αn{wTϕ(xn)+b+en−yn}

(2)
where αn’s are the Lagrange multipliers. The Karush-
Kuhn-Tucker (KKT) conditions for optimality are as fol-
lows.

∂£
∂w = 0,w =

∑N
n=1 αnϕ(xn)

∂£
∂b = 0,

∑N
n=1 αn = 0

∂£
∂en

= 0, αn = λen, n = 1, . . . , N
∂£
∂αn

= 0,wTϕ(xn) + b+ en − yn = 0, n = 1, . . . , N.

(3)
When the Lagrangian equation and optimality conditions
are combined, a set of linear equations is obtained as
follows. [

0 1T

1 Ω + λ−1I

] [
b
α

]
=

[
0
y

]
(4)

where y = [y1 y2 . . . yN ]T , 1 = [1 1 . . . 1]T ∈
<N and

Ωji = K(xj ,xi), j = 1, . . . , N, i = 1, . . . , N (5)

K(xj ,xi) = ϕ(xj)
Tϕ(xi) (6)

K(·, ·) is a kernel function which is an alternative to the
inner product of mapping function ϕ(·). It avoids the
necessity of exact knowledge about ϕ(·). Several kernel
functions exist, e.g. Gauss, polynomial. They must satisfy
Mercer conditions and must be positive semi-definite. α
and b are the LS solution to (4) and LS-SVR output is
obtained as follows.

y(x) =

N∑
n=1

αnK(xn,x) + b (7)

2.2 UKF

UKF provides a solution to the suboptimal estimations of
extended Kalman filter due to linearization. For a random
variable whose first two moments (expected value and
covariance) of its probability distribution are known, sigma
points generated around the expected value with the same
covariance can yield the real values of first three moments
via a nonlinear transformation. This is called unscented
transformation (UT), (Wan and Van Der Merwe, 2000).
Let us have a random variable x ∈ Rd with expected value
and covariance x̄ and Px respectively. It is transformed
via a nonlinear transformation y = G(x) such that the
statistics of y are calculated by generating a matrix X ∈
Rd×(2d+1) consisting of Xi sigma vectors.

X0 = x̄

Xi = x̄ + (
√

(d+ ψ)Px)i, i = 1, . . . , d

Xi = x̄− (
√

(d+ ψ)Px)i, i = d+ 1, . . . , 2d

Wm0 =
ψ

d+ ψ

Wc0 =
ψ

d+ ψ
+ 1 − η2 + θ

Wci = Wmi =
1

2(d+ ψ)
, i = 1, . . . , 2d

(8)

In (8) ψ = η2(d+κ)−d is a scaling parameter. η determines
the prorogation of sigma points around x̄ and is usually
set to a small number. κ is the second scaling parameter
and is usually set to zero. θ is the a priori information
about distribution of random variable x and its optimal
value for Gaussian distribution is 2. (

√
(d+ ψ)Px)i is the

ith row of the matrix square root (Cholesky factorization
can be employed). Process and observation covariance
matrices must be involved to advance from UT to UKF
as a recursive filter. Due to the page limitations we omit
the UKF algorithm here, but the reader may refer to
Algorithm 1 in (Dilmen and Beyhan, 2017). Note that, in
that paper, F and G are process and measurement functios
while Pw and Pv denote the process and measurement
noise covariance matrices respectively.

2.3 UKF Based SVM Parameter Adaptation

UKF-SVM model adapts its parameters via unscented
Kalman filter. Since it is used as the regressor in the GPC
scheme, details of the model training is given for regression
case. When we rearrange (4) and write explicitly, we
obtain the corresponding measurement function of the
model.
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YSVM = GSVM (XSV ,YSV , b,α, σ)
0

y1
y2
...
ys

 =


∑s

k=1
αk

b+K(x1,x1)α1 + . . .+K(x1,xs)αs + λ−1α1

b+K(x2,x1)α1 + . . .+K(x2,xs)αs + λ−1α2

. . .

b+K(xs,x1)α1 + . . .+K(xs,xs)αs + λ−1αs


(9)

In (9), XSV and YSV are the input-output sample pairs
in the support vector set. They are the observed variables.
b, α and σ parameters constitute a multidimensional
parameter vector, pSVM = [b α1 α2 . . . αn σ]T ∈
Rs+2. Output YSVM is also a multidimensional vector so
the model is MIMO type. (9) presents the measurement
function of the model. Process function is needed to
estimate the parameters optimally by UKF and it is
actually identity transition matrix.

pSVMn|n−1
= FSVM (pSVMn−1

)

FSVM = I(s+2)×(s+2)
(10)

Let w and v be the process and measurement noises while
Q and R denote the corresponding covariance matrices
which have small value (e.g., 1e-6). (9) and (10) can be
combined implicitly considering the noises.

pSVMn|n−1
= FSVM (pSVMn−1

) + wn

YSVMn = GSVM (XSVn ,YSVn , bn,αn, σn) + vn
(11)

Now it turned to be a parameter estimation problem
and after the substitutions in (12) are done, parameter
estimation can be performed via UKF.

F← FSVM , G← GSVM , x← pSVM
y← YSVM , Pw ← Q, Pv ← R

(12)

2.4 Update of the Support Vector Set

In this paper, the regressor model will process the data
sequentially. A suitable support vector set should be main-
tained during the operation. It should be small enough
to provide fast convergence by keeping the computational
load low while providing the set with the capability of
well representing the incoming data. This is possible by
an adaptive support vector set strategy (Dilmen and
Beyhan, 2017) which provides both single update (only
decremental or incremental) and sequential updates. It
also can determine whether there is no need for any of
these updates. Let SV denote the support vector set and
smax the maximum number of support vectors allowed.
The UKF-SVM model starts with an empty support vector
set, i.e., SV = ∅ and as the new input-output data sample
pairs are observed from the system, adaptation of that set
is performed as depicted in Algorithm 2 in (Dilmen and
Beyhan, 2017), which is omitted here due to the limited
space. In the following, incupd and decupd are incremental
and decremental updates of the parameter vector pSVM,n
and the parameter estimation error covariance matrix Pn

while the nth sample is being processed. How pSVM and
P are updated incrementally/decrementally are explained
as follows.

• incupd: Let us have the current parameter vector as

pSVM =

 b
α
σ


(s+2)×1

,α =

 α1

...
αs


s×1

(13)

When a new sample is added, corresponding α pa-
rameter (initially 0) will be added to the top of the
parameters α.

α+ =

[
αnew = 0

α

]
(s+1)×1

,pSV M+
=

[
b

α+

σ

]
(s+3)×1

(14)

Let the current parameter estimation error covariance
matrix P ∈ R(s+2)×(s+2) be as follows.

P =


P1,1 P1,2 . . . P1,s+1 P1,s+2

P2,1 P2,2 . . . P2,s+1 P2,s+2

...
...

. . .
...

...
Ps+1,1 Ps+1,2 . . . Ps+1,s+1 Ps+1,s+2

Ps+2,1 Ps+2,2 . . . Ps+2,s+1 Ps+2,s+2

 (15)

Corresponding rows and columns to the new α pa-
rameter will be added (initially 1 on the diagonal and
0 other) and P+ ∈ R(s+3)×(s+3) will be obtained.

P+ =


P1,1 0 P1,2 . . . P1,s+1 P1,s+2

0 1 0 . . . 0 0
P2,1 0 P2,2 . . . P2,s+1 P2,s+2

...
...

...
. . .

...
...

Ps+1,1 0 Ps+1,2 . . . Ps+1,s+1 Ps+1,s+2

Ps+2,1 0 Ps+2,2 . . . Ps+2,s+1 Ps+2,s+2

 (16)

• decupd: Removing the support vector with the small-
est α value or the oldest one may not yield good
results in every case. On the other hand, leave-one-
out (LOO) cross validation is proven to be a standard
criterion for comparing the generalization power of
statistical models. Therefore, LOO is used to deter-
mine which support vector to be removed from the
set. It is aimed to choose the support vector which
will provide the UKF-SVM model with the smallest
approximation error after its removal. Let us assume
the lth vector has been determined to be removed.
It will be pushed to the end of the SV set and then
will be deleted. Corresponding αl parameter will be
pushed to the end of pSVM and then will be deleted.
Corresponding row and column to parameter αl will
be pushed to the last row and column in the matrix
P and then will be deleted as well.

3. UKF-SVM BASED GENERALIZED PREDICTIVE
CONTROL

Section 3.1 explains the GPC scheme while Section 3.2
details the UKF-SVM based GPC controller. Note that,
the GPC method employed in this paper is adopted from
(Iplikci, 2010) for the case of SISO systems.

3.1 Generalized Predictive Control

Let us represent a single-input single-output (SISO) non-
linear system by a nonlinear autoregressive with exogenous
input (NARX) model.

yn = g(un, un−1, . . . , un−nu , yn−1, . . . , yn−ny ) (17)

g is assumed to be unknown and will be parameterized
by a function approximator model. Let ỹn denote the
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desired reference signal and ŷn denote the model output
for the nth time instant. GPC aims to track the reference
signal as close as possible while keeping the changes in
the control signal as low as possible. Hence, it produces
a control input vector un = [un . . . un+Ku ]T ∈ <Ku+1

at each time instant and applies the first element to the
system. Also, constraints on the control signals are taken
into consideration, which bound the control signal and
contributes to stability.

min f(un)
un

=

Ky∑
k=1

(ỹ[n+ k]− ŷ[n+ k])2+

ζ

Ku∑
k=0

(u[n+ k]− u[n+ k − 1])2

=(Ỹn − Ŷn)T (Ỹn − Ŷn) + ζuTnLun

− 2ζu[n]u[n− 1] + δu2[n− 1]

Const. :umin ≤ u[n+ k] ≤ umax, k = 0, 1, . . . ,Ku

| u[n+ k]− u[n+ k − 1] |≤ 4umax,
k = 0, . . . ,Ku

(18)

L =



2 −1 0 . . . 0 0
−1 2 −1 . . . 0 0

0 −1 2
. . . 0 0

0 0 −1
. . . −1 0

0 0 0
. . . 2 −1

0 0 0
. . . −1 1


(19)

ζ, penalizes the sudden changes in the control signal. Ku

and Ky are future horizon values for input and output.
Always Ku ≤ Ky should be satisfied beause, an output
cannot depend on any input which occurs in the future,
i.e, later than when the output occurs (due to causality).
At each time instant, it is aimed to track the reference
signal for the following Ky time instants. First element
of the produced optimal control signal vector is applied
to the system. Ỹ = [ỹn+1 . . . ỹn+Ky ]T ∈ <Ky and Ŷ =

[ŷn+1 . . . ŷn+Ky
]T ∈ <Ky . A function approximator model

is used to predict the future behavior of the system whose
output expression is unknown. Also, that model is utilized
to provide the necessary gradient information to update
the control input vector at each time instant. The update
is as follows.

un+1 = un +4u (20)

Modified Newton optimization can be employed for this
update.

4u = −
(
∂2f(un)

∂u2
n

)−1
∂f(un)

∂un
(21)

Gradient vector is obtained as follows.

∂f(un)

∂un
= −2

(
∂Ŷn

∂un

)T
(Ỹn−Ŷn)+2ζLun−2


ζu[n− 1]

0
...
0


(22)(

∂2Ŷn

∂u2
n

)
term which would be produced in the Hessian

expression has a very small value so it can be ignored

(obsevred emprically in the experiments). Thus, Hessian
can be written approximately as

∂2f(un)

∂u2
n

∼= 2

(
∂Ŷn

∂un

)T (
∂Ŷn

∂un

)
+ 2ζL (23)

Considering (17), model output depends only on the
control signals with a time index equal to or smaller

than that of itself. Therefore, Jacobian matrix
(
∂Ŷn

∂un

)
is

expressed as follows.

∂Ŷn

∂un
=


∂ŷ[n+1]
∂u[n]

∂ŷ[n+1]
∂u[n+1] 0 . . . 0

∂ŷ[n+2]
∂u[n]

∂ŷ[n+2]
∂u[n+1]

∂ŷ[n+2]
∂u[n+2] . . . 0

...
...

...
. . .

...
∂ŷ[n+Ky ]
∂u[n]

∂ŷ[n+Ky ]
∂u[n+1]

∂ŷ[n+Ky ]
∂u[n+2] . . .

∂ŷ[n+Ky ]
∂u[n+Ku]


(24)

Computational load of the derivatives depend on the
approximator model chosen.

3.2 UKF-SVM Based GPC Controller

Ŷn and ∂Ŷn

∂un
are obtained utilizing the UKF-SVM model.

Let xn be the support vector generated at the nth time
instant after observing the input-output data pair {un, yn}
from the system.

xn = [un un−1 . . . un−nu
yn−1 . . . yn−ny

]T

(25)
where nu and ny are the past horizons for the input and
output samples used to construct the support vector form
the new incoming data pair and from the past samples.
The model output at the nth time instant is obtained as

ŷn =

s∑
j=1

αsK(xj ,xn) + b (26)

Let us write the Gaussian kernel function

Kjn = exp

(
− djn

2σ2

)
(27)

where

djn =(xj − xn)T (xj − xn)

=

nu∑
i=0

(xj,i+1 − un−i)2 +

ny∑
i=1

(xj,nu+1+i − yn−i)2
(28)

Combining (26), (27) and (28), the model output can be
rewritten as

ŷn =

s∑
j=1

αsexp

(
− djn

2σ2

)
+ b (29)

We predict the future outputs of the system using the
UKF-SVM model as

ŷn+l =

s∑
j=1

αsexp

(
−dj,n+l

2σ2

)
+ b, l = 1, . . . ,Ky (30)

where
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dj,n+l =

nu∑
i=0

{
(xj,i+1 − un+l−i)2, l − i < Ku

(xj,i+1 − un+Ku
)2, l − i ≥ Ku

+

min(l,ny)∑
i=1

(xj,nu+1+i − ŷn+l−i)2

+

ny∑
i=l+1

(xj,nu+1+i − yn+l−i)2

(31)

We see that, to obtain the gradient vector in (22) and
Hessian matrix in (23), Jacobian matrix in (24) which
includes the first order derivative of model future outputs
wrt the future inputs is crucial. Thus, utilizing (30) and
(31), first order derivatives are obtained in the following
way.

∂ŷn+l
∂un+h

=

s∑
j=1

αs
∂exp

(
−dj,n+l

2σ2

)
∂un+h

, h = 0, . . . ,Ku

=

s∑
j=1

− 1

2σ2
exp

(
−dj,n+l

2σ2

)
∂dj,n+l
∂un+h

(32)

where

∂dj,n+l
∂un+h

=

nu∑
i=0

{
−2(xj,i+1 − un+l−i)δ(l − i, h), l − i < Ku

−2(xj,i+1 − un+Ku
)δ(Ku, h), l − i ≥ Ku

+

ny∑
i=1

−2(xj,nu+1+i − ŷn+l−i)
∂ŷn+l−i
∂un+h

δ1(l − i, h)

(33)
Note that δ1(·) stands for the unit step function while δ(·)
is the Dirac delta function. Equation (32) and (33) can be
combined and substituted in (22), (23) and (24) to obtain
the gradient vector and Hessian matrix necessary for the
control input vector update.

4. SIMULATION RESULTS

In this study, we adopt a linear model (Hou et al.,
2014) of multicompartment lung mechanics as the nominal
model in purpose. It involves the lung compliances and
air resistances as constant system parameters. However,
during control, i) we assume that, system dynamics are
unknown to us and ii) actual system has time-varying
compliances (parametric uncertainity). In addition, we
apply an artifical external disturbance to the underlying
system as well. Let us define the parametric uncertainity in
the system as internal disturbance. We actually test UKF-
SVM in the GPC framework to assess its performance in
an online black box modelling based control scheme with
internal and external disturbances.

4.1 Nominal System Model

Let us briefly explain the multicompartment lung mechan-
ics model. It has a dichotomoy that is inspired by human
lung where at each generation of a new airway, the airway
opens to a subsequent two-branch airway, and so on. If
we have a system of γ generations, then we have 2γ lung
compartments. A lung mechanics model for γ = 2 is given
in Fig. 1. In Fig. 1, Rinj,i denotes the airway resistance
for the ith airway of the jth generation for j = 0, . . . , γ
and i = 1, . . . , 2j . Note that, the superscript ’in’ stands

Fig. 1. Lung mechanics model with 4 compartments, γ = 2.

for the inhalation period and its exhalation counterpart
is denoted by Rexj,i. Also, xi and ci for i = 1, . . . , 2γ ,
denote the air volume and the associated compliance of
the compartment i. Let us write the state space equations
for the model. Note that, system has switched dynamics
since the parameters associated with the inhalation and
exhalation periods need not be the same.

ẋ(t) = Ax(t) + Bu(t)

y(t) = 1Tx(t)
(34)

where 1 ∈ <dx is a vector of ones, x = [x1 . . . xdx ]T ∈ <dx
is the state vector, dx = 2γ , x(0) = x0 and{

A = −R−1in C, B = R−1in 1, 0 ≤ t ≤ Tin
A = −R−1ex C, B = R−1ex 1, Tin < t ≤ Tin + Tex

(35)
Tin denotes the inhalation period while Tex denotes the
exhalation period. Thus, a breathing period is computed
as T = Tin + Tex. System (35) is periodic with the
period T and the output y(t) is actually sum of the
states, which means, we measure the total lung vol-
ume as the system output. Input u(t) to the system
is the air pressure applied at the initial airway whose
resistance is denoted by Rin0,1. C = diag [1/c1 . . . 1/cdx ].

Note that, Rin =
∑γ
j=0

∑2j

i=1R
in
j,iZj,iZ

T
j,i and Rex =∑γ

j=0

∑2j

i=1R
ex
j,iZj,iZ

T
j,i where the lth element of Zj,i ∈ <dx

is 1 for all l = (i − 1)2γ−j+1, (i − 1)2γ−j+2, . . . , i2γ−j

and 0 otherwise. Last, let us give the parameters for
nominal model of the system. We should indicate that we
gave a general representation of the respective system by
Fig. 1. However, we use a two-compartment lung mechan-
ics model in the simulations (γ = 1). Rin0,1 = 9 cmH2O/l/s,

Rin1,1 = 16 cm H2O/l/s and Rin1,2 = 16 cm H2O/l/s. Rexj,i
counterpart is twice the Rinj,i, j = 0, 1 and i = 1, 2. Lung
compartment compliance nominal values are ci = 0.11/cm
H2O, i = 1, 2.

4.2 Illustrative Example

Initial compartment air volumes are set x0 = [0.5, 0]T

liters. Also, input air pressure has an upper bound umax =
19 cm H2O. Inhalation and exhalation periods are Tin = 2
s and Tex = 3 s respectively while the sampling period is
Ts = 0.1 s. In the simulation, in contrast to the nominal
model, the lung compliance parameters are time-varying
and denoted by ctvi , i = 1, 2. A time-varying compliance by
(36) has a profile which varies between half and full value
of the nominal compliance within any of the inhalation or
exhalation periods.
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ctvi (t) = ci + c̄i(t)
c̄i(t) = −0.5ci + 0.5cisin(2πft′){
t′ = mod(t, T ), f = 0.5/Tin ,mod(t, T ) ≤ Tin
t′ = mod(t, T )− Tin, f = 0.5/Tex ,mod(t, T ) > Tin

(36)
The term c̄i in (36) corresponds to a hard parametric un-
certainity which is created artificially. It causes an internal
disturbance on the system. In the simulation, in addition
to the internal disturbance, an external disturbance given
by (37) is applied to the underlying system.

di,ext(t) = do +

3∑
k=1

dmk
sin
(
2π(1/Tdk)t

)
, i = 1, 2 (37)

where do = −0.2, Td = [2, 5, 10] s, dm = [0.03, 0.02, 0.01]
and dext = [ d1,ext, d2,ext]

T .

GPC parameters are chosen as Ky = 10, Ku = 2,
umin = 0, umax = 19, 4umax = 5, δ = 1e− 6. Note that,
in the planned future real time control, 4umax will be
determined experimentally. Maximum number of support
vectors allowd is smax = 5 and nu = 2, ny = 4 are found to
be suitable experimentally. Fig. 2 shows the tracking result
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y
ref
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Fig. 2. Tracking result.

for a reference respiratory pattern yref where y denotes
the system output obtained when UKF-SVM based GPC
is performed. The root mean squarred tracking error is
0.1799. It is seen from Fig. 2 that, even in such challenging
case as i) dynamics of the underlying system is assumed
unknown and ii) it is under both hard internal (parametric
uncertainity) and external disturbances given by (36)
and (37), proposed UKF-SVM based GPC approach can
achieve an acceptable tracking performance. Fig. 3 shows
the produced control input signal. Fig. 4 shows us the
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Fig. 3. Produced control input signal.

time evolution of b, α and σ parameters of UKF-SVM
in addition to the number of support vectors used during
control.
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Fig. 4. Parameters b, α, σ of UKF-SVM and # support
vectors used during control where smax = 5.

5. CONCLUSION

In this paper, UKF-SVM model is successfully employed
in the generalized predictive control scheme, where multi-
compartment lung mechanics model, whose dynamics are
assumed unknown, is controlled in the simulation. The
generalized predictive control formulations using UKF-
SVM model are derived rigorously and demonstrated suc-
cessfully in the GPC scheme. Small number of support
vectors, such as smax = 5 is enough for an admissible
performance. It manages to capture well the time-varying
dynamics of the underlying system. Also, it seems to be a
useful tool in robust control even at high levels of distur-
bance. In the future, we plan to employ it for control of
multicompartment lung mechanics in real time where the
real system is assumed to be a new design. Note that, since
UKF-SVM based GPC performs control based on online
black box modelling strategy, it is expected to be a reliable
adaptive controller for that task. Several disturbance types
will be considered on the real system in the future study.
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