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Abstract: The original Izhikevich neuronal model is described by a nonlinear mathematical
model with a static reset map. Due to the fact that the reset is applied instantaneously, it is not
easy to implement this model with analog circuits. Consequently, this paper presents a modified
Izhikevich neuronal model, in which the static and instantaneous reset is replaced by a dynamic
reset, which is physically implementable. Furthermore, the resulting system is modeled as a
hybrid system with two discrete modes. Additionally, the occurrence of synchronization in a
pair of modified Izhikevich neurons is investigated and a comment on the local stability of the
synchronous solution is given. Ultimately, the performance of the modified Izhikevich model is
experimentally validated using electronic circuits.
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1. INTRODUCTION

There exist several mathematical models aiming to de-
scribe the dynamic behavior observed in a neuron cell.
These models may be classified according to their complex-
ity or according to the type of behavior(s) they can repro-
duce. On the other hand, some of these models are biologi-
cally inspired, as the Hodking-Huxley model (Hodgkin and
Huxley, 1990), whereas others are computational efficient,
as the integrate-and-fire models (Jolivet et al., 2004).

Among the existing models, the Hodking-Huxley model
is considered as one of the most complete models in the
sense that it allows explaining, in a qualitative and quan-
titative manner, the generation of the action potential
in the squid giant axon. However, due the complexity
of this model, simplified models which mainly focus on
the membrane potential, have been developed. This is the
case of the Izhikevich model, (Izhikevich, 2003), which
is biologically inspired and computationally efficient. The
Izhikevich model is a nonlinear model with a static reset
map. When the variable describing the membrane poten-
tial reaches a certain upper threshold value the state of the
system is reset instantaneously to a fixed value. Although
the reset map can be easily implementable in software, its
physical implementation with standard analog circuits is
not an easy task, as mentioned in (Kormaz et al., 2016).
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Note that a physical implementation with electronic cir-
cuits may be desirable, specially for the cases of large
arrays of coupled neurons, where a physical implementa-
tion is much faster than the computer simulations, see e.g.
(Wagemakers and Sanjuán, 2013).

This paper presents a modified Izhikevich model, in which
the original static reset map is replaced by a dynamic
reset. This modification allows a relatively easy physical
implementation of the Izhikevich model.

The theory of hybrid systems is used in the modeling
and a design procedure for tuning the dynamic coupling
is provided. Additionally, the modified Izhikevich neuron
is implemented with electronic circuits and a controller
is designed to induce synchronous behavior in a pair
of neurons. Ultimately, the proposed modified model is
validated numerically and experimentally.

The outline of this paper is as follows. First, the original
Izhikevich model is briefly described in Section 2. Then,
the problem statement is given in Section 3. Next, the
design of the proposed dynamic reset and the resulting
Izhikevich model are presented in Section 4, and Section 5
presents the design of a simple controller to synchronize a
pair of modified Izhikevich models. After that, the physical
implementation with electronic circuits of the system and
some experiments on synchronization are provided in
Section 6. Finally, a discussion and some conclusions are
provided in Section 7.
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2. IZHIKEVICH MODEL

The Izhikevich model is described by the following set of
equations (Izhikevich, 2003)

ẋ1 = 0.04x21 + 5x1 + 140− x2 + I, (1)

ẋ2 = a(bx1 − x2), (2)

with the auxiliary after-spike resetting

if x1 � r1, then

{
x1  c
x2  x2 + d,

(3)

where x1 2 R and x2 2 R represent the membrane poten-
tial of the neuron and the membrane recovery variable,
respectively. The parameter a describes the time scale
of x2 and parameter b describes the sensitivity of x2 to
the subthreshold fluctuations of x1. On the other hand, I
denotes the synaptic currents or injected dc-currents.

Note that when the membrane potential x1 reaches the
upper threshold value r1, the state of the system is reset
according to (3), where r1 = 30mV .

Depending on the value of the parameter values a, b,
c and d, different types of neuronal behavior can be
reproduced by model (1)-(3). For example, regular spiking,
bursting, fast spiking, low-threshold spiking, among others
(Izhikevich, 2004; Nobukawa et al., 2015)

3. PROBLEM STATEMENT

The reset function (3) of the Izhikevich model updates
instantaneously the value of the variables x1 and x2 in Eqs.
(1)-(2). Although this reset can be easily implemented in
numerical simulations, its physical implementation with
analog circuits turns out to be complicated, see e.g. (Kor-
maz et al., 2016) (?) (?).

Therefore, the problem addressed in this paper consists in
finding a suitable replacement for the reset function (3),
such that it can be implemented with analog circuits and
without affecting the dynamic behavior observed in the
original Izhikevich system (1)-(3).

To achieve this, the theory of modeling hybrid systems is
used.

4. MODIFIED IZHIKEVICH MODEL

In this section, a modified Izhikevich system is presented.
As a first step, the reset function (3) is replaced by the
following dynamic reset

if x1 � r1, then

{
ẋ1 = −γ(x1 − c),
ẋ2 = β,
ż = 1.

(4)

Note that in the dynamic reset we have included a time
variable z which play the key role of determining the
amount of time that the system trajectories spend in
the dynamic reset mode (4). Specifically, while z < r2
for certain suitably chosen r2 > 0, the system evolves
according to (4) . After that, at z = r2, the system ‘jumps
back’ to Eqs (1)-(2).

Consequently, the modified Izhikevich system can be mod-
eled by the hybrid automaton given in Figure 1. From
the automaton it is clear that the system operates in
two discrete modes: the mode q1, in which the dynamics
are exactly the dynamics (1)-(2) of the original Izhikevich
model and mode q2, which is the proposed dynamic reset
(4).

Initially, the system starts in mode q1 and evolves in this
mode according to (1)-(2). Then, when the membrane
potential x1 reaches the upper-threshold value r1, the
system jumps to mode q2, i.e. to the dynamic reset.

In mode q2 besides the equations describing the time
evolution of x1 and x2, there is an additional variable,
namely z, which is a time variable. Then, the values of γ
and β in the dynamic equations describing x1 and x2 in
mode q2 are chosen such that when z = r2, it holds that
x1 � c+ δ, δ << 0 and x2 = x2(0) + d.

Note that, we are considering the practical case where
x1 � c+ δ and not the ideal case where x1 = c+ δ. This is
due to the fact that the equality only holds when t!1.
However, the system remains in the reset mode q2 for a
finite and short period of time.

Fig. 1. Hybrid automaton for the modified Izhikevich
neuron

4.1 How to determine the values of γ and β in the dynamic
reset (4)

This part provides an algorithm for computing the values
of γ, β, and r2 in the dynamic reset (4).

First, from the first equation in (4) it follows that

x1(t) = (x1(0)− c)e−γt + c, (5)

where x1(0) = r1. Ideally, it is desired that x1(t) = c but
this only occurs in the limit when t ! 1. Instead, the
practical value of interest of x1(t) is x1(t) = δ + c. In
other words, we are interested in the value of x1 when the
transient part of (5) satisfies

(x1(0)− c)e−γt = δ, (6)
for certain δ << 1.

Then, the time at which (6) is satisfied is given by

tδ := − 1

γ
ln

(
δ

x1(0)− c

)
. (7)

Alternatively, the value of γ can be obtained from (6), i.e.
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γ = � 1

tδ
ln

(
δ

x1(0)� c

)
. (8)

Finally, note that the argument of the logarithmic function
in (7) is very small and consequently tδ > 0.

On the other hand, from the second equation in (4) it
follows that

x2(t) = β

∫ t

0

dt+ x2(t0), (9)

= βt+ x2(0). (10)

From (3) it follows that the desired value of x2(t) at time
tδ is

x2(tδ) = x2(0) + d. (11)

Hence, from Eq. (10) it follows that (11) is satisfied if

β =
d

tδ
. (12)

By replacing tδ, given in (7) into (12) yields

β = � dγ

ln
(

δ
x1(0)�c

) . (13)

Finally, it should be noted that the time the system spends
in mode q2 is tδ. Hence, the value of the threshold value
r2, see Figure 1 is

r2 = tδ = � 1

γ
ln

(
δ

x1(0)� c

)
. (14)

This procedure is schematically depicted in Figure 2,
where the evolution of the system dynamics in mode q2, i.e.
during the dynamic reset, is explained. The left plot shows
the time evolution of x1, whereas the top and bottom
plots on the right depict the time evolution of x2 and z,
respectively.
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Fig. 2. Time evolution of the system during the dynamic
reset (4). The time that the system spends in this
mode is denoted by tδ, see Eq. (7).

Algorithm for tunning the parameters in the dynamic re-
set:

(1) Choose a transient time tδ << 1 and a δ << 1
(2) Find the value of γ from Eq. (8)
(3) Find the value of β from Eq. (13)

4.2 Numerical results

In this part, a numerical comparison between the original
Izhikevich model (1)-(3) and the modified model derived
here described by Eqs. (1),(2) with dynamic reset (4),
is provided. Consequently, Eqs. (1)-(3) and Eqs. (1)-(2)
with dynamic reset (4) are numerically integrated by using
the following parameter values a = 0.002, b = 0.2, and
I = 15. Two cases are considered, namely, the case of
regular spiking (c = �65 and d = 6) and bursting (c = �50
and d = 2). For the former case the values of the dynamic
reset are tδ = 50µs and δ = 0.0043 and consequently
γ = 200000 and β = 12000. For the case of bursting the
values of the dynamic reset are tδ = 50µs, δ = 0.0043,
γ = 1.9662e5 and β = 40000.

The obtained results are shown in Figure 3, where the plots
on the left correspond to the original Izhikevich model,
whereas the plots on the right correspond to the modified
Izhikevich model. Clearly, the obtained results are in good
agreement.

Fig. 3. Panels a) and c): time series obtained with the
original Izhikevich model. Panels b) and d): time
series for the modified Izhikevich model. x-axis: time.
y-axis: x1.

5. SYNCHRONIZATION OF A PAIR OF MODIFIED
IZHIKEVICH MODELS

This section presents the design of a controller for inducing
synchronization in a pair of modified Izhikevich models
coupled in a master-slave configuration.

The master system is described by

ΣM :

{
ẋm = F (xm),
ym = Cxm,

(15)
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and the slave system

ΣS :

{
ẋs = F (xs) +Bus,
ys = Cxs,

(16)

where xi 2 R2 and yi 2 R, i = m, s are the state
and output, of master and slave systems, respectively,
and F (xi) is a nonlinear function containing the intrinsic
dynamics of Izhikevich model, and is given by

F (xi) =

[
0.04x2i1 + 5xi1 + 140 + I � xi2
a (bxi1 � xi2)

]
, (17)

where a, b, and I are positive parameters and i = m, s.
Furthermore, each system has a dynamic reset (4) and

B =

[
1
0

]
, C = [1 0] . (18)

The static feedback control input us applied to the slave
system is

us = k(ym � ys) = kC(xm � xs), (19)

where k 2 R+ is the coupling strength.

The synchronization problem reduces to find a suitable
value of coupling strength k, such that the master and
slave system synchronize, at least locally, such that the
following is satisfied

lim
x!1

(xm(t)� xs(t)) = 0. (20)

5.1 A comment on the local stability of the synchronous
solution

The (global) stability analysis of the synchronous solution
(20) in the coupled systems (15)-(16) is not a trivial
task, in part because of the hybrid nature of the system.
However, under some assumptions it is possible to get some
insight into this issue.

Therefore, let assume that the master and slave modified
Izhikevich neurons start in mode q1, see Figure 1, and
furthermore, let assume that the systems synchronize
before the reset takes place.

Then, by defining the synchronization error as e = xm�xs,
yields the following error dynamics for the coupled systems
(15)-(16), with function F defined in (17)[

ė1
ė2

]
=

[
5� k �1
ab �a

]
︸ ︷︷ ︸

A

[
e1
e2

]
+ 0.04

[
x21m � x21s

0

]
︸ ︷︷ ︸

g(t,e)

(21)

Due to the reset, the trajectories of the master and slave
systems are always bounded and therefore, the term g(t, e)
can be considered as a perturbation ‘vanishing on e’,
satisfying

kg(e)k2 � γ kek2 , (22)

where γ is a nonnegative constant, and k�k2 represents the
Euclidean norm. Therefore, from the results presented in
(Khalil, 2002), it follows that a sufficient condition for the
local stability of the error dynamics (21), is that matrix
A should be Hurwitz. This condition can be easily verified
by looking at the characteristic polynomial of matrix A,
which is given by

det(λI �A) = λ2 + (a+ k� 5)λ+ a(b+ k� 5) = 0. (23)

Then, the value of k in the control input (19) should be
chosen as follows to ensure that A is Hurwitz

k � max f5� a, 5� bg . (24)

6. EXPERIMENTAL RESULTS

In this section a pair of modified Izhikevich models (1),(2)
with dynamic reset (4) is implemented with analog cir-
cuits. Furthermore, the circuits are synchronized in a
master-slave configuration, as given in (15)-(16), with in-
put and output vectors as given in (18) and using the
control input (19) .

The system (1)-(2) with dynamic reset (4) is scaled in
amplitude and time, introducing the following change of
variables t = τη, x1 = αx̄1, x2 = θx̄2, z = Γz̄. Then, the
scaled equations for the system Σi in (15)-(16) are given
by

x̄0i1 =

[
0.04αx̄2i1 + 5x̄i1 +

1

α
(140 + I � θx̄i2 + ui)

]
η,

x̄0i2 = a
(α
θ
bx̄i1 � x̄i2

)
η,

(25)
where 0 denotes differentiation with respect to τ , and the
dynamic reset is

if x̄i1 �
r1
α

, then


˙̄xi1 = �γ(x̄i1 �

c

α
)η,

˙̄xi2 =
1

θ
βη,

˙̄z = η/Γ,

(26)

where i = m, s.

Likewise, the static feedback control input us, see (19), is
scaled as follows

us = kα(xm1 � xs1), (27)

and the parameter values are a = 0.002, b = 0.2, k = 5,
and the scaling parameters are defined as α = 10, θ =
100, Γ = 1, η = 1000.

The electronic implementation was constructed using the
scaled equations (25)(26) (27) and the corresponding
schematic diagram is given in Figure A.1. The constructed
experimental setup used to validate the numerical simula-
tions is shown in Figure 4.

Fig. 4. Experimental setup at CICESE.
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The obtained experimental results are shown in Figures 5
to 7. The experimental data have been obtained by using
the TDS3012C Digital Oscilloscope from Tektronix.

Figure 5 shows the numerical simulations and the mea-
surements from the circuit, using different parameters.

Fig. 5. Comparison between numerical and experimental
results with parameters a = 0.02, b = 0.2, I = 15;
a) Numerical results for c = �50, d = 6; b) Circuit
measurements for c = �50, d = 6; c) Numerical
results for c = �50, d = 2; d) Circuit measurements
for c = �50, d = 2. x-axis: time. y-axis: x1

Figure 6 shows the synchronization of the master and slave
Izhikevich electronic neurons.

Fig. 6. Synchronized bursting behavior in the coupled
Izhikevich electronics neurons

The phase plane projection of the outputs of the systems
is shown in Figure 7. These experimental results confirm
that the modified Izhikevich model has been successfully
implemented with analog circuits.

Fig. 7. Projection of the experimental solution of the
system onto the (x1,x2) plane

7. DISCUSSION AND CONCLUSIONS

A modified Izhikevich model has been presented, in which
the static reset function of the original Izhikevich model
has been replaced by an ad hoc designed dynamic reset.
The resulting system has been modelled as a hybrid
system with two discrete modes. It has been demonstrated
that the modified Izhikevich model presented here can be
physically implemented with analog circuits.

It is our hope that the derived model and circuit will
be useful in the study of neural dynamics, together with
other analog implementations of neuronal models, see e.g.
(Vromen et al., 2016; Savino and Formigli, 2009)
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Appendix A. ELECTRONIC CIRCUIT

Fig. A.1. Schematic implementation of the modified Izhike-
vich model with analog circuits.
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