
     

 Improving Solar and PV Power Prediction with Ensemble Methods 
 

L. A. Dao*, L. Ferrarini*, D. La Carrubba* 
 

* Dipartimento di Elettronica, Informazione e Bioingegneria, 
Politecnico di Milano, P.za L. da Vinci 32, 20133 Milano (Italy) 

e-mail: luca.ferrarini@polimi.it. 

Abstract: Estimation of the generated power of renewable energy resources is in general important for 
planning operations as well as demand balance and power quality. This paper addresses the problem of the 
estimation of the short-term (3-hour ahead) and medium-term (1-day ahead) generated power of a 
photovoltaic plant. Firstly, the design of day-ahead solar radiation predictors is investigated with different 
setups of time series models, and with their combinations with the weather forecast services using ensemble 
methods. Support Vector Machine methods are also adopted in this stage, to cluster data. Secondly, under 
a similar ensemble framework, the generated power prediction is investigated. The whole generated power 
and solar radiation prediction tasks are then implemented on a low-cost, embedded mini PC module 
Raspberry Pi 3. As an application, the prediction is employed in the control system of a typical microgrid 
settings focusing on energy management problem. The impact of the quality of generated power prediction 
on the performance of the controller is also evaluated in this paper. 
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1. INTRODUCTION 

Driven by environmental concerns and the fact that fossil fuel 
price is volatile, the employment of renewable energy 
resources is getting more and more attention all over the world. 
Indeed, the global renewable power capacity more than 
doubled during the last decade from approximately 1000 
gigawatts in 2007 to 2195 gigawatts in 2017; in 2017 alone, 
70% of the net addition of global power capacity was from 
renewable energy which marked the incredibly increasing 
trend of renewable energy (Hales, 2018). 

Notwithstanding the promising advantages it may bring, the 
penetration of renewable energy sources also puts many 
challenges to the power system. One disadvantage of 
renewable energy is its variability, thus the reliability of its 
supply; furthermore, the difficulty in predicting their outputs 
due to high correlation to the weather (and the weather is 
difficulty to predict) may cause significant problems of 
demand balance and power quality to the distribution network 
and the grid in general if large capacity renewable energy 
sources are connected. 

To deal with these issues, one of the first, clear directions is to 
improve the quality of renewable energy production prediction 
and secondly to compensate the prediction errors through 
adequate control and management techniques. The present 
paper is in this line. Other research lines are based on the 
involvement of the demand side to play a more crucial role in 
supporting the power system, the exploitation of energy 
storage system, the design of more autonomous microgrids (L. 
A. Dao, Piroddi, & Ferrarini, 2015) 

Regarding the quality of renewable energy production 
prediction, in the literature, two main approaches have been 
studied. The first one is based on the use of single prediction 
models for Solar Radiation (SR) or PV-related generation 
plants, adopting a wide range of standard techniques including 
Artificial Neural Networks (ANN) (Sulaiman, Rahman, & 
Musirin, 2009), Extreme Learning Machine (EML) (Hossain, 
Mekhilef, Danesh, Olatomiwa, & Shamshirband, 2018), 
Support Vector Machine (SVM) (Chen, Li, & Wu, 2013), 
Autoregressive Integrated Moving Average model (ARIMA) 
(Yang, Jirutitijaroen, & Walsh, 2012), and so on. A set of more 
complex predictors are investigated through combining of 
multiple different prediction models and weather forecasting 
services. They are called ensemble prediction methods. The 
combination is expected to inherit the best characteristic from 
each individual prediction model, and compensate for the 
single predictor’s errors. Paper (Zhou, 2012) suggests that 
besides the accuracy of the single predictors, their diversity is 
a crucial element to obtain a good ensemble. Some recent 
works have shown increasing attention on the use of ensemble 
prediction methods such as (Chakraborty, Marwah, Arlitt, & 
Ramakrishnan, 2012), which combines Motif based 
prediction, k-NN prediction and naïve Bayes prediction, or (Ji 
& Chee, 2011), which employs Autoregressive and Moving 
Average (ARMA) models together with Time Delay Neural 
Networks (TDNN). 

The present paper investigates different techniques to perform 
SR and Generated Power (GP) prediction using different 
ensemble methods, integrating also meteorological prediction 
services. In addition, an implementation is discussed on a low-
cost, embedded mini PC module Raspberry Pi 3 model B 
which autonomously performs a comprehensive set of tasks, 
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ranging from collecting the meteorological data and 
meteorological prediction data from meteorological service 
providers to data cleaning, single model development and 
adaptation, ensemble prediction. 

This paper largely extends (Le Anh Dao, Piroddi, & Ferrarini, 
2017), where some preliminary ideas on ensemble method 
were investigated. Firstly, in this paper, a new approach is 
proposed with the use of hierarchical structure in the general 
scheme of SR prediction whereas a machine learning 
technique is adopted to cluster the overall set of data into 
several subsets before dealing with the ensemble method at the 
second layer of the structure. Furthermore, the investigation is 
studied on much comprehensive weather data set, different 
sampling time and horizons. An implementation on Raspberry 
Pi 3 with Python programming language and Linux operating 
system is also provided in this paper, its application and 
numerical results in a smart grid scenario are also computed 
and described. Specifically, the smart grid scenario here 
considers an energy management optimization of a microgrid 
including smart buildings, PV power production facilities and 
an energy storage unit. The control system is developed based 
on Model Predictive Control (MPC) approach which is well-
suited to deal with a large amount of constraints and multiple 
objectives that have to be imposed in our control problem 
(Morari & H. Lee, 1999); the exploitation of this approach in 
the context of smart grid has been widely discussed in the 
literature (L. A. Dao, Dehghani-Pilehvarani, Markou, & 
Ferrarini, 2019). 

The paper is organized as follows. In Section 2, the considered 
case study is described along with some basic analysis of the 
data available, while in section 3 the selected ensemble 
technique is reviewed and models described. Section 4 
describes the implementation on Raspberry Pi, and the 
obtained results. Finally, Section 5 concludes the paper. 

2. DESCRIPTION OF THE CASE STUDY 

PV plants and meteorological stations analysed in this paper 
are located in the North of Italy. The overall goal is to develop 
a reliable PV GP prediction for a pilot plant, starting from its 
historical data, the SR historical data and the meteorological 
forecast data from a service provider for the same location. The 
illustration of these periods is depicted in the following figure: 

 

Fig. 1. Periods of available data of GP (1-min and 5-min sampling time), SR 
(10-min sampling time) and SR meteo-rological forecast services (3-hour 
sampling time, dash lines for unavailable data) 

Considering the common periods between them, the available 
data of GP, SR and SR forecast data from the meteorological 
forecast service are separated into three periods: 

• Calibration: to train the time series models for SR and GP 
predictions (period 1) 

• Ensemble calibration: to train ensemble model for GP and 
SR (period 2) 

• Validation: to validate the proposed predictors. As the GP 
data is available only till 01-March-2018, the validation 
period for GP is ended on 01-March-2018 (period 3).  

Concerning data pre-processing, detection production outliers 
step is performed by firstly comparing an original production 
datum (i.e., 1-min sampling time) with the average of its 
neighbors and then also by matching then-resampled-to-10-
min-sampling production data with the original SR data. 

While most of the available data points present high 
correlation between SR and GP data, there is still a significant 
number of points that do not match this behavior: they are 
either with high GP and zero SR or low production with high 
SR. They are all considered as outliers. The removed samples 
are regarded as missing data. Isolated missing data (up to 
sequences of three missing samples) are substituted with the 
average value of their two closest available data. Finally, to 
match the typical sampling rate of energy management system 
in the microgrid, which will be discussed in Section 4, the data 
are resampled to 15-minute sampling time. 

3. ENSEMBLING METHOD 

3.1  General framework 

The general framework here considered for our GP prediction 
is based on a two-step prediction, i.e., SR and GP predictions. 
Regarding SR prediction, at first, a superior level Support 
Vector Machine algorithm (SVM) is designed to classify the 
day with better or worse meteorological forecast service with 
respect to the time series model (ARI). This consideration will 
separate the SR data into two subsets; and as following two 
ensemble blocks ES1 and ES2 are designed to be applied to 
the two different subsets of the data (see Fig. 2). Each of the 
ensemble blocks (ES1 and ES2) contains two groups of 
predictors: the first group is obtained from the meteorological 
forecasting service which is updated every 6 hours, whereas 
the second group is based on models constructed using SR 
historical data which is performed every 15 minutes. The 
outputs of all predictors are combined in an ensemble predictor 
model (i.e., ES1 and ES2). As a final stage, the outputs of all 
ES1 and ES2 are combined to form the final SR prediction 
which is input of the GP prediction. 

 

Fig. 2. SR ensemble method with SVM.  
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To classify the SR data, we here employed standard SVM 
classifier with a Gaussian kernel as discussed in (Schölkopf & 
Smola, 2002). The training data set is defined as follows: 

{𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖}, 𝑖𝑖 = 1, 2, … ,𝑁𝑁 (1) 

where N is the number of samples, 𝑥𝑥𝑖𝑖 are vector of different 
inputs and 𝑦𝑦𝑖𝑖is class label of corresponding outputs. In our 
consideration, the inputs include the following types: 

• The change of the day-ahead SR forecast (taken from 
meteorological service) with respect to SR measurement 
data in the previous day; 

• Time instant of a day (i.e., the first, second, …, 96th instants 
of a day). 

The consideration of the first input type comes from the 
observation that ARI model would not be able to catch the 
large variation of the SR measurement data from one day to 
another since this model employs only historical SR data in its 
model. On the other hand, in general, the forecast service 
knows quite well if the big change of SR is about to happen. 
Regarding the second input type, the meteorological service 
data would get out-of-date with respect to the ARI model 
which is updated every 15minutes instead of 6 hours of the 
meteorological service. 

On the other hand, the output 𝑦𝑦𝑖𝑖 are labeled as either “Good” 
or “Bad”. “Good” label implies a better prediction is obtained 
from the meteorological service with respect to ARI model and 
vice versa for “Bad” label. The SVM, ES1 and ES2 are all 
trained in period 2 (i.e., ensemble calibration period) and then 
validated in period 3 (i.e., validation period). All the forecasts 
are obtained by MATLAB SVM toolbox. Then, at any time 
instant, if 𝑦𝑦𝑖𝑖is labeled as “Good”, then the parameter of ES1 is 
employed to combine the two SR predictions (i.e., 
meteorological forecast service and ARI model) and similarly, 
ES2 used in the case of 𝑦𝑦𝑖𝑖is labeled as “Bad”. 

 

Fig. 3. General scheme for GP prediction using ensembles 

Regarding GP prediction, similarly, two different groups of 
predictors are employed, one based on historical GP data and 
meteorological measurements, while the second one is only 
based on GP data (see Fig. 3). The outputs of all predictors are 
combined in an ensemble predictor, to provide the final GP 
prediction. 

3.2  Solar radiation time series models 

For SR prediction purposes, the ARI (p, d) (autoregressive 
integrated) class model has been selected which is a special 
case of the general ARIMAX (p, d, q, m) model with two 

values of q and m are set to zero. The description of ARIMAX 
model can be find in (Williams, 2001). 
In order to evaluate the model, ACF (Autocorrelation 
Function) and PACF (Partial Autocorrelation Function) are 
employed. Based on this analysis, the decision to drop the MA 
part from the prediction models is derived and the following 
candidate models are considered in the ensemble method: 

• ARI model with d = 96, p= [1, 2, 3, 4, 94, 95, 96, 97] 
• ARI model with d = 96, p= [1, 2, 3, 4] 
• The prediction obtained from the meteorological forecast 

service 
where the I part of ARI models performs a 24-hour 
differencing of the original data, given that the data are 
sampled every 15 minutes; since the 1st, 2nd, 3rd, 4th, 94th, 95th, 
96th and 97th samples of the PACF are statistically different 
from 0. Shorter ARI models, with p = [1, 2, 3, 4] have also 
been employed to allow the models to capture different 
dynamic characteristics of the data and thus enriching the 
diversity of the ensembled predictors. 

3.3  PV production time series model 

Regarding the GP prediction, both ARI (p, d) and ARIX (p, d, 
m) (autoregressive integrated with exogenous inputs) models 
have been developed. The ARI model relies only on measured 
production data. On the other hand, the ARIX model employs 
the estimated SR as exogenous input, which provides 
additional information for the estimation of the GP. Even if in 
the literature, the temperature has often been used together 
with the SR to model the GP (Accetta, Piroddi, & Ferrarini, 
2012), here the addition of the temperature is not particularly 
useful. 

Similar to the SR data, the following single models are 
considered in the ensemble method: 

• ARI model: p = [1, 2, 3, 4, 94, 95, 96, 97], d = 96; 
• ARIX model: p = [1, 2, 3, 4, 94, 95, 96, 97], d = 96,  

q = [1, 2, …, 12, 94, 95, 96, 97]). 

3.4  Ensemble predictions 

The considered ensemble method aggregates multiple 
predictors via a linear combination of the outputs. The 
corresponding weights are obtained by minimizing the 
distance between the ensemble predictor output and the 
measured data as follows: 

min 𝐽𝐽(𝜃𝜃) = ��𝑃𝑃(𝑡𝑡) − 𝑃𝑃�(𝑡𝑡)�
2
2

𝑘𝑘

𝑡𝑡=1

 
(2) 

where 𝑃𝑃�(𝑡𝑡) is a linear combination of different predictors (two 
predictors for each of Ensemble SR-1, Ensemble SR-2 and 
Ensemble Production); assuming that measured data 𝑃𝑃(𝑡𝑡) and 
output of individual predictors 𝑃𝑃𝑖𝑖(𝑡𝑡) are available in a time 
inteval from 1 to k.  

In the SR prediction, the combination is depicted as in Fig. 4. 
Two alternative settings of the ensemble method are 
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considered here. In the first one, the obtained predictions are 
first classified into groups, depending on the prediction 
horizon (4, 8, 12, 24, 36, 48, 60, 72, 84 and 96 steps ahead 
prediction or 1, 2, 3, 6, 9, 12, 15, 18, 21 and 24 hours ahead). 
In the second one, called basic framework, the predictions are 
not grouped with respect to the prediction horizons. 

 
Fig. 4. Ensemble framework in SR prediction 

The structure of the ensemble model for GP prediction is 
similar to the previously discussed one for SR prediction (see 
Fig. 4). However, due to very similar performance between GP 
prediction using time-order and basic frameworks for 
ensemble method we will report only the result of a simpler 
one (i.e., basic framework). 

4. IMPLEMENTATION 

The implementation of the GP and SR prediction is developed 
on a Raspberry Pi with Python programming language and 
Linux operating system. The software architecture of the 
implementation is shown in Fig. 5, where the blue box 
represents the Raspberry Pi which contains various functions 
developed using Python (gray blocks) together with the 
database tables based on SQLite database storage system (light 
blue blocks). On the other hand, blocks outside of the 
Raspberry Pi are servers in which production, meteorological 
data, meteorological forecast service data, and GP and SR 
prediction data are stored.  

 
Fig. 5. GP prediction system software architecture 

Generally, the prediction system is separated into two main 
phases. In the offline phase, the historical data from different 
servers are downloaded then saved into different data tables 

for both raw and processed data. The processed data is then 
also employed to derive the system model order and 
parameters which are saved in the predictor design block. On 
the other hand, in the online phase which is run every 15 
minutes, new GP, SR and meteorological data are searched and 
put into the corresponding database tables if available. These 
online steps are performed one minute before the clock minute 
time of 00, 15, 30 and 45 so that all the necessary data are 
available for the prediction tasks to run. The results of SR and 
GP prediction are then saved in the device and uploaded into a 
cloud storage service – Dropbox. 

4.1  Solar radiation results 

Regarding SR prediction, apart from collecting SR predictions 
from the available meteorological forecast service, various 
models for prediction using different model classes and the 
combinations thereof obtained with the ensemble method have 
been tested. The obtained models have been compared using a 
standard Root Mean Square Error (RMSE) criterion: 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑡𝑡) =  
100%
𝑀𝑀

�∑ �𝑃𝑃�(𝑡𝑡, 𝑗𝑗) − 𝑃𝑃(𝑡𝑡, 𝑗𝑗)�
2𝑗𝑗=ℎ

𝑗𝑗=1

ℎ
 

(3) 

where M is the peak values of SR and GP in the studied 
measurement data (introduced for normalization purposes). At 
every time instant, SR prediction or GP prediction is 
performed and the corresponding value of RMSE [%] is 
collected. The comparison is then based on the average values 
of the RMSE [%] for each predictor over the validation data. 

The results of the ensemble methods together with naïve 
predictor and the forecast service for SR prediction are 
summarized in Table 1 which contains the values of RMSEm 
and RMSEs for the results of medium-term prediction (one-
day ahead) and short-term prediction (3-hour ahead), 
respectively. Although various combinations of the single 
models have been tested, only the best ones are reported here. 

Table 1.  List of considered predictors for SR and GP prediction 

Predictor ID Method RMSEs  RMSEm  

SOLAR RADIATION 

SR-1 Persistent predictor 10.8 13.9 

SR-2 Forecast service 7.7 10.8 

SR-3 Ensemble method (Basic-order 
framework)  4.8 7.9 

SR-4 Ensemble method (Time-order 
framework)  4.6 7.9 

SR-5 Ensemble method (Time-order 
framework) with SVM 4.5 7.7 

GENERATED POWER 

GP-1 Persistent predictor 6.1 9.4 

GP-2 ARIX model using SR2 as 
exogenous input 6.0 9.4 

GP-3 ARIX model using SR4 as 
exogenous input 4.9 8.0 

GP-4 Ensemble method  4.6 7.7 
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As for one-day ahead SR prediction, the prediction obtained 
with the meteorological service provides a significant 
improvement with respect to the one obtained from the naïve 
predictor. This result is reasonable as the naïve predictor relies 
mostly on the SR of the previous day while the service 
typically employed advance prediction techniques and rich 
data sources including even satellite pictures and very long-
term historical data source. Beside this prediction, some 
prediction model based on ARI and AR techniques is designed 
to catch some dynamics in the SR data. These prediction 
models are expected to supplement the final ensemble model 
the characteristic of the SR data which are not considered in 
the meteorological service. In fact, the models using ensemble 
methods (SR-3, SR-4 and SR-5) have 2.9 points of RMSE less 
than the meteorological service (SR-2) which accounts for a 
26.8% improvement in the medium term. 

As for the short-term prediction (3 hours), SR-3 performs even 
much better than the meteorological forecast service since it 
exploits the most recent measurement data which are updated 
every 15-minutes, while the meteorological forecast service is 
updated in a longer sampling time of 6-hour. A slightly 
improvement is observed by using ensemble method with 
time-order framework respect to the ensemble method with 
basic framework. In the end, about 40.3% improvement is 
recorded for ensemble method SR-4 with respect to the 
meteorological forecast service. In both short and medium-
term predictions, the combination between SVM and ensemble 
method provides slightly better performance than the best one 
obtained among other predictors.  

4.2  GP prediction results 

As already discussed, the evaluation of GP prediction is 
discussed on 8 months of validation data from 01 July 2017 to 
28 February 2018. The GP results are reported in the same 
table of SR prediction results (Table 1).  

At first, the impact of quality of SR prediction on GP 
prediction can be assessed through the comparison between 
GP-2 and GP-3. Indeed, the inability to predict the SR with a 
good enough level causes a significant accuracy loss also in 
the GP prediction. Table 1 also shows that using the SR 
prediction from the meteorological service does not provide 
any better results than a very simple predictor – the naïve 
predictor GP-1. On the contrary, the GP predictor using the 
best-obtained SR prediction (SR-5) provides significant 
improvement for GP prediction: GP3 model improves to 8.0 
(for one-day ahead horizon) and 4.9 (3-hour ahead horizon) of 
prediction RMSE of GP2. Some combinations of different 
predictors can achieve a further improvement reducing RMSE 
down to 4.6 (for 3-hour horizon) and 7.7 (for one-day horizon) 
with respect to the best one obtained from single model GP-3. 
Notice that different combinations of single models have been 
tested, but only the results of GP (i.e., a combination of all the 
mentioned predictor in section of PV production prediction of 
this chapter) are reported as GP-4 provides the best results out 
of all combinations. In the end, this combination GP-4 
provides significantly better results than GP-2 or standard GP 
predictor. By applying GP-4, the prediction errors of the 
standard GP predictor reduce from 6.1 (for 3-hour horizon) 

and 9.4 (for one-day horizon) to 4.6 (for 3-hour horizon) and 
7.7 (for one-day horizon) respectively which accounts for 
24.6% and 18% improvements, respectively.  

4. IMPACT OF DAY-AHEAD GP PREDICTION 

In this section the impact of the different GP prediction is 
evaluated on control performance to operate a typical 
microgrid. The considered microgrid contains energy a 
storage, flexible loads, PV plants, and a point of common 
coupling with the national electricity grid as shown in Fig. 6. 
Briefly, the control system aims to maximize the benefit 
coming from trading electricity with the market together with 
minimizing the monetary penalties (or imbalance charge) 
imposed to the microgrid due to violation of the promised 
power with the market in the day-ahead market. The interested 
readers are invited to read (L. A. Dao et al., 2015) for further 
details on the microgrid settings as well as the development of 
employed MPC algorithm. The GP prediction are clearly used 
in the development of the control system, based on MPC. 

 

Fig. 6. Typical microgrid settings and MPC controller 

Applying the same development of MPC algorithm in (L. A. 
Dao et al., 2015) to the considered microgrid, we obtain 
different performances based on different predictors. In this 
work, the performance of the control system is analyzed in 4 
different cases: 

• SMPC-P: perfect day-ahead PV GP prediction – RMSE = 
0% is considered (the future PV GP power is assumed to 
be known over the whole day-ahead or day-ahead 
prediction horizon); 

• SMPC-2: day-ahead PV GP prediction is done with the 
real ensemble predictor discussed in previous section with 
RMSE of 10.08% in the considered day. 

• SMPC-1, SMPC-3 and SMPC-4: synthetic day-ahead PV 
GP prediction data with RMSE of 5.19%, 14.85% and 
19.65% are considered correspondingly.  

To perform the analysis considered in this section, we are here 
adopting the same consideration in (Teleke, Baran, 
Bhattacharya, & Huang, 2010) to emulate the day-ahead 
power production (with respect to which the imbalance 
charges are calculated) by artificially adding a white Gaussian 
noise to the exact production profile. This noise models the 
prediction error that would be obtained in practice. Different 
values of SNR (Signal-to-noise ratio) are set to model the 
above prediction errors. As a result, the day-ahead predictions 
in four cases (SMPC-1, SMPC-2; SMPC-3; SMPC-4) are 
shown in Fig. 7. 
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Fig. 7. Day-ahead prediction errors in four cases 

Apparently, as shown in Fig. 8, the PV GP prediction error 
determines a significant performance reduction. An amount of 
€91.0 for imbalance charge is cut from the total benefit of the 
microgrid due to a 19.65% of prediction error in SMPC-4. Fig. 
8 shows the quality of reference power tracking or PCC power 
tracking in case SMPC-4 and the corresponding behavior of 
the ESS. The ESS behavior suggests that the prediction error 
in SMPC-4 is too big for such an ESS (i.e., Power: 100 kW, 
Energy level: 150 to 500 kWh) to handle, e.g., from 13 o’clock 
to 18 o’clock the ESS needs to discharge in order to help the 
microgrid track the reference power but the ESS energy 
already reaches the lower limit. As for imbalance charge, much 
lower penalties are observed in the case of SMPC-1, SMPC-2, 
SMPC-3 and especially very small penalty in the case of 
perfect GP prediction in SMPC-P. 

 
Fig. 8. PCC Power tracking, ESS energy and power (SMPC-4) 

At the end, comparing the total benefits in the above tests, we 
can compute the percentage decrease of total benefit with 
respect to the ideal perfect prediction case as a function of 
RMSE of GP prediction: we pass from 1% of decrease of total 
benefit with RMSE of about 5% (SMC-1) to 26% of decrease 
of total benefit with RMSE of about 20% (SMPC-4). These 
observations imply that the GP prediction accuracy can have a 
great impact on the overall system performance. 

Table 2. Simulation results 

Case ID Trading [€] Charge [€] benefit [€] 

SMPC-P 379.2 2.3 377.0 
SMPC-1 376.8 4.8 372.0 
SMPC-2 371.2 27.4 343.7 
SMPC-3 372.1 44.2 328.0 
SMPC-4 367.9 91.0 276.9 

* SMPC-2 uses GP prediction designed in previous chapter 

5.  CONCLUDING REMARKS 

The paper investigates different predictors for SR and GP 
in a pilot PV plant including ensemble methods for combining 
multiple predictors. This combination provides significantly 
more accurate results compared to the one obtained from a 
commercial meteorological forecast service (for SR 
prediction) and standard predictor for GP prediction (using 
ARIX model with SR prediction from the service is exogenous 
input). In particular, with the analyzed data set, an 
improvement of approximately 26% (in the medium term) to 
40% (short term) is achieved for SR. As for GP prediction, the 
analysis shows that the dependence of the quality of the GP 
prediction on the quality of SR prediction might be significant. 
The ensemble GP prediction here proposed improves 
approximately 18% (medium term) to 25% (in the short term) 
with respect to the naïve predictor. Future research lines 
include the integration with more sophisticated clustering 
techniques (different ensemble for different clusters), the 
exploitation of other meteorological data like cloud coverage 
and wind speed, the correlation with predictions made in 
neighbouring sites.  
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