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Abstract: This paper addresses the navigation problem in a multi-obstacle environment and
makes use of convex lifting in trajectory planning problems with anti-collision constraints. The
design problem is commonly stated in the literature in terms of a constrained optimization
problem over a non-convex domain. In our framework, the convex lifting approach plays an
instrumental role in the partitioning of the feasible space in accordance with the distribution of
obstacles and in the subsequent generation of corridors in cluttered environments. We consider
an adaptation of the generic MPC (Model Predictive Control) trajectory tracking problem,
aiming to guarantee the feasibility and the convergence. Simulation results and proof of concepts
illustrations prove the effectiveness of the proposed approach.
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1. INTRODUCTION

Navigation through multi-obstacle environments has re-
ceived significant attention from both control and robotics
communities (Janecek et al., 2017) due to its many ap-
plications including, among others, monitoring or surveil-
lance (Puri, 2005), autonomous overtaking (Ballesteros-
Tolosana et al., 2017) or precision agriculture (Jawad et al.,
2017). The main challenge resides in the non-convexity of
the feasible regions in the motion space.

To tackle the navigation problem, several approaches
have been developed. To the best of authors knowledge,
most of them divide the problem in two main sub-tasks:
path/trajectory generation and trajectory tracking. More-
over, these (sub-)tasks are usually viewed as independent
or decoupled problems (Latombe, 2012). For instance, the
classical sample-based 1 approaches, Karaman and Fraz-
zoli (2011), LaValle (1998), are prone to focus on the
first task, neglecting the second one and, thus, simplifying
the problem. Next, the optimization-based strategies, e.g.
mixed-integer formulations Richards and How (2002); Pro-
dan et al. (2015), convexification techniques Szmuk et al.
(2017), potential field methods Chen et al. (2016) or set-
theoretic approaches Franzè and Lucia (2015) merge the
planning and tracking tasks at the expense of a higher
computational complexity, especially in the case of clut-

? The author is also with Inria Saclay, ”DISCO” Team, France.
??Institute of Engineering Univ. Grenoble Alpes
1 Sample-based approaches are generally related to the construction
of a graph structure.

tered/congested multi-obstacle environments. In addition,
there are a few works, e.g., Weiss et al. (2017), that have a
more intrinsic approach, considering planning and tracking
as distinct but interacting tasks Berntorp et al. (2017)
and employing appropriate methods from the previously
mentioned categories. For instance, in this last category,
we may include Berntorp et al. (2018), where the authors
proposed an extension of the RRT(rapidly-exploring ran-
dom tree), using feedback control and positively invariant
sets to guarantee collision-free tracking.

The main drawback of the methods involving sample-
based techniques is their probabilistic completeness (Bar-
raquand et al., 1997). More specifically, the probability
that the algorithm returns a feasible solution tends to 1 if
the number of sample points is sufficiently large (approach-
ing ∞), as it was empirically shown in Hsu et al. (2007).
Moreover, these probabilistic completeness proofs do not
provide any guarantee on the time in which the algorithm
finds the optimal path (if there exists one). Therefore, the
primary objective of our paper is the global feasibility and
we aim to develop a method characterized by complete-
ness, eliminating the risks of an heuristic/unpredictable
behavior.

More precisely, we revisit the ideas proposed by Ioan et al.
(2019) and we proceed further in providing global feasibil-
ity guarantees and enhancing the effective control strategy.
Basically, in a first stage we neglect the differential con-
straints and the physical limitations that can appear in
the motion planning in order to generate a geometric path.
This path ensures the avoidance of obstacles and has the
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potential to explicitly describe a feasible corridor similar to
the ones in Liu et al. (2017) or in Faulwasser and Findeisen
(2016). At a second stage, using the geometric path and
the corridor as starting points, we find some appropriate
trajectory respecting the agent’s dynamics and constraints
using a MPC strategy.

The main contributions of this paper are twofold:

i) providing a detailed analysis of the recursive feasibil-
ity of a corridor-constrained MPC;

ii) providing a generic navigation strategy for cluttered
environments with feasibility guarantees.

The remaining of the paper is organized as follows: Sec-
tion 2 presents some basic set-theoretic tools, introduces
the formulation of the problem and provides a mechanism
able to generate feasible geometric paths through the
multi-obstacle environment. Section 3 presents a prototype
control strategy with recursive feasibility guarantees and
the generic navigation strategy, pointing to the extensions
to the problem of multiple agents. Finally, some concluding
remarks end the paper

Notation: The Minkowski sum of two sets is denoted as
A⊕B = {x : x = a+ b, a ∈ A, b ∈ B}. Given a compact
set S ∈ Rn, CX(S) denotes the complement of S over
X ∈ Rd, Com(S) the space of compact subsets of S,
int(S) its interior and V(S) the set of its extreme points.
As well, proj[d1:d2] S stands for projection of S on the

dimensions d1 to d2. For a polyhedron P ∈ Rd, V(P ) is
the (finite) set of its vertices, and Fki (P ) is the i-th face of
the dimension k < d. For x ∈ Rd we denote ‖x‖2Q = x>Qx.

Bp,r = {x ∈ Rd : ‖x − p‖ ≤ r} is a ball of radius r ≥ 0
centered in p ∈ Rd w.r.t. a given norm.

2. PREREQUISITIES AND PROBLEM
FORMULATION

Consider a finite dimensional output space Rd and
a finite number of interdicted convex regions Pj ⊂
Com(Rd), j∈ I = {1, . . . , No} as obstacles:

P =

No⋃
j=1

Pj ; Pi ∩ Pj = ∅,∀i 6=j, (1)

their union lies in a bounded 2 cluttered environment X:

P ⊂ int(X) ⊂ Rd (2)

while the obstacle-free (implicitly, non-convex) domain is

CX(P) , X \ P. (3)

Definition 1. (Corridors - Ioan et al. (2019)). Given the ob-
stacles P, a corridor between two points x0, xf ∈
int(CX(P)) is enabled by the existence of two continuous
functions:

γ : [0, 1]→ CX(P), ρ : [0, 1]→ R>0 (4)

satisfying γ(0) = x0, γ(1) = xf and γ(θ) ⊕ B0,ρ(θ) ⊂
CX(P),∀θ ∈ [0, 1]. The corridor is defined as:

Π = {x ∈ Rd : ∃θ ∈ [0, 1] s.t. x ∈ γ(θ)⊕ B0,ρ(θ)}. (5)

Definition 2. A family of sets {Xi}i∈I verifying:

2 This assumption is always valid for some bounded X, due to the
boundedness assumptions on Pj , j ∈ I.

i) X =
⋃No

i=1Xi,
ii) int(Xi)

⋂
int(Xj) = ∅,∀i 6= j ∈ I,

iii) Pi ⊂ int(Xi),∀i ∈ {1 . . . , No}
is called a partition of X induced by the obstacles P.
Furthermore, if the sets X and Xi,∀i are polyhedral, then

X =
⋃No

i=1Xi is called a polyhedral partition. �

The problem of navigation in cluttered environments X
can be divided in three sub-problems:

P1) Starting from the set of forbidden regions P, deter-
mine a partition of the cluttered environment around
them.

P2) Considering any two points x0, xf ∈ int(CX(P)), con-
struct a corridor linking them or provide a certificate
of infeasibility.

P3) Given a non-empty corridor, select/generate a contin-
uous trajectory τ : [t0, tf ]→ Π guaranteeing collision
avoidance, i.e. τ(θ) ∩ P = ∅,∀θ ∈ [0, 1].

Previous work Ioan et al. (2019) addressed the first two
problems P1) and P2). By developing a systematic solu-
tion, we aim hereinafter to treat in detail problem P3)
and, additionally, to provide some appropriate feasibility
guarantees. Prior to main developments, we recall the
constructive method for the resolution of P1) and P2).

Definition 3. (Nguyen et al. (2018)). Given a collection of

obstacles P =
⋃No

j=1 Pj with Pi ∩Pj = ∅,∀i 6= j, as defined

in (1), and a partitioning of the cluttered environment
X ⊃ P, the function z : X→ R is called a piecewise affine
lifting if:

z(x) = a>i x+ bi, x ∈ Xi, (6)

with Xi satisfying int(Xi) ⊃ Pi, ∀i , ai ∈ Rd and bi ∈ R.

Taking Pi as polyhedral sets (i.e, having a finite number
of extreme points), the lifting can be constructed as the
result of the following convex optimization problem:

min
ai,bi

No∑
i=1

‖ [ai bi]
> ‖22 (7)

s.t. a>i v + bi ≥ a>j v + bj + ε,∀v ∈ V(Pi),∀i 6= j, (8a)

a>i v + bi ≤M,∀v ∈ V(Pi), ∀i. (8b)

Based on the solutions of (7), we define the following
“d+1”-dimensional polyhedron:

P =

{[
x
z

]
∈ Rd+1 :

[
a>i − 1

] [x
z

]
≤ −bi, i ∈ I

}
.

Projecting the facets of P on X provides a polyhedral
partition {Xi}i=1:No

.

Corollary 4. The polyhedral partition {Xi}i=1:No
has the

following properties:

i) Pi ⊂ int(Xi), ∀i,
ii) Xi ∩ Pj = ∅, ∀j 6= i.

Fig. 1 shows some partitioning of complicated 2D and 3D
cluttered environments. Since in the motion planning con-
text generally we do not go higher than 3D, we restricted
the illustrations to these dimensions, but the construction
from Corollary 4 holds also for arbitrary dimensions.

Once the partition {Xi}i=1:No
of the cluttered environ-

ment X is available, the goal is to construct a graph in
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(a) No = 31, d = 2 (b) No = 5, d = 3

Fig. 1. Space-partitioning {Xi}i=1:No from (7).

order to generate feasible paths through X. Therefore, we
have to select the nodes, the edges and the associated
weights from the constructive parameters of the compact
sets Xi (vertices and faces). For illustration, we consider
the case d = 2. The resulting graph is Γ1 (N1, E1, f1),
where the nodes are the vertices of the polyhedral re-

gions Xi: N1 =
No⋃
i=1

V(Xi); the edges are the facets of

the partition regions Xi (i.e., their support hyperplanes):
E1 = F1(Xi); and the function f1 gives the Euclidean
distance between the incident nodes of the edge.

Finding the shortest path through the graph between the
start and final points xi, xf ∈ X \ P means adding them
to the graph and finding the closest edge such that the
connection to it does not intersect any obstacles:

(j⊥, x⊥)(xi) = arg min
j∈Ifi

min
x∈facetj(Xi)

‖x− xi‖ (9a)

s.t. αx+ (1− α)xi /∈ Pi, xi ∈ Xi, (9b)

where Ifi is the number of facets of Xi. These projections
of the points are also new nodes of the graph. Thus, the
graph Γ̃(xi, xf ) preserves the properties of Γ. Finally, a
graph search algorithm (e.g., Dijkstra’s Algorithm Kara-
man and Frazzoli (2011)) is employed and the shortest
path between xi and xf is derived.

Remark 5. For further use, we denote the shortest path
through the graph between xi and xf as Path(x0, xf ) =
(x̄0 = xi, x̄1, . . . , x̄n, x̄n+1 = xf ). This represents an
ordered set of points where no segment defined by a pair of
consecutive points cuts any of the obstacles. Altough it is
not a path in the sense stated in problem P3), it represents
a sufficient condition for the existence of a corridor (5).

Having the geometric path given by Path(x0, xf ), we can
determine the values corresponding to γ(θ). Thus, the
remaining part is to select the width of the corridor,
namely ρ(θ). To ensure that Π ∩ P = ∅, ρ(θ) has to verify
the inequality:

ρ(θ) ≤ min
Pi∈P

dH(Pi, γ(θ)), ∀θ ∈ [0, 1]; (10)

Remark 6. The corridor Π can be written as Π =
Nc⋃
i=1

Πi

with Πi = {x ∈ Rd : ∃θ̃ ∈ [0, 1] s.t. x ∈ γi(θ̃)⊕ B0,ρi(θ̃)
}

where γi(0) = x̄i−1 and γi(1) = x̄i. �

For illustrating the construction of the corridor, we revisit
the obstacle collection shown in Fig. 1a. Hence, we provide
an approximation of the corridor width ρ (red area in Fig. 2
is the corridor defined in (5)). To compute the corridor

width we sampled the continuous parameter θ and used
the corresponding values in (10).
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Fig. 2. Path(xi, xf ) and Π =
Nc⋃
i=1

Πi

Remark 7. Since we deal with a polytopic representation
of the environment, for further use we consider the poly-
topic underapproximation of the corridors (blue area in
Fig. 2). The construction of the corridor is based only on
the topological characteristics, but the method proposed
here is not unique. For example, instead of using Hausdorff
distance, method in Liu et al. (2017) relies on finding the
maximal ellipsoid including a segment from a given path
and not intersecting the obstacles.

3. CORRIDOR-CONSTRAINED MPC

This section introduces the formulation of a MPC con-
troller and its proof of recursive feasibility. The strategy
proposed in the sequel exploits the existence of feasible cor-
ridors resulted from the partitioning of the environment.
First we recall some concepts and definitions and next
we present the formulation associated to a single compact
corridor (a segment from (5)). Then the extension to the
entire corridor (5) is tackled.

3.1 Prototype MPC with recursive feasibility guarantees

In what follows, our aim is to obtain a collision-free
trajectory inside a corridor Πi for an agent described by
the following LTI dynamics:

xk+1 = Axk +Buk, ∀k (11)

with xk ∈ Rd the state vector, uk ∈ Rdu the input vector
and the matrices A, B of appropriate dimension. Also, the
physical constraints lead to the compact sets X and U from
Rd and Rdu , respectively.

The constraints corresponding to the corridor Πi ⊂ Rd1
are usually only on a subset of the state variables X ⊂ Rd
(without loss of generality considered next the corridor to
be the first d1 subcomponents). We use the corridors in
the original state to be described by the set:

Π̃i = {x ∈ X |
[
Id1 0

d−d1+1

]
x ∈ Πi}. (12)

For the MPC problem we consider a standard formulation
with a quadratic cost:

J (Np, x̄i) =

 Vf (xk,uk)︷ ︸︸ ︷
‖xk+Np|k − x̄i‖

2
P +

+

Np−1∑
l=1

‖xk+l|k − x̄i‖2Q +

Np−1∑
l=1

‖∆uk+l|k‖2R︸ ︷︷ ︸
V(xk,uk)

 (13)
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where Np is the prediction horizon, the weight matrices P
(terminal cost penalty), Q (output error penalty) and R
(control action penalty) are positive semi-definite and of
appropriate dimensions. For further implications, the value
of P from the terminal cost Vf (xk, uk) is selected such
that the function V (x) = x>Px is a Lyapunov function
for a pre-stabilizing state-feedback law u = Kx with
K ∈ Rd×du in a vicinity of x̄i (Mayne et al., 2000). As well,
the values of Q and R from the cost per stage V(xk, uk)
are chosen in order to enhance the tracking performances.

Therefore, the MPC problem to be solved at each time
step throughout a corridor Π̃i can be formulated as:

P(Π̃i, Np,Xf , x̄i,X ) : min
u
J (Np, x̄i) (14a)

s.t. xk+l+1|k = Axk+l|k +Buk+l|k, (14b)

uk+l|k ∈ U , ∀` = 1 : Np − 1 (14c)

xk+l|k ∈ Π̃i (14d)

xk+Np|k ∈ Xf , (14e)

Having the formulation (14), the question to be addressed

is how to select the parameters Π̃i, Np,Xf , x̄i,X in order
to ensure the recursive feasibility. The recursive feasibility
is one of the fundamental challenges in MPC literature.
Basically, it represents the property that for all initial fea-
sible states and for all optimal sequences of control inputs
the MPC optimization problem remains feasible Mayne
et al. (2000). Löfberg (2012) offers a broad overview on
this topics, especially from the computational perspective.

Essentially, the selection of the parameters in (14) can be
viewed as an additional analysis step, which builds on the,
so-called, backward reachable set (BRS).

Definition 8. (N-step BRS). The N-step (BRS) is the set
of all states that can reach a final position x̄i in N steps-
associated to the system described by LTI dynamics (11):

Ri
N = A−N

(
x̄i ⊕

N−1⊕
j=0

−AjBU

)
. (15)

Since we have “hard” constraints on state (the ones given
by the corridor), we have to compute the N -step BRSs

taking into account these constraints: R̃iN . In fact, the
N -step BRSs remain the same as long as they check the
corridor constraints. From that point, the computation can
be done iteratively as in Algorithm 1.

Algorithm 1 Computing N-step BRS for (11) taking into

account the state constraints Π̃i

1: Find first RiNuc
such that RiNuc

6⊂ Π̃i

2: For N < Nuc : R̃iN = RiN
3: R̃iNuc

= RiNuc
∩ Π̃i

4: For N > Nuc the computation is iterative and relies

on: R̃iN = A−1
(
R̃iN−1 ⊕ (−BU) ∩ Π̃i

)
.

The N-step BRSs have an instrumental role in providing
the parameters of the MPC problem (14). For instance, the
theoretical minimal value of Np is given by the condition
x0 ∈ RiNp

.

Proposition 9. P(Πi, Np,Xf , x̄i,X ) is feasible for all feasi-
ble initial states if

Np ≥ arg min
N

N s.t. x0 ∈ R̃iN . (16)

Proof. It is straightforward that x0 ∈ R̃iNp
. That is, there

exists at least one sequence of Np inputs so that the
predicted final state is exactly the reference x̄i. As well,
the existence of a terminal cost as in (13) ensures the con-
vergence. Moreover, since x̄i ∈ Xf , it is obvious that (14e)
holds. Therefore, the feasibility of P(Πi, Np,Xf , x̄i,X ) is
guaranteed.

As a consequence of Proposition 9, the recursive feasibility
of a MPC controller based on P(·) follows straighfor-
wardly.

3.2 Generic collision-free trajectory generation within
cluttered environments

Since the recursive feasibility of an MPC strategy based
on (14) is guaranteed for certain parameters, we aim
to exploit these degrees of freedom for the resolution of
the problem P3). To this end, an intuitive solution is
to iteratively compute the parameters ensuring feasibility
for each corridor segment. Specifically, for each initial
position (γi(0)) within the corridor segment, we compute
the N-step BRS centered in xif . The computational effort
corresponding to this may be substantial relative to a
consequent real-time implementation. To overcome this
drawback, we can split the strategy since we are aware
of the corridor characteristics.

(1) (OFF-LINE) For each Π̃i and xif
• compute the BRSs (as inAlgorithm 1) and N i

pmin
:

N i
pmin

= arg min
N

N s.t. Π̃i ⊆ R̃iN , (17)

• X if = (Π̃i ∩ Π̃i+1) excepting the last segment, for

which we have X if = R̃i1
(2) (ON-LINE) Apply Algorithm 2

As its name suggests, the idea behind the ”Relay MPC”
strategy is to ensure the transitions from a segment of
corridor (Π̃i) to the next (Π̃i+1). For that reason, we
choose the terminal sets Xfi as the intersections between
two consecutive segments.

Algorithm 2 “Relay MPC”

Input: Π =
Nc⋃
i=1

Πi, x0, N i
pmin

, X if
1: for each Π̃i ⊂ Π̃ do
2: Np = N i

pmin
;

3: repeat
4: Apply MPC strategy solving P(Π̃i, Np,X if , x̄i,X )

5: until xk+1|k ∈ X if
6: x0 = xk+1|k
7: Update the parameters of P
8: end for

Proposition 10. If Path(x0, xf ) exists and the control law
based on P(·) (14) is recursively feasible then the conver-
gence x0 → xf is guaranteed.
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Proof. The existence of Path(x0, xf ) leads to the con-

struction of the corridor Π̃ =
⋃
i

Π̃i. The recursive feasibil-

ity and the selection of terminal sets as in (1) ensure the

transition from Π̃i to Π̃i+1. Moreover, for the last segment

we have X if = R̃i1 and the initial state in R̃Np
which

directly leads to xf being reachable, and, by consequence,
it proves the convergence of the scheme.

For illustration purposes, consider an agent described by
the dynamics (11) in R4 with:

A =

[
O2 I2
O2 − µ

M I2

]
, B =

[
O2

M−1I2

]
, (18)

where µ = 3 and M = 60. The agent’s state is composed

of position and velocity components x = [px py vx vy]
>
,

whereas the input is given by the accelerations u =

[ax ay]
>

. Both state and input are constrained to :

X = {x ∈ R4 : |x| ≤ [15 15 0.35 0.35]
>}

U = {u ∈ R2 : |u| ≤ [10 10]
>}

Using dynamics (18) we revisit the obstacle collection
depicted in Fig. 1a to which we apply Algorithm 2. As
well, in Fig. 4 the values of the acceleration and velocity
are plotted along the simulation horizon.
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Fig. 3. Algorithm 2 over the example in Fig. 1a
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Fig. 4. Input and velocity during Algorithm 2
As a side remark, for the same initial and final position an
MIP based MPC strategy can be employed, considering
the entire set of obstacles and imposing a large prediction
horizon (Np = 40). Despite the large prediction horizon,
the resulting trajectory does not converge to the final
position, the agent remaining on the boundary of one of
the obstacles (the pink trajectory in Fig. 3).

Regarding the offline part, as stated above, the compu-
tational effort is substantial, e.g., for the trajectory in
Fig. 3 is around 3 minutes, but this can be improved
by replacing the polyhedral representation of the sets
with a zonotopic one (Althoff, 2015). Intuitively, there is
a connection between the length of a corridor segment
(∆γi = ‖γi(1) − γi(0)‖) and the length of the minimal
prediction horizon(Npmin). Therefore, we depict in Table 1
the values corresponding to (17).

i 1 2 3 5 8 10 11

‖∆γi‖ 0.77 4.02 0.09 1.27 4.50 2.39 0.53

Npmin 11 24 13 14 29 19 13

Table 1.

Remark 11. In practice, whenever the length of a segment
of the corridor is greater than a user-defined value, that
segment can be split. In this way, one can manage the
trajectory tracking with similar length of the prediction
horizons in concordance with the available computational
constraints.

To emphasize the importance of the corridor and how it
reflects in a real-world application, we can assume that the
dynamics (18) are the nominal ones and any disturbance
impacts, in fact, the dimension of the corridor. That is,
the function ρ(·), as in (5), becomes ρ̃(·) = ρ(·) + ∆ρ.
In Table 2 we delineate: Ngoal - the number of steps to
attain a neighborhood of the final point, tgoal - the total
time to compute the trajectory and `t - the trajectory
length. As it can be seen in Table 2, the computing time
tgoal has similar values (slight modifications), while Ngoal
and `t increase with the values of ∆ρ. This behavior is
counter-intuitive, but it can be explained by the fact that
the decreasing in terms of steps (or distance) gained along
of the corridor are wasted with the maneuvers associated
to changing the segments of the corridor. However, by
moving all complex operations from on-line to off-line, we
note that the computing time is kept reasonable, allowing
a comparison with the classical sampled-based methods.

∆ρ tgoal(sec) Ngoal `t(m)

0 1,200 135 23.920
3e-3 1,219 138 24,068

7e-3 1,227 139 24,095
1e-2 1,231 139 24,089

5e-2 1.254 141 24,066

7e-2 1.277 142 24,059

Table 2.

3.3 Insights on the extensions to multi-agent system

Up to now we consider only one agent within the static
multi-obstacle environment. There exist however applica-
tions which can be arguable better performed by a team of
agents. Thus, a second strong requirement is the avoidance
of collisions among the agents. As stated in Section 1,
the method herein has two phases: planning and tracking.
Clearly, we can eliminate the risk of collision from the
planning phase by selecting paths with disjoint sets of
nodes (and, implicitly, of edges). Nevertheless, this may
lead to trajectories too far (in terms of performance or
consumed energy) from the optimal ones. Hence, in the
planning phase we can only impose that the paths of the
two agents share a minimal number of common nodes.
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Since the graph is constructed relying on the partitioning
from Corollary 4, it is straightforward that the degree (or
valency) 3 of the nodes is 3, excepting the nodes from the
boundaries of X. Thus, the minimal number of common
nodes between the paths of the agents is two and, im-
plicitly, the paths share a common edge. Consequently, in
the tracking phase we have to treat the behavior at the
proximity of these/this common nodes/edge. Concretely,
we adjust Algorithm 2, specifically an adaptation of the pa-
rameters involved in Step 4. Since the corridor constraints
affect only a subset of the state variables, we may affect the
behavior of the agent in the proximity of conflict zones by
changing the bounds on the remaining subset of variables.
Thus, we modify the parameter X of the MPC strategy
from Algorithm 2. A prospective solution is to tune the
bounds X according to a reachability analysis. That is,
by considering the reachable sets mapped on the velocity
subspace, we can find the set of velocities that would lead
to collision with a moving entity. Enforcing velocities apart
from this set ensures that the agents are able to attain a
slowdown before the potential conflict zones.

4. CONCLUSIONS
The paper presents a constructive solution for the gen-
eration of collision-free trajectories between two points
in an environment containing multiple obstacles in a d-
dimensional space. We use the geometry of the obsta-
cles and the convex lifting procedure to describe a graph
around the obstacles. This graph represents a key element
in order to generate collision-free trajectories employing
MPC controllers with recursive feasibility guarantees. As
a perspective of this work we will extend the results for
time-varying multi-obstacle environments, considering, as
well, re-configuration and adjustments of the graph.
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