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Abstract: We propose a novel optimal estimation methodology for gasoline engine LP (low-
pressure) EGR (exhaust gas recirculation) air-path system, which allows us to implement
virtual sensors for oxygen mass fraction at the intake manifold and EGR mass flow rate at
the LP-EGR valve, real sensors for them too expensive to deploy in production cars. We first
decompose the LP-EGR air-path system into several sub-components; and opportunistically
utilize physics-based modeling or data-driven modeling for each component depending on their
model complexity. In particular, we apply the technique of MLP (multi-layer perceptron)
as a means for data-driven modeling of LP-EGR/throttle valves and engine cylinder valve
aspiration dynamics, all of which defy accurate physics-based modeling, that is also simple
enough for real-time running. We further optimally combine these physics-based and data-
driven modelings in the framework of UKF (unscented Kalman filtering), and also manifest
via formal analysis that this mixed physics-based/data-driven modeling renders our estimator
much faster to run as compared to the case of full data-driven MLP modeling. In doing so,
we also extend the standard UKF theory to the more general case, where the system contains
non-additive uncertainties both in the measurement and process models with cross-correlations
and state-dependent variances, which stems from the inherent peculiar structure of our mixed
physics-based/data-driven modeling approach, for the UKF formulation. Experiments are also
performed to show the theory.

Keywords: Gasoline engine low-pressure exhaust gas recirculation (Gasoline LP-EGR), mixed
physics-based/data-driven modeling, multi-layer perceptron (MLP), unscented Kalman
filtering (UKF), non-additive cross-correlated measurement and process noises with
state-dependent variacnes

1. INTRODUCTION

With the emission regulation for automotive vehicles be-
coming stringent worldwide, automotive engine technolo-
gies have been evolving to improve fuel economy. One of
such technologies is the exhaust gas recirculation (EGR),
which adds some inert and higher-specific-heat-ratio gas to
the fresh air, thus, reducing in-cylinder combustion tem-
perature. This EGR technology has first been researched
and commercialized on diesel engines for NOx reduction
purpose (Grondin et al., 2009), and later finds its way into
gasoline engines to suppress knocking tendency for better
fuel economy (Kiwan et al., 2017).

Two representative configurations of this EGR are: 1)
high-pressure (HP) EGR, where the exhaust gas from the
exhaust manifold is directly channeled to the intake mani-

? Research supported by Hyundai Motor Group under the grant
0420-20180163.

fold (Kolmanovsky et al., 2000); and 2) low-pressure (LP)
EGR, where the gas from the turbine downstream is fed
into the compressor upstream through some intermediate
components (Wiese et al., 2017). See Fig. 1 for the configu-
ration of LP-EGR system we consider in this paper. Since
the temperature of EGR to the intake manifold is much
lower, the LP-EGR is typically considered substantially
more effective than the HP-EGR.

It is however challenging to accurately control the amount
of EGR to the intake manifold for this LP-EGR system.
This is because the pressure difference at the EGR valve
Pegrv (See Fig. 1) is typically fairly low in the LP-EGR
system, making it impossible to accurately model the
EGR flow rate with real-time runnable model complexity,
e.g., orifice equation (Kiwan et al., 2017). This then
means that, even if the aspirated fresh air flow rate Wa

can be correctly measured with HFM (hot-film air-mass)
sensor, since the EGR flow rate Wegrv can neither be
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Fig. 1. Gasoline LP-EGR airpath system considered in this
paper with sensors (green dots), intermediate volumes
(blue boxes) and model variables (red letters).

modeled nor measured accurately as stated above, it can
never be accurately known or controlled either. Feedback
control can be adopted to enforce robustness against such
model inaccuracy. This feedback control however requires
the values of output variables (i.e. oxygen content at
the intake manifold F4 and EGR flow rate at the LP-
EGR valve Wegrv in this paper) as well as other state
variables. Adding sensors to directly real-time measure
these variables in production cars is generally infeasible
in terms of cost, robustness and form-factor (e.g. oxygen
concentration sensor at intake manifold).

In this paper, we propose a novel optimal state estima-
tion framework for this LP-EGR system. We focus on
the system with the configuration as shown in Fig. 1,
although the framework presented here can be applied
to other configurations or other systems as well. We first
decompose the LP-EGR system into sub-components as in
Fig. 1, and opportunistically apply physics-based or data-
driven modeling for each component. More precisely, we
model all the “volumes” in Fig. 1 using their physics, since
they possess rather simple dynamics, allowing for simple
and accurate physics-based modeling. On the other hand,
for the LP-EGR vale and the throttle valves, which do
not subsume such simple/accurate physics-based models
due to the low pressure drop as stated above, we apply
data-driven modeling. For this, we in particular utilize
MLP (multi-layer perceptron (Goodfellow et al., 2016; Shi
et al., 2019; Moriyasu et al., 2018; Bottelli et al., 2013)),
which is known to be able to approximate fairly rich class
of functions and whose learning also known to converge
well. We further apply this MLP modeling to the cylinder
aspiration flow, whose accurate and real-time runnable
physics-based modeling is virtually impossible with its dy-
namics depending on phenomena too difficult to accurately
capture with simple and real-time runnable model (e.g.
flow rate into cylinder near valve opening/closing times
(Andersson and Eriksson, 2004; Kocher et al., 2012)).

We then optimally combine these physics-based and data-
driven models along with the sensor measurements by
fusing their means and uncertainties in the framework of

UKF (unscented Kalman filtering (Julier et al., 2000)).
For this, we extend the standard theory of UKF to the
case of mixed physics-based/data-driven models in gen-
eral, which inherently has a peculiar uncertainty structure
for UKF design: 1) the data-driven modeling uncertainties
enter into the nonlinear measurement function as well as
into the nonlinear state propagation function at the same
epoch (i.e. non-addivite cross-correlated measurement and
process noises), and 2) the variances of these data-driven
modeling uncertainties further depend on the states. Both
of these properties are not addressed in the previous works
of UKF theories (Julier and Uhlmann, 2004; Chang, 2014;
Yu et al., 2016; Tronarp et al., 2016), yet, our proposed
UKF theory applies to the more general type of mod-
els with such properties, including the mixed physics-
based/data-driven modeling approach in this paper. We
further perform a formal analysis to manifest that the
use of our mixed physics-based/data-driven modeling with
our UKF algorithm designed for its peculiar uncertainty
structure renders the estimation run much faster than the
use of the purely data-driven modeling with the standard
UKF, which is a good property for real-world implemen-
tations typically constrained by ECU (electronic control
unit) limitations (e.g. industrial control applications such
as production cars).

For related works, Chen and Wang (2013); Castillo et al.
(2013); Grondin et al. (2009) developed state estimation
algorithms for oxygen concentration or EGR mass fraction
in diesel LP-EGR systems using Luenberger observer or
Kalman filter based on physics-based models, which are
limited on diesel engines because gasoline LP-EGR typi-
cally has much lower pressure difference (thus inaccurate)
than diesel LP-EGR. Moriyasu et al. (2018) modeled the
diesel HP-EGR system by using a pure single large MLP
and applied standard UKF, yet, cannot work for real-time
estimation purpose due to the high computational load of
their large size MLP that is neither affordable to their ECU
nor to their PC. Moriyasu et al. (2018) also conducted their
work based on the ideal data from a simulation model and
did not take account the modeling uncertainty of MLP
into the estimation algorithm. Kaufmann et al. (2019)
takes account the pure MLP model and its modeling error
as a measurement and its variance in the EKF, whose
estimation structure is standard and much simpler than
for our proposed mixed physics/MLP-based model. Note
that, the theoretical backgrounds and the frameworks to
combine the MLP-based modeling with the traditional
estimation/control methods are also unmature until nowa-
days, e.g., the stability analysis and stable control design
are only recently proposed in Shi et al. (2019).

The rest of the paper is organized as follows. We present
the mixed physics-based/data-driven modeling in Sec. 2.
We then extend the standard UKF theory to address the
peculiar uncertainty structure stemming from our problem
along with a formal analysis on its computation load in
Sec. 3. Experimental results to validate our proposed esti-
mation algorithm are presented in Sec. 4. We summarize
the paper and provide the concluding remarks in Sec. 5.
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2. MIXED PHYSICS-BASED/DATA-DRIVEN
MODELING

For the modeling of the gasoline LP-EGR system in Fig.
1, we divide the system into the four volumes (i.e. the
compressor upstream, the compressor downstream, the
intercooler downstream, and the intake manifold), whose
physics-based modelings are easy and accurate, and the
components in between or at the end of the volumes (i.e.
the LP-EGR valve, the compressor, the intercooler, the
throttle valve, the cylinder, and the fuel injector), whose
physics-based modelings are often relatively difficult or
inaccurate. The random variables that we want to estimate
are the oxygen concentrations Fi, the temperatures Ti and
the pressures Pi of the four volumes, and the mass flow
rate at the LP-EGR valve Wegrv, where the subscripts i =
1, 2, 3, 4 denote the compressor upstream, the compressor
downstream, the intercooler downstream and the intake
manifold, respectively.

2.1 Physics-based Modeling of Volume Dynamics

With the standard physics laws (i.e. the ideal gas law, the
mass conservation law, the energy conservation law, and
the perfect mixing) assumed on each volumes, we have the
standard form of volume dynamics model that are widely
used in the automotive control fields (Grondin et al., 2009):

Ṗ1 =
Rγ

V1
(WaTa +WegrvTeu −WcT1) (1)

Ṫ1 =
RT1

P1V1
[Wa(γTa − T1) +Wegrv(γTeu − T1)

+Wc(γ − 1)T1] (2)

Ḟ1 =
RT1

P1V1
[Wa(Fa − F1) +Wegrv(Feu − F1)] (3)

Ṗ2 =
Rγ

V2
(WcTco −WicT2) (4)

Ṫ2 =
RT2

P2V2
[Wc(γTco − T2)−Wic(γ − 1)T2] (5)

Ḟ2 =
RT2

P2V2
Wc(F1 − F2) (6)

Ṗ3 =
Rγ

V3
(TioWic − T3Wth) (7)

Ṫ3 =
RT3

P3V3
[Wic(γTio − T3)−Wth(γ − 1)T3] (8)

Ḟ3 =
RT3

P3V3
Wic(F2 − F3) (9)

Ṗ4 =
Rγ

V4
(WthT3 −Wcyl,inT4) (10)

Ṫ4 =
RT4

P4V4
[Wth(γT3 − T4)−Wcyl,in(γ − 1)T4] (11)

Ḟ4 =
RT4

P4V4
Wth(F3 − F4) (12)

where Vi (i = 1, 2, 3, 4) are the volumes; R is the gas
constant of the air; γ is the specific heat ratio of the air;
Wa is the fresh air mass flow rate measured from the HFM
sensor; Ta and Teu are the temperatures of the fresh air
and the LP-EGR gas, respectively, measured from each
sensors; Fa and Feu are the oxygen concentrations of the
fresh air and the LP-EGR gas that are assumed to be

constant and zero, respectively, in this paper; Wegrv, Wc,
Wic, Wth and Wcyl,in are the mass flow rates through
the LP-EGR vavle, the compressor, the intercooler, the
throttle valve, and the cylinder inlets, respectively, which
are random variables; Tco and Tio are the gas temperatures
at the outlets of the compressor and the intercooler,
respectively, which are random variables.

With the additional standard assumption that the com-
pressor upstream is almost completely opened to the at-
mosphere through the fresh air inlet (i.e. P1 ' Pa, thus,

Ṗ1 ' 0), which then applied to (1), we have the relations
between the compressor mass flow rate and the other
variables:

Wc =
WaTa +WegrvTeu

T1
(13)

Similarly, with the assumption of almost no pressure loss
at the intercooler (i.e. P2 ' P3, thus, Ṗ2 ' Ṗ3), which then
applied to (4) and (7), we have the relatioins between the
intercooler mass flow rate and the other variables:

Wic =
Wc

Tco

V2
+Wth

T3

V3

T2

V2
+ Tio

V3

(14)

We have the standard model of the intercooler outlet gas
temperature:

Tio = T2 − εic(T2 − Tcool) (15)

where Tcool is the coolant temperature (e.g. Tcool = Ta
in case of air cooling); εic is the cooling efficiency that is
assumed to be constant in this paper for the simplicity of
the writing, while can also be easily incorporated as a bias
state for estimation as in the experiment in Sec. 4.

In addition, with the standard assumption of stoichio-
metric reaction between the oxygen and the fuel in the
cylinder, we have the standard relation

Fex =
Wcyl,inF4 −OFRs ·Wf

Wcyl,in +Wf
(16)

where Fex is the oxygen concentration of the exhaust
gas measured from the lambda sensor; Wf is the the
mass flow rate of the fuel into the cylinder; OFRs is the
stoichiometric reaction mass ratio between the oxygen and
the gasoline fuel.

The propagation equations of the random variables that
we want to estimate are then summarized by (2)-(6) and
(8)-(12) with P1 and P3 replaced by Pa and P2, respec-
tively, and with Wc, Wic and Tio in the equations replaced
by (13), (14) and (15), respectively. This propagation
model can then be presented by:

x[k] = f (x[t], yp[t] + ỹp[t],m[t]) (17)

where k is the time step number; t = k − 1 is the prior
step of k;

x := [T1, T2, T3, T4, P2, P4, F1, F2, F3, F4]T

is the state random variable;

yp := [Wa, Ta, Teu]T

is the measurement of the boundary conditions for this
physics-based model; ỹp[t] is the uncertainty in this mea-
surement of boundary conditions;

m := [Wegrv,Wth,Wcyl,in, Tco,Wf ]
T

(18)
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Fig. 2. Typical structure of the MLP (multi-layer percep-
tron).

is the random variable that are not yet modeled in this
Sec. 2.1 because their physics-based models are typically
inaccurate (e.g. Wegrv) or difficult (e.g. Wcyl,in).

2.2 Data-Driven Component Modeling via MLP

For the data-driven modeling of each random variables in
m (18), we apply the technique of MLP, which is a typical
forward neural network (–see Fig. 2) that calculates its
output from its input by forward propagation based on
weights and nonlinear activation functions s.t.

η0 = ξ (19)

ηl = φ (Ωlηl−1) for l = 1, · · · , L (20)

ηL+1 = ΩL+1ηL (21)

where ξ is the input vector to the MLP; ηl ∈ <nl is
the output vector of the l-th layer; nl is the number of
neurons in the l-th layer; Ωl ∈ <nl×nl−1 is the weight
matrix multiplied to ηl−1 to calculate the input vector to
the l-th layer; φ(·) is the activation function in each hidden
neuron; L is the total number of the hidden layers between
the input and the output layers of the MLP; ηL+1 is the
output vector of the MLP. From (19)-(21), we have the
explicit function between the input/output of the MLP:

ηL+1 = ΩL+1φ (ΩLφ (· · ·φ (Ω1ξ) · · · )) =: Φ(θ, ξ) (22)

that is parameterized by the weights θ := {Ω1, · · · ,ΩL+1},
and this parameter θ is trained offline to fit the data
set of the input/output pair

{
ξdata, ηdata

}
, typically by

minimizing the entire loss between the function and the
data set s.t.

θ∗ = argmin L
(
Φ
(
θ,
{
ξdata

})
,
{
ηdata

})
(23)

This minimization typically requires the gradients of the
cost function w.r.t. the weights (e.g. gradient decent) that
are calculated offline by backward propagation s.t.

∂L
∂ηl

=
∂L
∂ηl+1

∂ηl+1

∂ηl
=

∂L
∂ηl+1

 φ′
(
Ω1
l+1ηl

)
Ω1
l+1

...
φ′
(
Ω
nl+1

l+1 ηl
)

Ω
nl+1

l+1

 (24)

∂L
∂Ωijl+1

=
∂L
∂ηl+1

∂ηl+1

∂Ωijl+1

=
∂L
∂ηil+1

φ′
(
Ωil+1ηl

)
ηjl (25)

for l = L, · · · , 0, where Ωil is the i-th row of Ωl; Ωijl+1 is

the j-th element of Ωil+1; ηjl is the j-th element of ηl. Note
that, the bias weights are also included while omitted in
(19)-(25) for simple explanation.

Fig. 3. The modeling errors of the MLP-based models (red)
and the physics-based models (blue).

For the MLP-based modeling of Wegrv in m (18), we first
choose its input vector as ξWegrv

= [uegrv, Pegrv, Teu]T ,
which is physically reasonable to describe Wegrv (–see Fig.
1), where uegrv is the EGR valve opening angle measured
from its encoder; Pegrv is the differential pressure across
the LP-EGR valve measured from the differential pressure
sensor. We do not incorporate Feu because its value is
almost constant (i.e. 0) and its incorporation does not
clearly improve the model in our experience. We then have
the data set of the input/output pair {ξdata

Wegrv
,W data

egrv } for

modeling. We choose the size of the MLP and train the
weights by standard procedures, e.g., in our experiment
in Sec. 4 we simply use the neural fitting toolbox in
MATLAB, where the size of the MLP is one-hidden layer
(i.e. L = 1), and the number of the hidden neurons n1 is,
by our experience, chosen to minimize the test set error to
avoid overfitting. We then have the MLP-based model of
Wegrv:

WMLP
egrv (ξWegrv

) := Φ(θ∗Wegrv
, ξWegrv

) (26)

Note that, we have the fitting errors (–see Fig. 3(a)), i.e.,
the difference between the data and the trained MLP-
based model:

W̃MLP,fit
egrv := W data

egrv −WMLP
egrv (ξdata

Wegrv
) (27)

and similarly we can define the modeling error, i.e., the
difference between the real and the trained MLP-based
model:

W̃MLP
egrv := Wegrv −WMLP

egrv (ξWegrv
) (28)

Because our data set (i.e. steady-state engine calibration
data that is time-averaged on each operation points) does
not contain noise, we assume each data represents the
real value, i.e., (ξdata

Wegrv
,W data

egrv ) = (ξWegrv ,Wegrv), thus,

the fitting error represents the modeling error from (27)-

(28), i.e., W̃MLP
egrv ' W̃MLP,fit

egrv . By noting this, we can see
in Fig. 3(a) that the modeling errors are clearly smaller
and their distribution is more unbiased in the data-driven
MLP-based model than in the typical physics-based model
(i.e. orifice equation (Grondin et al., 2009)), which is yet,
often large relative to the real value.

Such remaining modeling error in the data-driven model
can be probabilistically considered in the optimal esti-
mation stage in Sec. 3, by seeing the error as a random
uncertainty with some modeled variance QWegrv

s.t.

W̃MLP
egrv ∼

(
0, QWegrv

)
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For this, we extract the variance QWegrv
from the fitting

error (i.e. modeling error) data {W̃MLP,fit
egrv }, and this again

can be modeled as a function of the other variable, e.g.,
QWegrv

(ξWegrv
) (Khosravi et al., 2011). Here, we rather

simply model this variance by the function of a scalar
WMLP
egrv (ξWegrv

) ∈ <1 to avoid a lack of data in a large
input dimension, thus, have:

W̃MLP
egrv ∼

(
0, QWegrv

(
WMLP
egrv (ξWegrv

)
))

(29)

We then have the propagation equation between random
variables (i.e. the input vector ξWegrv

, the output Wegrv,

and the model uncertainty W̃MLP
egrv ):

Wegrv = WMLP
egrv (ξWegrv

) + W̃MLP
egrv (30)

Similar to the procedure of (26), (29) and (30) for Wegrv,
we obtain the propagation equations for the other random
variables in m (18), respectively:

Wth = WMLP
th (ξWth

) + W̃MLP
th (31)

Wcyl,in = WMLP
cyl,in (ξWcyl,in

) + W̃MLP
cyl,in (32)

Tco = TMLP
co (ξTco

) + T̃MLP
co (33)

Wf = WMLP
f (ξWf

) + W̃MLP
f (34)

with

W̃MLP
th ∼

(
0, QWth

(
WMLP
th (ξWth

)
))

(35)

W̃MLP
cyl,in ∼

(
0, QWcyl,in

(
WMLP
cyl,in (ξWcyl,in

)
))

(36)

T̃MLP
co ∼

(
0, QTco

(
TMLP
co (ξTco)

))
(37)

W̃MLP
f ∼

(
0, QWf

(
WMLP
f (ξWf

)
))

(38)

where WMLP
th (·), WMLP

cyl,in (·), TMLP
co (·) and WMLP

f (·) are

the trained MLP-based models of each;QWth
(·),QWcyl,in

(·),
QTco

(·) and QWf
(·) are the variances of the model uncer-

tainties of each; the input vector of each are chosen to be
physically reasonable to describe each output:

ξWth
:= [uth, P2, P4, T3, F3]T (39)

ξWcyl,in
:= [P4, Ne, uvvd, uex, uin]T (40)

ξTco := [Wc, P2, T1]T (41)

ξWf
:= ucmdf (42)

where uth is the throttle valve opening angle measured
from its encoder; Ne is the rpm of the engine measured
from the crankshaft angle hall sensor; uvvd is the variable
valve duration input of the cylinder; uex and uin are the
cylinder exhaust and intake ports cam angles measured
from their encoders, respectively; ucmdf is the fuel volume
flow rate command.

Note that, the effects of the cylinder valves [uvvd, uex, uin]T

in (40) to Wcyl,in are too complicated to model based
on some physics laws. Similar to the LP-EGR valve, the
accuracy of this MLP-based cylinder flow model is better
than that of the typical physics-based model (i.e. speed-
density model (Grondin et al., 2009)) as compared in Fig.
3(b).

The propagation models (30)-(34) can then be presented
by:

m[k] = g(x[k], ym[k] + ỹm[k]) + m̃[k] (43)

where

ym := [uegrv, Pegrv, Teu, uth, Ne, uvvd, uex, uin, u
cmd
f ]T

is the measurement of the boundary conditions for the
MLP-based models; ỹm[k] is the uncertainty in this mea-
surement of the boundary condition;

g(x[k], ym[k] + ỹm[k]) :=


WMLP
egrv (ξWegrv

)

WMLP
th (ξWth

)
WMLP
cyl,in (ξWcyl,in

)

TMLP
co (ξTco

)
WMLP
f (ξWf

)

 (44)

is simply a bunch of the MLP-based models;

m̃[k] :=
[
W̃egrv[k], W̃th[k], W̃cyl,in[k], T̃co[k], W̃f [k]

]T
(45)

is the uncertainty vector specifying the modeling error.
From (29) and (35)-(38), the model uncertainty vector can
be characterized by:

m̃[k] ∼ (0, Qm̃(g(x[k], ym[k] + ỹm[k]))) (46)

where Qm̃ := diag
(
QWegrv

, QWth
, QWcyl,in

, QTco
, QWf

)
.

2.3 Mixed Physics/MLP-Based Model

We obtain the state propagation model of the entire sys-
tem, by substituting the MLP-based model (43) obtained
in the Sec. 2.2 into the physics-based state dynamics model
(17) obtained in the Sec. 2.1:

x[k] = F (x[t], y[t] + ỹ[t], m̃[t]) (47)

where

y := [Wa, Ta, Teu, uegrv, Pegrv, uth, Ne, uvvd, uex, uin, u
cmd
f ]T

is the measurement of the boundary conditions of the
entire system (i.e. the union of yp and ym); ỹ[t] is the un-
certainty in this measurement of the boundary condition.

With the measurements that contain the information of
the state random variables:

z := [P2, P4, T4, Fex]T

we obtain the measurement model, by substituting the
MLP-based model (43), thus (32) and (34), into the
physics-based model (16):

z[k] = H(x[k], y[k] + ỹ[k], m̃[k]) + z̃[k] (48)

where z̃[k] is the measurement noise of z[k].

We checked that the state random variable x is observable
from this state propagation/measurement model (47)-(48)
when they are linearized w.r.t. x.

Remark 1 The forward propagation of MLP (19)-
(21) implies that the network output calculation is typ-
ically fast as long as the number of neurons is small.
Furthermore, for the weight training (23) based on the
backward propagation of the gradients (24)-(25), φ(·) is
typically required to be gradient-smooth, i.e., φ′(·) ∈ C1,
implying that the gradient of the network outputs w.r.t.
the network inputs is smooth, i.e., ∂Φ

∂ξ (·, ξ) ∈ C1. These

structural characteristics of typical MLP means that the
state model including such MLPs can be used: 1) for real-
time estimation/control purpose as long as the size of each
MLP is sufficiently small, and 2) for the linearization-
based estimation/control methods (e.g. with ∂F

∂x ∈ C
1 in

EKF/LQR) as long as φ′(·) ∈ C1.
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3. UKF DESIGN FOR MIXED
PHYSICS-BASED/DATA-DRIVEN MODEL

For the optimal estimation of the state x[k] from many
different information (i.e. the sensors y[k] and z[k] and
the nonlinear models (47)-(48)) that contain uncertainties
as well (i.e. the measurement noises ỹ[k] and z̃[k] and the
modeling error m̃[k]), we adopt UKF, which utilizes σ-
points (set of finite number of points encoding the state
mean and covariance) to capture the nonlinear distortion
of the state probability distribution through nonlinear
functions that even exacerbates in the experiment, and
then similar to KF (Kalman Filtering) obtain the maxi-
mum a posteriori optimal state estimate given the current
state measurement and based on the variances of the
uncertainties.

3.1 Analysis & Consideration of Uncertainties into UKF

Recall that the uncertainties m̃[t] and ỹ[t] enter into the
nonlinear state propagation function at time t (47) as well
as m̃[k] and ỹ[k] into the nonlinear measurement function
at time k (48) (i.e. non-additive process and measurement
noises). In order to consider the nonlinear distortions of the
probability distributions of these uncertainties as well as
the state, we define the augmented state vector containing
all of them similar to (Julier and Uhlmann, 2004):

xa[t] := [x[t]T , ỹ[t]T , m̃[t]T , ỹ[k]T , m̃[k]T ]T (49)

In our mixed physics-based/data-driven modeling, state
x[t] and uncertainties ỹ[t] and m̃[t] are cross-correlated
given the measurement z[t] because z[t] contains their
information as in (48) at time t, and these same x[t],
ỹ[t] and m̃[t] enter into the nonlinear state propagation
at time t (47), which implies the σ-points that are to be
propagated through (47) to predict the next step state
x[k] should reflect their cross-correlations given z[t]. For
this purpose, we define:

xb[t] = [x[t]T , ỹ[t]T , m̃[t]T ]T (50)

whose probability distributions should be updated to-
gether by z[t], having:

x̂a[t|t] : = E

[
xb[t]
ỹ[k] z[t], · · · , z[1]
m̃[k]

]
=

[
x̂b[t|t]

0
0

]

Pa[t|t] : = E

[ [
xb[t]− x̂b[t|t]

ỹ[k]
m̃[k]

]
[·]T z[t], · · · , z[1]

]
(51)

=

Pb[t|t] 0 0
0 Qỹ 0

0 0 Q̂m̃[k|t]

 (52)

where

Q̂m̃[k|t] := E [Qm̃(g(x[k], ym[k] + ỹm[k]))|z[t], · · · , z[1]]
(53)

The standard generation of 2N + 1 σ-points (Julier et al.,
2000) for the mean x̂a[t|t] and the covariance Pa[t|t] has
the form of:

X 0,i,i+N
a [t|t] = x̂a[t|t] , x̂a[t|t]± γ

(√
Pa[t|t]

)
i

=

[
x̂b[t|t]

0
0

]
,

[
x̂b[t|t]

0
0

]
± γ


√
Pb[t|t] 0 0

0
√
Qỹ 0

0 0

√
Q̂m̃[k|t]


i

=:

X ib [t|t]X iỹ[k]

X im̃[k]

 (54)

where γ = α
√
N + κ and i = 1, · · · , N ; N := dim(xa);

α is the scaling parameter for the higher-order (≥ 3)
error terms in UKF; κ = 3 − N is the tuning parameter
for partially matching the 4th order moment for, e.g.,
Gaussian distribution. The corresponding weights for the
σ-points are:

W0
m =

λ

N + λ
, W0

c =
λ

N + λ
+ (1− α2 + β)

Wi
m =Wi

c =
1

2(N + λ)
for i = 1, 2, · · · , 2N

where λ = α2(N + κ)−N .

Note that, if the variances of the uncertainties are not
state-dependent, e.g., Qm̃(·) is modeled as a constant, the
2N + 1 σ-points are straightforwardly computed by (54)
given x̂b[t|t], Pb[t|t], Qỹ and Qm̃, yet, our mixed physics-
based/data-driven modeling has the state-dependent vari-
ances of modeling uncertainties, which implies we cannot
compute the entire equation of (54) at once before we

obtain Q̂m̃[k|t]. However, thanks to the causality of (47)
and (46) that x[k] is not a function of the uncertainties
(e.g. m̃[k]) whose variances are functions of x[k], we only
need to compute X ib [t|t], i.e., the first dim(xb) rows of (54),

which is computable without Q̂m̃[k|t], to predict the next
step state x[k] by (47).

3.2 UKF Algorithm Procedure to Estimate the State

Given x̂b[t|t] and Pb[t|t], we first calculate X ib [t|t] for i =
0, · · · , 2N in (54), and then compute:

X ix[k|t] = F
(
X ix[t|t], y[t] + X iỹ[t|t],X im̃[t|t]

)
(55)

where X ix[t|t], X iỹ[t|t], X im̃[t|t] are the elements of X ib [t|t]
corresponding to x[t], ỹ[t], m̃[t], respectively. We then
predict x[k]:

x̂[k|t] =

2N∑
i=0

Wi
mX ix[k|t]

After y[k] (thus ym[k]) is given at time k, we calculate the
variance of modeling uncertainty m̃[k] in (53):

Q̂m̃[k|t] = E [ Qm̃(g(x̂[k|t], ym[k]))

+∇(x,ym)Qm̃(g(x̂[k|t], ym[k])) · (x̃[k|t], ỹ[k])

+O
(
(x̃[k|t], ỹ[k])2

)
| z[t], · · · , z[1]

]
= Qm̃(g(x̂[k|t], ym[k]))

+ E
[
O
(
(x̃[k|t], ỹ[k])2

)
| z[t], · · · , z[1]

]
' Qm̃(g(x̂[k|t], ym[k])) (56)
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which in turn is a simple substitution of x̂[k|t] and ym[k]
into the variance function (46). Note that, the error is 2nd

order high relative to the variance Q̂m̃[k|t], thus 4th order

moment, which implies that the accuracy of the Q̂m̃[k|t]
computation by simple substitution (56), though not using
σ-points (similar to the mean propagation of EKF), is
compatible to the standard UKF.

We then calculate X iỹ[k] and X im̃[k] for i = 0, · · · , 2N in

(54) based on Q̂m̃[k|t], and then compute:

Zi[k] = H
(
X ix[k|t], y[k] + X iỹ[k],X im̃[k]

)
(57)

We compute:

ẑ[k] =

2N∑
i=0

Wi
mZi[k]

Pz[k] =

2N∑
i=0

Wi
c

(
Zi[k]− ẑ[k]

)
(·)T +R[k]

where R[k] := E[z̃[k]z̃[k]T ] is the variance of the measure-
ment uncertainty.

We calculate X ib [k|t] using X iỹ[k|t] = X iỹ[k] and X im̃[k|t] =

X im̃[k]:

X ib [k|t] :=

X ix[k|t]
X iỹ[k|t]
X im̃[k|t]

 =

X ix[k|t]
X iỹ[k]

X im̃[k]

 (58)

which means that we reuse the σ-points of uncertainties
that were already used in the calculation of Zi[k] in (57)
(i.e. X iỹ[k] and X im̃[k]) for the right computation of the

cross-correlation between X ib [k|t] and Zi[k] in (59).

We then compute by the standard procedure:

x̂b[k|t] =

2N∑
i=0

Wi
mX ib [k|t] = [x̂[k|t]T , 0, 0]T

Pb[k|t] =

2N∑
i=0

Wi
c

(
X ib [k|t]− x̂b[k|t]

)
(·)T

(whch, by calculation, further becomes:

= diag ( P [k|t] , Qỹ , Qm(g(x̂[k|t], ym[k])) ) )

Pxbz[k|t] =

2N∑
i=0

Wi
c

(
X ib [k|t]− x̂b[k|t]

) (
Zi[k]− ẑ[k]

)T
Kb[k] = Pxbz[k|t]Pz[k]−1 (59)

Given the measurement z[k], we compute the Kalman
correction:

x̂b[k|k] = x̂b[k|t] +Kb[k](z[k]− ẑ[k]) (60)

Pb[k|k] = Pb[k|t]−Kb[k]Pz[k]Kb[k]T

which is the maximum a posteriori optimal fusion of
the predicted state information x̂b[k|t] and the current
information of xb[k] contained in z[k]. The algorithm then
returns the state estimate x̂[k|k] and its covariance P [k|k]
from x̂b[k|k] and Pb[k|k], respectively, while proceed to the
begginning of this Sec. 3.2 with t← k(= t+1) for recursive
estimation.

Remark 2 We analyze the computational load of UKF for
the cases of: 1) our proposed mixed physics/MLP-based
model (47) containing the small splitted MLPs (44), and
2) the pure single large MLP model:

Fig. 4. Experimental results: oxygen mass fraction at
intake manifold F4 (top) and mass flow rate at the LP-
EGR valve Wegrv (bottom) in real engine experiment
estimated by our state estimation algorithm (red) and
their ground truths (blue-dotted).

x[k] = gpure(x[t], y[t] + ỹ[t]) + m̃pure[t] (61)

For simple comparison, we suppose that the number of
input, output and hidden neurons in each splitted MLPs in
(44) are 1

dim(m) times smaller than that in the pure single

large MLP gpure of (61), respectively, which means that
the number of the multiplications of network weights in
the forward calculations in each splitted MLPs is 1

dim(m)2

times smaller than in gpure. This means that the number
of total calculations in g (44) is 1

dim(m) times smaller

than in gpure (61) because the number of MLPs in g is
dim(m). This implies that the computational cost of our
proposed mixed physics/MLP-based model would be lower
than the pure single large MLP model. In UKF algorithm,
the 2N+1 (N = dim(x)+2dim(y)+2dim(m)) σ-points are
propagated through our proposed mixed physics/MLP-
based model, while 2Npure +1 (Npure = dim(x)+2dim(y))
σ-points through the pure single large MLP model. By
combining the cost of the propagation model itself and the
number of σ-points in the UKF, the final computational
cost of the UKF with our mixed physics/MLP-based model
would be:

1

dim(m)
× 2N + 1

2Npure + 1

=
1

dim(m)
+

4

2dim(x) + 4dim(y) + 1

times smaller than the UKF with the pure single large
MLP model, e.g., 1

4 times in our LP-EGR system with
dim(x) = 10, dim(y) = 11 and dim(m) = 5.

4. EXPERIMENT

Our proposed UKF algorithm in Sec. 3 with our mixed
physics/MLP-based modeling in Sec. 2 is validated by
a real engine experiment through the agressive transient
cycle (Fig. 4), which is totally different to the engine
operation data for the data-driven modeling of the MLPs
in Sec. 2.2. We only used a typical production sensor setup
(i.e. y and z defined in the Sec. 2.3) with its sampling
time more than 20ms and nonuniform for running the
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algorithm, while measure the ground-truth of the intake
manifold oxygen concentration from the expensive non-
production sensor, ETAS ES636. In Fig. 4, we can see
the proposed state estimation algorithm is accurate and
stable/robust in the aggressive transient operation, where
typical EKF easily diverges due to the nonlinearities
exacerbated by the long/non-uniform sampling time and
the possibly large sensing/modeling uncertainties. Note
that, in this estimation experiment, we also estimated
Wegrv by including this variable into the state vector x and
its MLP-based model (30) into the measurement model
(48) with its modeling uncertainty.

5. CONCLUSION

We propose a novel optimal estimation methodology for
gasoline engine LP-EGR system, which allows us to im-
plement virtual sensors for oxygen mass fraction at the
intake manifold and EGR mass flow rate at the LP-EGR
valve, real sensors for them too expensive to deploy in
production cars. We obtain the mixed physics/MLP-based
model of the system, by substituting relatively small MLPs
of the subcomponents which defy accurate physics-based
modeling (i.e. LP-EGR/throttle/cylinder valves, etc.) into
the physics-based model of the other parts, rather than
obtaining single large MLP for the entire system. We
optimally combine these physics-based and data-driven
modelings in the framework of UKF, and also manifest
via formal analysis that this mixed physics/MLP-based
modeling renders our estimator much faster to run as
compared to the case of full data-driven MLP modeling. In
doing so, we also extend the standard UKF theory to the
more general case, where the system contains non-additive
uncertainties both in the measurement and process mod-
els with cross-correlations and state-dependent variances,
which stems from the inherent peculiar structure of our
mixed physics-based/data-driven modeling approach, for
the UKF formulation. We validate the proposed frame-
work, which combines the mixed physics/MLP-based mod-
eling and the UKF designed for its peculiar uncertainty
structure, by real engine experiment with a typical sensor
setup of production cars.
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