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Abstract: In this work, it is considered an image based visual servoing control problem, for
uncertain robot manipulators. Visual feedback is provided by a fixed monocular camera with
uncertain parameters, for the purpose of tracking translational trajectories of a spherical target,
both the trajectory on image plane and depth. Based on a cascade structure, the proposed
adaptive visual servoing is combined with an adaptive motion control strategy. Stability and
passivity properties are analyzed with the Lyapunov method. Simulation results illustrate and
highlight performance of the proposed controller.
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1. INTRODUCTION

Computer vision is a useful tool to acquire information for
robotics, as it mimics human vision and allows for non-
contact measurement of the environment. Visual feedback
can be provided by single or multiple cameras in a variety
of setups, and visual servoing techniques have been broadly
studied as a potential tool for medical applications (Krupa
et al., 2003), docking of underwater vehicles (Yahya and
Arshad, 2016), or exploration and tracking (Zhou et al.,
2018), among others.

In this scenario, the uncertainty present in the robot and
camera models is a subject of concern since very early
development, with a few early adaptive solutions such as
(Weiss et al., 1985), where a model reference adaptive
controller is used in an image-based visual servoing (IBVS)
application for a manipulator with non-negligible, coupled
dynamics for planar motion. Interest in adaptive methods
for visual servoing is still prominent, for example in UAVs
for search-and-rescue missions, self-driving cars or cooper-
ation between multiple manipulators.

In (Wang et al., 2014), an adaptive position-based visual
servoing controller for trajectory tracking of nonholonomic
mobile robots is proposed, natural image features being
used to estimate the position of the robot with visual
feedback. In (Leite et al., 2009; Zhang et al., 2019), a
hybrid image-based vision/force control is presented, with
uncertainty on the parameters for the robot manipulator,
camera, and surface constraint. The unknown surface con-
straints also translate into unknown depth. As the image
Jacobian is non-linear for varying depth, the depth is
estimated and compensated separately from the Jacobian
matrix, similarly to (Wang et al., 2018).

⋆ This work was financed in part by CNPq/Brazil and the Coor-
denação de Aperfeiçoamento de Pessoal de Nı́vel Superior - Brasil
(CAPES) - Finance Code 001.

Recently, in (Wang et al., 2018; Leite and Lizarralde,
2016) is considered adaptive visual servoing strategies with
separation of the kinematic and dynamic control loops
(in the sense of both the design and analysis) without
image-space velocity measurements. Both works consider
uncalibrated monocular camera and uncertainties in the
robot kinematic and dynamic model.

In (Leite and Lizarralde, 2016), a cascade scheme consider-
ing passivity properties of each loop is proposed with direct
adaptive methods and considering translational motion
including target depth control. Using a nonlinear error
definition and a linear filter the system stabity is guar-
anteed wihout using image velocity information.The main
drawback of the direct model reference adaptive visual
servoing is overparameterization and the limitation on the
misalignment angle of the camera frame with respect to
the robot base frame.

In (Wang et al., 2018), the separation is obtained propos-
ing a passive/high gain observer with a nonlinear feedback
for the kinematic loop. An indirect adaptive image-based
planar visual servoing control is proposed to deal with
kinematic and camera uncertainties. However, the param-
eterization and the non explicit cascade of both loops is
not straightforward.

This paper proposes an extension of both works (Wang
et al., 2018; Leite and Lizarralde, 2016) overcoming their
main drawbacks. The translational trajectory tracking
problem, considering depth control, is considered using
indirect adaptive methods for the kinematic loop, and by
means of a passive cascade scheme combining with an
adaptive passive control for the dynamic loop. Parameters
for both camera and manipulator are considered uncertain
with no need of explicit nonlinear feedback and image
velocity measurement. To avoid control singularities, a
projection mechanism is implemented in the adaptive laws
(Cheah et al., 2007).
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2. VISUAL SERVOING SYSTEM

A visual servoing setup consists typically of a manipulator
and a pinhole camera. In this work, an eye-to-hand setup
was used, with a fixed camera tracking a spherical target
attached to the manipulator end-effector. In this section,
equations for the visual servoing system are presented.

2.1 Robot Manipulator Model

Considering a robot manipulator with n degrees of freedom
(DOFs), the end-effector position with respect to the
base can be obtained by the forward kinematics given by
pb = k(θ), where θ ∈ R

n are the joint angles and k(·) is
a vector function. The differential kinematic relates the
end-effector linear velocity to joint velocities, given by

ṗb =
∂k

∂θ
θ̇ = J(θ) θ̇ (1)

where J ∈ R
3×n is the manipulator Jacobian.

The equation of motion for a n-DOF manipulator consid-
ering an Euler-Lagrange system (Siciliano et al., 2011) is
given by:

M(θ) θ̈ + C(θ, θ̇) θ̇ +G(θ) = τ (2)

where M ∈ R
n×n is the inertia matrix, C ∈ R

n×n are
the centripetal/Coriolis forces, G ∈ R

n is a vector of
gravitational torques and τ ∈ R

n is the joint torque vector.
This model has the following property:

(P1) The left-hand side of (2) is linearly parameterized
with respect to a constant parameter vector ad:

M(θ) θ̈ + C(θ, θ̇) θ̇ +G(θ) = Yd(θ, θ̇, θ̇, θ̈) ad (3)

where Yd(θ, θ̇, θ̇, θ̈) ∈ R
n×d is the regressor matrix, and

ad ∈ R
d is the parameter vector.

Also assume that:

(A1) The lower and upper bounds given by ad, ād ∈
R, respectively, are assumed known and satisfy ad ≤
||ad|| ≤ ād

2.2 Visual Servoing Model

Consider the visual tracking problem for an uncertain
robot manipulator monitored by a fixed, pinhole camera
with uncertain parameters. The control objective is to
track a reference trajectory along the {x, y, z} directions.

To accomplish this task, the visual servoing system needs
to extract at least three features from a target attached
to the manipulator. In this work, a spherical target is
considered, so its projection in the image plane is invariant
in response to rotations in the 3D environment, making
it possible to partially decouple the control of x and y
from the depth z (Zachi et al., 2006). The features to
be extracted are the centroid of target’s projection in the
image and the projected area.

Let pc = [xc yc zc]
T ∈ R

3, where xc and yc, in pixels, are
the coordinates of target centroid expressed in the image
frame Fc, and zc, in m, is target depth expressed in the
camera frame. Let pb = [xb yb zb]

T ∈ R
3 be the position of

the target, in m, expressed in the manipulator base frame
Fb. These two vectors are related by

pc =

[ 1

zc
K⊥

p

Kpz

]

(pb − pbc) +

[
Oc

0

]

(4)

where K⊥
p =

[
fαx 0 0
0 fαy 0

]

R and Kpz
= [0 0 1] R, f ∈ R

is the camera focal length in mm, αx, αy ∈ R are the
camera scaling factors in pixel/mm, R ∈ SO(3) is the
rotation matrix between camera and base frame, pbc is
camera position with respect to the base frame and Oc

are the coordinates of the principal point. The differential
kinematics that describe the behavior of this system is
obtained by directly calculating the derivative of (4) with
respect to time:

ṗc =

[ 1

zc
K⊥

p

Kpz

]

ṗb −
1

zc

[
pxy −Oc

0

]

żc, (5)

where pxy = [xc yc]
T . Yet, as żc = Kpz

ṗb,

ṗc =

[ 1

zc
(K⊥

p − (pxy −Oc)Kpz
)

Kpz

]

ṗb (6)

Now, consider depth zc and the spherical target of the
proposed formulation. Let ac ∈ R

+ be the projected area
of the target object in pixel count. If so, the relation
between those two measurements is given by:

(ac)
1

2 zc =
1

β
(7)

The following assumptions are considered hereafter:

(A2) The projected area of the target ac is bounded and
greater than zero, for all t in the interval [0, ∞);

(A3) The sign of zc is assumed to be constant and known.
Hence, without loss of generality, zc > 0, and β > 0;

(A4) The effects of radial distortion caused by the camera
lens are considered negligible.

The differential kinematics of the depth-to-area transfor-
mation is given by deriving (7) with respect to time:

ȧc = −2 β (ac)
3

2 żc (8)

Complete translational model with area information: Let
pv = [xc yc ac]

T be the vector of image features, expressed
in terms of the centroid coordinates and the area of target
object. From (6) and (8), the complete visual servoing
model is rewritten as follows:

ṗv =

[

βa
1

2

c (K
⊥

p − (pxy −Oc)Kpz)

−2βa
3

2

c Kpz

]

ṗb (9)

The differential kinematics for a translational visual servo-
ing system is given by (9) and robot differential kinematic
(1), which can be rewritten as:

ṗv =

[

βa
1

2

c (J
⊥ − (pxy −Oc)Jz)

−2βa
3

2

c Jz

]

θ̇ = J∗(θ, pv) θ̇ (10)

where J∗(θ, pv) is the feature Jacobian, J⊥ = K⊥
p J and

Jz = KpzJ are the image plane and depth Jacobian,
respectively. The following property can be stated:

(P2) Consider the image plane Jacobian J⊥, the depth
Jacobian Jz and any measurable vector ζ(t), then the
following linear parameterization can be established:
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βJ⊥(θ) ζ = Y ⊥(θ, ζ) a⊥ (11)

βJz(θ) ζ = Yz(θ, ζ) az (12)

where Y ⊥(θ, ζ)∈R
2×p and Yz(θ, ζ)∈R

1×q are the planar
and depth kinematic regressor matrices respectively,
a⊥ ∈ R

p is a depth-independent parameter vector and
az ∈ R

q is a constant depth parameter vector.

Let also assume that:

(A5) The lower and upper bound of a⊥ and az are
assumed known and satisfy a⊥ ≤ ||a⊥|| ≤ ā⊥ and
az ≤ ||az|| ≤ āz.

3. ADAPTIVE IBVS FOR TRANSLATIONAL
MOTION

In this section, an adaptive visual servoing strategy is
proposed for solving the trajectory tracking problem in
the presence of an uncalibrated camera and uncertainties
in the robot manipulator kinematic and dynamic. Here,
the desired trajectory is decoupled in planar and depth
trajectories, the former given in terms of the target cen-
troid, the latter in terms of its projected area.

Let pd(t) ∈ R
3 be the desired image features, then the

control goal can be described as:

pv(t) → pd(t), ev(t) = pv(t)− pd(t) → 0 (13)

where pv is image feature vector and ev(t) ∈ R
3 represents

the image feature error. The following assumptions are
made to achieve this goal:

(A6) Translational reference trajectory pd(t) remains visi-
ble within the robot workspace, and its derivative, ṗd(t),
is known and bounded.

(A7) Robot motions are away from singularities.

(A8) Joint angle θ and its derivative θ̇ are measurable.

Thus, it is considered that target occlusion problem does
not occur and that inverse of the manipulator Jacobian
always exists.

For the visual servoing problem and in order to obtain a
separation between a kinematic and dynamic control loop,
a cascade control scheme (Leite and Lizarralde, 2016) is
used. The dynamic control loop could be solved by the
Slotine-Li adaptive scheme, while the kinematic control
loop is solved by the indirect adaptive visual servoing.

3.1 Cascade Control

Here, a cascade control scheme is employed (Guenther
and Hsu, 1993), choosing a control τ which can guarantee
a goal pv → pd is reached by separating the visual
servoing system in kinematic and dynamic control loops.
The general strategy is proposed as follows. First, assume
that there exists a control law τ = F (θ, θ̇, θd, θ̇d, θ̈d) for (2)
which guarantees that e(t) = θ − θd → 0 as t → ∞ where
θd ∈ R

n denotes the desired trajectory for the dynamic
control, assigned to the joint space and assumed uniformly
bounded, and e is the joint position error vector.

Suppose it is possible to define θd, θ̇d and θ̈d in terms of a
control signal u such that u → ṗv is given by:

ṗv = J∗(θ, pv) [u+ σ], (14)

where J∗ is the feature Jacobian (10) and σ is a vanishing
term from the dynamic control yet to be defined.

Therefore, it is possible to design an adaptive visual
servoing control law for the kinematic model (14), and
considering the cascade structure, to perform the stability
analysis for the complete closed loop system.

In the case that the kinematic and dynamic controller
could hold passivity properties, the stability analysis is
stated by the following theorem:

Theorem 1. Consider the following interconnected sys-
tems, where Σ1 is the driven system and Σ2 is the driving
system, described by:

Σ1 : ẋ1=f1(x, t) + ξ(x, t)y2 + η(x, t), y1=φ1(x1)(15)

Σ2 : ẋ2=f2(x, t) + ω2, y2 = φ1(x2) (16)

where x = [x1 x2]
T , f1, f2 are piecewise continuous

functions in time t and locally Lipschitz in x for all t > 0;.
x ∈ D, where D ⊂ Rn is a domain that contains the origin
x = 0; φ1, φ2, ξ are continuous functions, η is a vanishing
perturbation term and ω2 is an external input. Suppose
that ||η(x, t)|| ≤ γ||x||, ∀t ≥ 0, ∀x ∈ D, where γ is a non-
negative constant. Assume that ||ξ(x, t)|| ≤ c, ∀x, t and
for some c > 0. If system Σ1 is output strictly passive from
y2 → y1 with positive definite storage function V1(x1)

V̇1 ≤ −λ1||y1||
2 + c1y

T
2 y1, λ1 > 0 (17)

and system Σ2 is output strictly passive from ω2 → y2
with positive definite storage function V2(x2)

V̇2 ≤ −λ2||y2||
2 + c2ω

T
2 y2, λ2 > 0. (18)

Then, for ω2 = 0, the following properties hold: (i)
x1, x2 ∈ L∞ and (ii) limt→∞y1(t) = 0, limt→∞y2(t) = 0
(For proof, see Leite and Lizarralde (2016)).

The passivity properties of the proposed adaptive strategy
will be explored in the following section using Theorem 1.

3.2 Dynamic Control

Here, we can consider the Slotine-Li adaptive control
scheme (Slotine and Li, 1991). This adaptive control has
well known passivity properties and it can guarantee that
θ(t) asymptotically follows a desired trajectory θd(t).

Now, consider the virtual error σ ∈ R
n defined as:

σ = θ̇ − θ̇r = ė+ λde (19)

with
θ̇r = θ̇d − λde (20)

where θ̇r ∈ R
n is a velocity reference signal and λd > 0

is a constant parameter. Now, considering property (P1)
(linear parameterization), the following adaptive controller
Slotine and Li (1991) can be used:

τ = Yd(θ, θ̇, θ̇r, θ̈r) âd −KD σ + ω2, (21)

where Kd is positive definite gain matrix, ω2 ∈ R
n is a

fictitious external input and âd is a vector of estimated
dynamic parameters, which are updated by

˙̂ad = −ΓdY
T
d σ, Γd = ΓT

d > 0 (22)

where Γd is a positive definite gain matrix. Now, defining
the parameter error ãd = âd−ad, from the robot dynamic
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model (3) and the dynamic control law (21), the closed-
loop error dynamics is given by

M(θ) σ̇+(C(θ, θ̇)+KD) σ = Yd(θ, θ̇, θ̇r, θ̈r) ãd+ω2 (23)

The following theorem establishes passivity properties and
stability of this control scheme.

Theorem 2. Consider the uncertain robot manipulator dy-
namic model given by (2), the control law given by (21),
the parameterization given by (3) and the parameter adap-

tation law given by (22). As θ and θ̇ are measurable from
assumption (A8), the regressor matrix Yd can be calcu-
lated. Then, the map ω2 → σ is output strictly passive
with positive definite storage function

2Vd = σTM(θ)σ + ãTd Γ
−1
d ãd (24)

Moreover, for ω2 = 0, the following properties hold: (i) All
system signals are uniformly bounded; (ii) limt→∞σ(t) =
0; (iii) limt→∞ė(t) = 0 and limt→∞e(t) = 0 (For proof,
see Leite and Lizarralde (2016))

3.3 Cascade Strategy

The cascade stategy of the kinematic (10) and dynamic
subsystems (23) can now be defined. From (19), one has

that θ̇ = θ̇r + σ, then the kinematic subsystem can be
rewritten as:

ṗv = J∗(θ, pv) [θ̇r + σ] (25)

where σ is a vanishing term as stated by Theorem 2. Then
a cascade strategy can be proposed considering θ̇r as the
visual servoing control signal u, i.e. θ̇r = u, which define
the following visual servoing control system:

ṗv = J∗ u+ J∗ σ (26)

Note that θ̇d and θ̈d are now defined in terms of u:

θ̇d = u+ λd e, θ̈d = u̇+ λd ė (27)

Remark 1. Note that any other passive dynamic control
could also be used, for example a variable structure con-
trol.

Remark 2. Note that control signal τ (21) depends on

θ̈r. Thus, it is desirable to avoid that u = θ̇r depends
directly on pv, which would imply on the need of image-
space velocity ṗv (a very noisy signal). To circumvent this
problem, a filtered version of pv is used for the design of
the visual servoing control signal u.

3.4 Adaptive Kinematic Visual Servoing with Observer

Consider the kinematic visual servoing model given by
(26). Then, in order to design a control law u to solve
the visual servoing problem, i.e. pv tracking pd(t), linear
paremeterizations (12) can be considered, consequently
the system can be rewritten as

ṗv =

[

a
1

2

c Y
⊥(θ, u)
0

]

a⊥ −

[

a
1

2

c (pxy−Oc)

2a
3

2

c

]

Yz(θ, u)az + ω1

(28)
where ω1 = J∗σ.

The idea of using an observer to estimate pxy in the
expression of u was introduced in (Wang et al., 2018),
where it is designed to guarantee the system passivity
using a nonlinear feedback term. Here, the proposed ob-
server uses the area information and does not need a

nonlinear feedback term, while still guaranteeing that the
kinematic subsystem is output strict passive. Consider
po = [pTxyo ac]

T , where pxyo is an estimation of pxy

ṗxyo = a
1

2

c (β̂Ĵ
⊥−(pxy−Oc+exy)β̂Ĵz)

︸ ︷︷ ︸

Ĵxyo

u−Koeo+Kkexy

(29)

where eo = pxyo−pxy is the observation error, exy = pxy−
pxyd is the target centroid error and Ko 6= Kk > 0 is
a positive gain. Now, rewriting the control law u is as
follows:

u = (Ĵ∗(θ, po))
−1 [ṗd −Kk(po − pd)] (30)

with

Ĵ∗(θ, po) =

[

a
1

2

c (β̂Ĵ
⊥−(pxyo−Oc)β̂Ĵz)

−2a
3

2

c β̂Ĵz

]

(31)

note that the structure of Ĵ∗ is in term of po instead of pv,
i.e. pxyo is used instead of pxy. The parameter adaptation
updates are given as follows:

˙̂a⊥ = Γ⊥a
1

2

c Y
⊥T (exy − eo) (32)

˙̂az = ΓzY
T
z (a

1

2

c e
T
o exy + a

1

2

c (pxy −Oc)
T eo

−

[

a
1

2

c (pxy −Oc)

2a
3

2

c

]T

ev) (33)

Projection Algorithm: To ensure that the inverse of
the estimated Jacobian exists in the indirect adaptation,
a projection is introduced with the following objectives:
(i) avoid the singularity point at the origin; (ii) avoid
large parameter drifting. Consider the following projection
operator:

Λ(g, h) = h−
(hT g)h

hTh
(34)

Then, the adaptation laws (32) and (33) are modified as:

˙̂a⊥ =







Λ( ˙̂a⊥, â⊥), for ||â⊥|| >= ā⊥, â⊥T ˙̂a⊥ > 0

Λ( ˙̂a⊥, â⊥), for ||â⊥|| <= a⊥, â⊥T ˙̂a⊥ < 0
˙̂a⊥, otherwise.

(35)

˙̂az =







Λ( ˙̂az, âz), for ||âz|| >= āz, âTz
˙̂az > 0

Λ( ˙̂az, âz), for ||âz|| <= az, âTz
˙̂az < 0

˙̂az, otherwise.

(36)

Stability Analysis: Consider the dynamic equation for
the tracking error ev, and that pxy = pxyo − eo

ėv =

[

βa
1

2

c (J
⊥ − (pxyo −Oc − eo)Jz)

−2βa
3

2

c Jz

]

u+ ω1 − ṗd (37)

Now, using the control law (30) and the parameterizations
(12), we can obtain the closed-loop error dynamic

ėv = −Kk ev −Kk

[
eo
0

]

+ a
1

2

c

[
eo
0

]

Yzaz −

[

a
1

2

c Y
⊥

0

]

ã⊥

+

[

a
1

2

c (pxy −Oc)

2a
3

2

c

]

Yzãz + ω1 (38)

From (10), (25) and (29) the observation error eo dynamic
is given by:
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ėo = Ĵxyo u−Koeo +Kk exy

− [βa
1

2

c (J
⊥ − (pxy −Oc)Jz)] u− S ω1 (39)

where S is the selection matrix for the first two elements
of ω1. Considering the parameterization errors ã⊥ and ãz,
(39) can be rewritten as:

ėo = −Koeo − exya
1

2

c Yzâz +Kk(pxy − pxyd) + a
1

2

c Y
⊥ã⊥

+ a
1

2

c (pxy −Oc)Yz ãz − S ω1 (40)

The following theorem shows results on passivity proper-
ties and stability analysis of the system.

Theorem 3. Consider the uncertain visual servoing prob-
lem, modeled by (26), the observer described in (29), the
control law given by (30), the parameterizations given by
(12), and the parameter adaptation laws given by (32)
and (33). Given assumption (A8) (θ is measurable), the
regressor matrices Y ⊥ and Yz can be calculated. Then,
given that ω1 ∈ L2∩L∞, the map ω1 → ev−ST eo is output
strictly passive with positive definite storage function

2Vko = eTv ev + eTo eo + ã⊥TΓ⊥−1ã⊥ + ãTz Γ
−1
z ãz (41)

Moreover, for ω1 = 0, the following properties hold: (i) All
system signals are uniformly bounded; (ii) limt→∞ev(t) =
0; (ii) limt→∞eo(t) = 0.

Proof. The derivative with respect to time of the storage
function Vk (41) is given by

V̇ko = eTv ėv + eTo ėo + ã⊥TΓ⊥−1 ˙̃a⊥ + ãTz Γ
−1
z

˙̃az (42)

Using the closed-loop error dynamics given by (38) and
(40), with the adaptation laws (32) and (33), one has

V̇ko = −eTv Kkev − eTo Koeo + (eTv − eTo S) ω1 (43)

which defines an output strictly passive map, from ω1 →
ev, eo. Thus, if ω1 = 0, V̇ko ≤ 0 which implies, by
Lyapunov theory, that ev, eo, ã⊥ and ãz ∈ L∞ and
therefore, the equilibrium state is uniformly stable. As
ev,eo, ã

⊥ and ãz are limited, the derivative with respect to
time V̈ko = −2eTv Kkėv−2eTo Koėo is uniformly limited. So,
by using the Barbalat’s Lemma, it is possible to conclude
that limt→∞ev(t) → 0 and limt→∞eo(t) → 0. �

Remark 3. Control proposed could be expanded to a re-
dundant manipulator by using the standard generalized

inverse of the Jacobian matrix, Ĵ∗
†

o = Ĵ∗
T

o (Ĵ∗
o Ĵ

∗
T

o )−1, in
the control law u.

Remark 4. In this work, the target area ac is not filtered,
and the variation of target area ȧc is assumed to be
measurable.

Remark 5. The separation property of the proposed adap-
tive kinematic controller allows it to be applied to robots
admitting the design of the joint velocity command (e.g.,
most industrial/commercial robots), provided that joint
servoing controller embedded in the system can guarantee
that θ̇ − u ∈ L1 ∩ L∞.

3.5 Stability Analysis

Consider now the passivity properties stated by Theo-
rem 2, and of adaptive visual servoing kinematic control
system, stated by Theorem 3. Thus, Theorem 1 may be
applied to analyze the stability properties of the overall
closed-loop cascade system, where the driven system Σ1

and the driving system Σ2 are identified as follows:

Σ1 : x
T
1 = [eTv eTo a⊥

T

aTz ], y1 = ev − ST eo (44)

Σ2 : x
T
2 = [eT ėT aTd ], y2 = J∗σ, (45)

with storage functions V1(x1) = Vko and V2(x2) = Vd as
seen in (41) and (24) respectively. Then, from Theorem
1, it is possible to conclude, for the complete adaptive
visual servoing system with non-negligible dynamics: (i)
All signals of the interconnected system are bounded; (ii)
limt→∞σ(t) = 0, limt→∞e(t) = 0, limt→∞ev(t) = 0, and
limt→∞eo(t) = 0.

4. SIMULATIONS RESULTS

Here, simulations are presented to illustrate the proposed
adaptive visual servoing control. Simulations are done
with the Matlab/Simulink software. Consider the following
visual servoing system:

• A 3R manipulator, with kinematics and dynamics
as seen in the simulations of (Leite and Lizarralde,
2016).

• A pinhole camera, where f = 8mm is its focal length,
α = 72727pixel/m is the camera scaling factor and
β = 0.1 is the depth-to-area transformation constant.
For simplicity, consider that the camera rotation is
R = Rz(φ).

The camera transformation mapping, from pb to pc, is
given according to (4) where Oc = [0 0]T and zbc = 1m.
The goal pd(t) is given by

pd(t) =







210 + 30 sin(
π

5
t) + 30 sin(1.5

π

5
t)

−60 + 30 sin(
π

5
t+ 1.6) + 30 sin(1.5

π

5
t+ 1.6)

95 + 3 sin(0.1t)







Regressor matrices Y ⊥, Yz and Yd can be found in
(Fried, 2019). Camera misalignment is assumed to be

φ̂ = 2π
3 . Consider the following initial conditions and

parameters: θ(0) =
[
0 − π

4
π
2

]T
, θ̇(0) = 0, â⊥(0) =

[−5.67 − 4.35 9.82 7.53]
T
, âz(0) = [0.027 0.021]

T
, âd(0) =

[0.166 0.302 0.011 0.0114 10.36; 0.4136]T , pc(0) =

[214 0 100]T , poxy
(0) = [210 0]T , Kk = 2I3, Ko = 4I2,

Kd = 2I3, Γ⊥ = 0.2

[
3 I2 0
0 I2

]

, Γz = 3 10−6

[
1 0
0 2

]

,

Γd = I6, ā
⊥ = 28.28, a⊥ = 2, āz = 0.13, az = 0.03.
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Fig. 1. Dynamic Adaptive IBVS: Image plane Trajectory
and Area Tracking

Simulation results are presented in Figures 1-4. The planar
trajectory tracking in image space, for both manipulator
and observer, and area tracking are presented in Figure
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Fig. 2. Dynamic Adaptive IBVS: Image plane, observer
and area tracking error
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Fig. 3. Dynamic Adaptive IBVS: Depth-independent and
Depth-dependent Parameters

1. The error for plane and area trajectory tracking and
observer are illustrated in Figure 2. An increasing track-
ing error is noticeable at the start, due to the initial

assumption that φ̂ = 2π
3 . Figure 3 shows the evolution of

estimated parameters â⊥ and âz over time. The estimated
parameters quickly adapt at the start, changing sign near
the 1-second mark. Figure 4 shows the control signal,
which is visibly bounded, and the dynamic parameters
over time. Overall, a feasible control signal and remark-
able performance in closed loop were reached, even in the
presence of uncertainties in the camera-robot system.
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Fig. 4. Dynamic Adaptive IBVS: control signal and dy-
namic parameters

5. CONCLUSION

In this work, the problem of adaptive image based visual
servoing is considered for a robot manipulator and eye-to-
hand pinhole camera with uncertain parameters for trans-
lational trajectory. The idea is to use indirect adaptive
methods with a control design to allow planar trajectory
and depth tracking simultaneously.

Indirect adaptive schemes for visual servoing does not
have the usual restrictions on the camera misalignment,

as presented in direct adaptive control. The simulation
shows good performance even for significant uncertainties
in camera parameters and misalignment. Future works
include developing an observer for the tracked area, study
the effects of adaptive schemes in eye-in-hand setups, and
considering other image features for tracking, aside from
geometric features used in this work.
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