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Abstract: In this paper, a novel object tracking method based on moving horizon estimation
(MHE) is introduced that integrates data association into numerical optimization on Bayesian
state estimation. Object tracking is a classical problem that often appears in radar and vision
systems for which either deterministic or probabilistic approach has been applied. While the
former often encounter a failure of association, the latter avoids it by computing the expectation
concerning the observations, but it requires the prior knowledge of the probabilistic distribution
and may suffer from outliers. In this paper, a partially deterministic approach is built on
MHE to resolve these concerns. Data association is realized by a potential function comprising
the superposition of Gaussian distributions centered at each observed feature. The potential
function is embedded into the stage cost of MHE; the optimal data association is conducted
using the sequence of observations within the horizon. Thus robust object tracking is achieved
utilizing multi-sampling data and integration of both dynamics and explicit constraints reflecting
physical limitations. The advantage of the proposed method is verified through object tracking
experiments on the crowded environment, where occlusion and misrecognition frequently occur.
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1. INTRODUCTION

1.1 Visual Object Tracking

Object tracking is a crucial technology for systems which
requires information of moving objects. It first developed
in the application for Radars and has extended its ap-
plication area to vision-based systems later. Most algo-
rithms extract features associated with moving objects.
Especially in robot vision systems, various feature-based
methods has been proposed in Bar-Shalom et al. (2009),
Kragic and Kyrki (2008) and Li and Jilkov (2003). Scale-
Invariant Feature Transform (SIFT) or Speeded Up Ro-
bust Features (SURF) are widely utilized for extracting
features from images. Gupta et al. (2016) utilized SURF
matching to track humans. Izatt et al. (2017) fused point
cloud data from an RGBD sensor with tactile information
to realize object tracking. Wu et al. (2017) proposed a
object tracking algorithm for a monocular camera system
utilizing a saliency map integrated on the Kalman filter
framework. Other vision sensors are utilized in localization
and estimation of nearby objects, as presented in Bernini
et al. (2014) and Lagisetty et al. (2013).

1.2 Filters for object tracking

To track features throughout consecutive samplings from
vision sensors, data association is essential in which each
similar features from different frames are associated. Start-
ing from the classical methods which utilize deterministic
combinational optimization like global nearest neighbor

(GNN), probabilistic methods are intensively developed
and now widely utilized. In order to deal with the motion
of an object, a model based stochastic filter is applied so
that it can cope with the occlusion and misrecognition
caused by neighboring objects. Considering practical ap-
plication, it is crucial to consider robustness for occlusion
and misrecognition, because it is an inevitable problem of
object tracking in the actual environment like a crowd.
Thus, it is important to realize continuous and robust
object tracking. Camuñas-Mesa et al. (2017) uses a kind
of event-triggered cameras for stereo vision to measure
feature points, in which the stereo camera detects the
feature points which satisfy the constraints of distance
to epipolar line or direction toward the edge while oc-
clusion of feature points are considered. In Wang et al.
(2018), occlusion is detected, and the failure of object
tracking is avoided by one of the phase-only correlation
functions called Peak-to-Correlation Energy (PCE). Yang
et al. (2016) considered occlusions in multiple frames by
performing continuous synthetic aperture of the image.
Bertozzi et al. (2015) utilized a soft cascade and classifier
of ACF to distinguish between people and objects. Assa
and Janabi-Sharifi (2013) improved the robustness based
on sensor fusion utilizing estimated noise parameters.
In the observation of features, misrecognition is caused
by similar targets. To resolve this issue, data association
and estimation method using the filtering technique is
proposed. Allodi et al. (2016) associated the vision sensor
with laser sensor based on a classifier, and estimated the
states using UKF. Beinhofer et al. (2013) suppressed the
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Fig. 1. Occlusion and misrecognition in a crowd
error of association on SLAM using actor-critic Monte
Carlo reinforcement learning. Zhu et al. (2017) improved
robustness against misrecognition using an EM algorithm
utilizing maximum likelihood estimation of parameters.
For motion capture systems, Kikuchi et al. (2019) utilized
a potential function related to markers to realize con-
tinuous data association, however, their estimation may
become a local optimum, because the data association and
model-based filter are separated and processed serially.

1.3 Proposed method

In this paper, we merge a deterministic data association
into a model-based filter to overcome occlusion and mis-
recognition. We utilize moving horizon estimation (MHE),
which obtains an optimal estimation by minimizing an
objective function, which incorporates a various form of
criteria comprised of prediction error and consideration of
system and observation noise, while satisfying constraints.
To integrate data association into MHE framework, we
introduce a potential function which reflects the obser-
vation of markers to evaluate prediction error, while it
prevents from being effected by outliers due to occlusion
and ambiguous features. The advantage of the proposed
method is verified through a simulation under an adverse
condition. It is also applied to a motion capture system to
track an electric wheelchair surrounded by pedestrians to
verify its robustness and real-time feasibility.

2. MODEL BASED OBJECT TRACKING

2.1 Process and output model

Consider a discrete time stochastic system described by

xk+1 = f(xk,uk) + vk (1)
yk = g(xk) + wk (2)

where xk ∈ R
n are state vectors, uk ∈ R

l is an input
vector, and yk ∈ R

mp is an output vector, in which we
assume that the motion of the system is observed through
p features of m-dimensional vectors. f(·, ·) ∈ R

n and g(·) ∈
R

mp are vector valued functions. vk ∈ R
n and wk ∈ R

mp

are process and observation noise, respectively, where they
are assumed to be Gaussian with zero mean and covariance
Qk and Rk: vk ∼ N (0,Qk) and wk ∼ N (0,Rk).

2.2 Observation model

On the object tracking problem, yk may not be directly
measured due to occlusion and misrecognition. We assume

that it is accessible through an observation vector zk ∈
R

mqk defined as the following observation model:
zk = Ckyk + Dkrk (3)

where rk ∈ R
mr is a normally distributed random vector,

Ck ∈ R
mqk×mp and Dk ∈ R

mqk×mr are unknown coef-
ficient matrices, in which each row vector of [Ck,Dk] is
one of the standard basis vector (1 in one element and
0’s in elsewhere) of m(p + r) dimensional space which is
independent with each other. We also assume that qk is
variable with respect to k so that the number of observed
feature varies for each sampling.

2.3 Data association

Since Ck is unknown, it is necessary to associate zk

with plausible ŷk. The simplest method is known as
global nearest neighbor (GNN) which selects the nearest
candidate. In the cluttered environment, probabilistic data
association is utilized which takes the mean of candidates
weighted by probability. In addition, to reduce the effort on
implausible candidates, validation region is also used which
limits the candidates of zj

k to the ones in the neighborhood
of prediction. Typical criteria (Wang et al. (2002)) is(

zj
k − Hx̂−

k

)T
S−1

k

(
zj

k − Hx̂−
k

)
≤ γ. (4)

3. MOVING HORIZON ESTIMATION

In this section, moving horizon estimation (MHE) is briefly
reviewed. MHE is an optimal model based filter, which
estimates the state using the past inputs and outputs
of within horizon. The optimal estimation is computed
by minimizing the index function which evaluates the
uncertainty due to the process and observation noise, and
the arrival cost. A general form of index function is

J =
k−1∑

t=k−H

||x̂t+1 − f(x̂t,ut)||2Qt
−1

+
k∑

t=k−H

||D⊥
t (zt − Ctg(x̂t))||2R−1

t

+ ||x̂k−H − x̂p
k−H ||2

P −1
k−H

(5)

where H is the horizon, x̂ is the posterior state estimation,
x̂p

k−H is the state estimation computed in the previous
sampling time. MHE can also incorporate them as a
constrained optimization problem.
Since Ck and Dk are unknown, (5) cannot be directly
used; data association should be conducted to determine
them. But identification of them can be considered as a
kind of optimization problem, if it can be transformed into
a gradient based numerical optimization problem, we can
integrate data association into the framework of MHE.

4. MHE EMBEDDED WITH DATA ASSOCIATION

To transform data association into a gradient based nu-
merical optimization problem, we utilize a potential func-
tion based optimization in Kikuchi et al. (2019), where
the potential function is comprised of the Gaussian dis-
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tributions associated with observed features. Consider the
following Gaussian distribution function:

Lij
k = 1√

(2π)n|Σk|exp
{

−1
2(ŷi

k − zj
k)TΣ−1

k (ŷi
k − zj

k)
}
(6)

where ŷi
k is sub-vector which corresponds to the estimation

of i-th feature, zj
k is the sub-vector corresponds to the

observation of j-th feature, and Σk is the innovation
covariance matrix. This function evaluates an estimated
point ŷi

k with respect to the Gaussian distribution with
mean zj

k, corresponding to each observation. We define a
potential function Lk(ŷk) as a sum of Lij

k :

Lk(ŷk) =
p∑

i=1

qk∑
j=1

Lij
k . (7)

It is noted that the gradient of this potential function
around the marker is steep while it becomes flat at
the residual area where occlusion possibly occurs. This
potential function (7) is incorporated into the objective
function of MHE as follows:

JDA =
k−1∑

t=k−H

||x̂t+1 − f(x̂t,ut)||2Qt
−1

+
k∑

t=k−H

Lij
t + ||x̂k−H − x̂p

k−H ||2
P −1

k−H

.

(8)

The difference between J in (5) and JDA in (7) is the
evaluation of innovation at the second term. It is extended
to incorporate all possible markers while making it insen-
sitive at the area where markers do not exist. In Kikuchi
et al. (2019), the latest observations were associated with
the predicted features using an artificial potential function,
and then the state was estimated using MHE based on the
association result. The essential difference from Kikuchi
et al. (2019) is that evaluation utilizing (7) is incorporated
into the objective function of MHE, which realizes the
optimal estimation through the horizon.

5. NUMERICAL COMPARISON

In this section, the proposed method is applied to motion
tracking of a vehicle surrounded by false features. The
performance of the proposed object tracking method is
verified through a simulation comparing with probabilistic
data association filter (PDAF) with validation region.

5.1 Vehicle model

We deal with a differential drive vehicle depicted in
Fig. 2(a). (x, y) is the coordinates of the center of wheels,
and θ is the heading angle. The translational velocity is
vk, and the angular velocity is ωk. We take vk and ωk as
control input. To derive a process model in (1), we define
the state vector as xk = [xk, yk, θk]T and the input vector
as uk = [vk, ωk]T. Then f(xk,uk) is described as

f(xk, uk) := xk +
[

vk cos θk

vk sin θk

ωk

]
Δ (9)

where Δ is the sampling time.

Y (World)

v
�

m3

m3

m1
x

Y (Vehicle) X (Vehicle)

X (World)

(a) a differential drive vehicle. (b) running trajectory.

Fig. 2. (a) a differential drive vehicle model where three
markers are attached to the body, and (b) its running
trajectory where occlusion area is colored in blue.

For the output model in (2), we take three markers
geometrically fixed to the vehicle represented as

g(xk) :=
[
g1(xk)
g2(xk)
g3(xk)

]
(10)

with
gi(xk) :=

[
x
y

]
+

[
cos θ − sin θ
sin θ cos θ

]
mi (11)

for i = 1, 2, 3, where mi ∈ R
2 is the pose of features

represented by the Cartesian coordinates fixed to the
vehicle. We set mi as follows: m1 = [0.24, −0.1]T,m2 =
[−0.12, 0.2]T,m3 = [−0.12, −0.1]T.

5.2 Vehicle trajectory and marker occlusion

Fig. 2(b) depicts the moving path of the vehicle; it starts
from (0, −2) and moves around a track in counterclockwise
direction at the velocity 0.3 m/s. To set false features rk in
the observation, we set the following additional markers.
Three hundred static markers are randomly placed under
uniform distribution in the region of −3 ≤ x ≤ 5 and
−3 ≤ y ≤ 3. Fifteen groups of markers comprising fifteen
markers randomly move in the field. In blue rectangular
area, Marker #2 is occluded, and random markers appear
in the region within 0.3 m radius from the occluded
marker. Parameters are summarized in Table 1.

Table 1. Parameters.
Parameter Value

Sampling period 50 ms
W 0.275 m

Rr, Rl 0.128 m
H 20
ws [9.5×10−2,9.5×10−2,1.5 × 10−3]T
wo,i [6.716, 7.058]T × 10−6

5.3 Probabilistic data association filter

To evaluate the estimation performance, we also apply
a conventional tracking method based on a probabilistic
data association filter (Grinberg (2017)). The rate param-
eter λ of Poisson distribution is set to be 0.8835, computed
from the number of static false markers for validation
region with 0.1 m radius per the range of distribution.

5.4 Simulation result

Figure 3 depicts the errors of PDAF and MHE, respec-
tively, for the same process and observation noise, vk and
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wk, and random false markers rk. Both methods suc-
cessfully tracked the vehicle, but a larger error appeared
during occlusion. The error of MHE was slightly larger
than PDAF in the section without occlusion, but the error
of PDAF was far larger than MHE during occlusion.

Fig. 3. Estimation errors of MHE / PDAF for x, y and θ.

t = 5.00 s

t = 12.40 s

t = 14.50 s

t = 14.80 s

Fig. 4. Snapshots describing the allocation of markers and
the estimates for PDAF (left) and MHE (right).

Fig. 5. Motion capture based vecual feedback system.

Tracking marker

Referenced marker

Fig. 6. Left: electric wheelchair with attached markers,
right: measurement of markers in this experiment
system. Red markers are attached to the estimation
target and green markers are used for a reference.

Table 2. Parameters.
Parameter Value

W 0.275 m
R 0.128 m
H 5
ws [8.0×10−5,8.0×10−5,7.5 × 10−4]T
wo,i [6.716, 7.058]T × 10−5

Fig. 7. The trajectories of x, y and θ obtained by a com-
mercial software (blue) and MHE (red). Durations
of occlusion are colored by cyan. MHE successfully
tracked the vehicle even under occlusion.

Fig. 8. The time variation of the potential function:
the number of occluded markers are approximately
evaluated by the level indicated by green (zero),
yellow (one), and red (two).
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Fig. 9. Left: experimental landscape, ceter: plot of markers and estimated ones, right: enlarged view of plots (0.01 s).

Fig. 10. Pedestrians surrounds the electric wheelchair and two markers is occluded (47.6 s).

Fig. 11. MHE recovers to track the missing marker and continue to estimate the right position of the wheelchair (52.3 s).

To understand the process, snapshots of markers and the
estimation are depicted in Fig. 4 for PDAF (left) and MHE
(right), respectively. A triangle connecting three estimated
markers are drawn in each figure to highlight the posture of
markers. The ellipses are the validation regions for PDAF.
At t = 5.00 s, all markers were successfully identified, and
the estimated position coincided with the true position. At
t = 12.40 s, one marker was occluded, but both methods
still tracked the vehicle. But at t = 14.50 s, the error of
PDAF increased due to the false markers in the validation
regions of occluded markers. Consequently PDAF failed
tracking at t = 14.80 s. MHE also tracks plausible markers,
even when one feature was occluded; it continued to track
the vehicle position accurately until the end of the simu-
lation, as the figures at t = 14.50 s and t = 14.80 s depict
MHE correctly tracked the vehicle utilizing observations
of multiple frames.

6. IMPLEMENTATION ON MOTION CAPTURE

In this section, we implement MHE into a motion capture
system tracking an electric wheelchair in crowded area to
demonstrate both practical robustness against occlusion
and computational feasibility in real-time system.

6.1 Experimental system

Figure 5 depicts a schematic of experimental system.
Marker positions attached to a wheelchair are localized by
a motion capture system comprised of 20 cameras which
can detect and compute the three dimensional position
of observed markers. Three markers for estimation were
attached to the estimation target, which frequently lost by
camera in a crowd. Actual wheel velocities are transmitted
to a computer, and used to estimate the pose of the
vehicle. Tracking control input uk is computed using the
estimated state. The wheelchair used in this experiment
is depicted in Fig. 6. To validate the estimation accuracy,
additional eight markers for evaluation were attached to
the wheel chair. The pause measured from these markers
was used as the reference in the evaluation of experiments.
The parameter used in this experiment is summarized in
Table 2. In this experiment, we sets H = 5 to reduce the
calculation cost in the optimization.

6.2 Result of experiment

Figure 7 depicts the trajectories of x, y and θ estimated
by MHE (red line) together with one computed by a
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commercial software supplied with motion capture system
(blue line). The shaded areas (painted in cyan) indicates
duration of occlusion, where the motion capture system
failed to capture the markers which resulted in stagnation
of measurement or abrupt change of value to a biased
one. On the other hand, MHE successfully tracked the
actual location continuously. Figure 8 depicts the eval-
uation value of output estimation error, which indicates
the number of tracked markers. Figures 9 through 11 de-
picts experimental landscapes (left), plots of detected and
estimated markers connected by triangle and estimated
vehicle position (center), and enlarged plot (right).
Figure 9 shows pedestrians do not exist around the target,
and target markers are successfully measured. Figure 10
shows pedestrians staying around the target which ren-
ders a marker occluded, but the target was still tracked.
Figure 11 shows the tracking was successful even in the
environment where many false observations exist around
the target. We can see that under occlusion and cluttered
environment surrounded by false markers, MHE could
continue to track the vehicle position successfully.

7. CONCLUSION

In this paper, for object tracking, moving horizon estima-
tion (MHE) is introduced which integrates data associa-
tion into numerical optimization on state estimation. Data
association is realized as the minimization of a potential
function comprised of the superposition of Gaussian dis-
tribution centered at each observed feature. This potential
function is embedded into the stage cost of MHE; data
association is conducted with respect to both the current
and the past observation data within the horizon. The
performance of MHE was quantitatively evaluated through
the simulation to show that it outperformed conventional
PDAF based object tracking. MHE was also applied to
the actual motion capture object tracking system which
showed that it could track a vehicle surrounded by people.
Our future work is to apply the proposed method into
other vision systems that use the image information and
features, and we validate its effectiveness.
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