
ICS-Zooids - An Experimental Testbed for
Cooperative Control Strategies

Nirmal Rathakrishnan ∗ Patrick Göttsch ∗ Herbert Werner ∗

∗ Institute of Control Systems, Hamburg University of Technology, Germany
nirmal.rathakrishnan@tuhh.de patrick.goettsch@tuhh.de

h.werner@tuhh.de

Abstract: In this paper, we present an experimental test bench to implement various cooperative control
strategies for multi-agent systems, and illustrate its use with experimental results for a source-seeking
problem, where a group of small wheeled robots termed as Zooids should locate a source of a given
spatial scalar field. This algorithm is implemented as a validation to demonstrate the capabilities of
the test bench. We propose to achieve this by utilising an internal target-based position controller,
under the assumptions of convexity of the scalar, continuous/discrete field and availability of local
measurements of the field, so that agents can calculate its gradient and its Hessian. We then show in
experiments, that using estimated gradients and Hessians (with data communicated from neighbours)
in the presence of noisy measurements of the field strength provides satisfactory results for convex
fields, under various algorithms such as Steepest Descent, Gauss-Newton, Levenberg Marquardt. These
algorithms are analysed, and experimental results are discussed.

Keywords: Multi-agent systems, Embedded robotics, Autonomous robotic systems, Networked robotic
system modeling and control, Networked embedded control systems, Control under communication
constraints, Control under computation constraints, Formation control, Source-seeking,
Experimental-platform

1. INTRODUCTION

Recently, a number of various robotic test benches to re-
alise swarm algorithms have been reported, such as Rezeck
et al. (2017); Pickem et al. (2015); Rubenstein et al. (2012);
McLurkin et al. (2013). The interest in such experimental se-
tups has increased, to realise real-life environments in a test
bench. This allows to develop and test algorithms that can be
applied with little adaptation to real life problems. Consider e.g.
a situation of oil leakage, recreation of such oil spill or toxic
leak is quite challenging with the existing swarm setups. Our
requirements for such a multi-agent platform are: Usability of a
high number of tiny agents, recreation of a reproducible source
field in a setup with non-ideal communication where position
and source data have to be obtained on the robot instead of
being communicated.

The GritsBot Pickem et al. (2015) developed for this purpose
serves to be an appropriate solution, yet doesn’t have the ad-
vantages of position based tracking system and needs additional
sensors to sense external source field concentration, to imple-
ment source seeking algorithms. This gives us the motivation
to chose the Zooids framework developed by Shape lab as a
Swarm user interface to represent visual data Le Goc et al.
(2016). This uses a projector based tracking system Lee et al.
(2005), for the zooids to know their position coordinates. We
propose to make software changes to adapt this platform to
perform various control algorithms such as source seeking,
formation control and obstacle avoidance. The Zooids hardware
is unaltered in the adaptation process. We show that altering the
projection sequence 2.3 leads to a higher data density 1 and
allows it to add additional data packets with information such
as noise corrupted source field data (Fig. 4) and obstacle field

data. The added advantage is that with this specific projector
based tracking system, we could send data in a robust and
synchronised way to all the agents in the work-space.

We present an experimental platform for multi-agent control
problems, such as source seeking, formation control, obstacle
avoidance, all under hardware limitations in communication
(like package dropout, bandwidth) and computational power.
We propose and demonstrate improvements in the data pro-
jection scheme, achieved by software changes to the DLP-
structured light projector, peer-to-peer communication and a
debug channel via software changes in the Zooid firmware.
We show experimental results on this platform by utilising the
source seeking algorithm proposed in Datar et al. (2020). This
paper presents and discusses results for steepest descent vs
Gauss Newton; in addition we show results for Levenbverg-
Marquardt vs steepest descent vs Gauss Newton algorithms,
tested under different scenarios.

The rest of the paper is organised as follows. Section II presents
the complete experimental setup, followed by a brief expla-
nation of the hardware and software architecture. Section III
briefly reviews the theory behind the source seeking algorithms.
Section IV gives an analysis of different algorithms used, also
is a validation for the capabilities of such a test bed. Section V
gives the conclusion and possible extensions.

2. EXPERIMENTAL PLATFORM

2.1 Zooid Hardware

Each Zooid is 26 mm in diameter, 21 mm in height and 12 g
in weight. The Zooids are driven by 2 DC micro motors,

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

Copyright lies with the authors 9869

non-colinearly placed but compensated by software to provide
co-linearity. It can achieve a maximum speed of 74 cm/s. A
48 MHz ARM micro-controller manages the computation and
wireless communication with the master computer and the
other Zooids using a 2.4 GHz nRF24L01+ radio chip. The cir-
cuit board is integrated with 2 photo-diodes placed diagonally,
as a part of the projector based tracking system. It is powered
by a 100 mAh LiPo battery. Further details about the hardware
can be found in Le Goc et al. (2016).

User Defined

Algorithm
Reference

Tracking PID

Projector

System

Zooid

pk

ur=pi+1 e

Radio Frequency

Tx/Rx

pi

pi+n

pk

pk

B
it
-F

ra
m

e

Im
g
 S

e
q
u
e
n
c
e

-
+

+
+ n

Fig. 1. Block diagram of the Zooid control loop.

2.2 System Overview

A block diagram of the proposed Zooid system is given in
Fig. 1. The projection system displays a sequence of images
on the workspace. These images are read by the Zooid using
its photodiodes. The measurements are treated as a gray-code
sequence and used to infer at least their respective location in
the workspace, but based on the setup of the experiment, it
can also contain further auxiliary data like, obstacle position
or source field data, Pk. This location and auxiliary data is also
broadcasted over RF to other Zooids and for debug purposes.
A user defined algorithm like source-seeking (default for the
rest of the paper), formation control, obstacle avoidance or
any combination gets the current Zooid-data Pk and also the
neighbouring Zooid datas Pi, which can be received over a RF
channel. We also expect Pi to be corrupted with noise n during
transmission over RF. One can infer that the projector system
induces less noise in the control-loop. Both Pk and Pi + n are
fed into the user defined algorithm, which provides a new target
Pk+1, that is tracked by the reference tracking controller.

2.3 Projector Based Tracing System

The projector hardware used is an ultra high frame rate
(3000 Hz) DLP Structured Light Projector (LightCrafter), by
Texas Instruments Inc. The projector based tracking system
as in Lee et al. (2005) is used in this project. They proposed
to transmit position information via the projector, the robots
sense the data and calculate from the projected data sequence its
actual position and orientation. The existing data transmission
sequence comprises of a start bit, single data packet (20 bits)
and a termination sequence (21 bits), illustrated in the Fig. 2.

0 0 0

DATA PKT TERMINATION

1 20 21 412

Fig. 2. Existing Data Sequence

This sequence is able to achieve a data density of 47.61%. Data
density is the total amount of actual data carried in a projected

data sequence, neglecting the termination sequence, start and
stop bits.

DataDensity =
n− (E +S)

n
, (1)

Where, n is the total number of bits, E is number of bits in the
termination sequence and S is the number of start bits.

Every bit-frame image is projected for 333 µs, the time taken by
the Zooid sensor to detect an high or low level. The total time
taken for a message transmission is 13.65ms = 41bits ·333 µs
equals an update frequency of 73 Hz, where only the termi-
nation sequence consumes 6.99ms = 21bits · 333 µs. This is a
serious drawback to be considered in the projection sequence,
which costs the Zooid software an idle wait time of 6.99 ms
in every data sequence. It also occupies additional bandwidth,
which is in a setup with multiple robots an limited resource.
Also adding more auxiliary data bits to the existing sequence is
difficult as the number of bits in termination sequence increases
proportional to the number of added auxiliary data bits, with the
previously described consequences.

0 0 0

0 11 1 1 1

PKT 1 PKT 2

PKT n TERMINATION

START END 1 END 2

END n-1

Fig. 3. Proposed Data Sequence

Proposed Projection Scheme A new data sequence is pro-
posed which allows addition of auxiliary data bits as data pack-
ets. The data to be transmitted is first segmented as data packets
of 4 bits each. Each packet is then packed with the sequence
illustrated in the Fig. 3. Each data packet is prefixed with a 0-
bit (Black), to distinguish them from the other packets. The
termination sequence is 5 bits (1-White). The data sequence
used in the experiments in section 4 is structured as shown in
table 1. This gives the ability to add more data such as source
and obstacle field concentration, by segmenting it to smaller
data packets, thus increasing the data density without increasing
the number of bits in termination seq. Also the risk of error
will remain the same as the old data sequence. Increasing data
density in-turn transmits more data within the same time frame
of the old data scheme, thus maintaining 73 Hz refresh rate for
one complete message.

Table 1. Data Packet Contents

Packets No.Of Bits Content

1 to 5 20 x, y coordinates
6 4 source information
7 MSB-1 parity bit

Source field concentration The designed continues source
field concentration is discretized as scalar level curves, used in
source seeking algorithms for finding local minima or maxima.
This discrete field information is transmitted via projector as
bit-frame images. Each bit frame image would comprises one
bit data in the data sequence. One can also simulate various
source field interpretations like static source field or (noisy)
time varying source field (using projector’s dynamic mode).
This provides the motivation to use this method to replicate real
life environment in the test bench and to be able to perform
various experiments with the same reproducible source field.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

9870

Bit-Frame Construction The data to be transmitted via pro-
jector is segmented as bit-frame matrix of (1140x912) pixels
and converted to earlier proposed data sequence in Fig. 3. This
is accomplished by the procedures provided in Lee et al. (2005)
and Kocev (2018).

Initially the information to be transmitted is created as data
map, then scaled based on the size of the data packet. For
instance consider the case of scalar field, 4 bits are used giving
a resolution of 24 (0 to 15). After being scaled the image
is converted to a matrix of size (1140x912 pixels), which is
then decomposed to 4 binary bit-frame matrices. These bit-
frame matrices are then converted to Gray codes. The final
outcome from this conversion is a Gray code version of the
bit-frame matrix. Final bit frame images of source data are
shown in Fig. 4. One can use a closed form expression to
represent continuous static source field as in eq. 2 or use the bit
transmission procedure from the projector. The map in Fig. 4
represents a noisy corrupted source field, replicating a realistic
source such as CO2 or any toxic leak. These kind of source
fields are hard to interpret as mathematical equation, hence the
bit-frame projection method is preferred. When the Zooid is in
coordinate (0,0) it would read gray code value for the source
field potential as 0001 and when in centre of source field, it
reads 1110.

0 0 0

0 0 0 1 1 01 1

Gray code value at coordinates (0,0) Gray code value at centre of source field

1

Fig. 4. Noise corrupted source field bit-frame construction

Comparison This new data sequence has proved to be a more
efficient method with less wait time in the Zooid software com-
pared to old data sequence. A projection at 3000 Hz, a period
of 333µs for each bit frame hence 13.96 ms (42× 333 µs) for
a complete message to be transmitted with a data density of
47.61%, is replaced with the new sequence (40×333 µs), takes
13.32 ms for a complete message with a data density of 70%.
The Zooid hardware is efficient enough to support a refresh rate
of 1µs but the delay in task completion and data transmission
requires to have a slower sample time (1/refresh rate). This
scheme has a significant impact on transmission delays and
the sample time of control algorithms that are implemented in
Zooid Software. Table 2 gives a comparison of the data density
between the old scheme and the new scheme.

Table 2. Comparison between old & new scheme

Scheme No.of
Start
Bits

No.of
Data
Pack-
ets

Packet
Size

Termination
Seq Size

Data
Den-
sity

Old 1 1 20 21 47.61%
New 7 7 4 5 70.00%

2.4 Zooid Software

The Zooid software is programmed in C and acts as a platform
for implementation of control algorithms. In Le Goc et al.
(2016) the software was designed for the Zooid to act as a slave
for the commands being sent by the user via RF transceiver
from a centralised command centre, to illustrate swarm robotics
in a completely different scenario. This functionality is no more
used since the source seeking algorithms we are developing
and testing are decentralised algorithms and requires the Zooid
to have its own intelligence. This requires to alter the existing
software to a new version with various functionalities discussed
in this chapter.

Scheduler The earlier version of the Zooid firmware con-
sisted of a simple infinite loop, non-preemptive, task based
scheduler. When it comes to time critical tasks such as com-
puting direction vector for obstacle avoidance algorithms, this
basic scheduler has a risk of failing to achieve the refresh rate
of 73 Hz. Hence, we propose to have a preemptive, periodic
Scheduler. The Zooid functions are subjected to tasks (blocks of
code) and added as tasks to the scheduler linked list, along with
specified period for the task to repeat. They repeat periodically
until the task expires. Once the allotted time is expired for a
specific task, next task is started unconditionally. The initial
version was built with a infinite while loop, where the tasks
do not give up the control if they have not completed their
execution (no preemption). This causes a problem if a task takes
longer than usual like in computing the hessian, as the data set
varies every instance. The preceding tasks have to wait until the
current task is complete. With the new scheduling algorithm,
if the task has not completed within the requested time, then
old estimation values are used and the scheduler preempts the
current task with the preceding task.

2.5 Communication stack

The Zooid has a built in RF module (Nordic Semiconductors
nRF24L01+) to communicate with other Zooids and the base
command centre. We use the command centre platform as a
debug channel to know the whereabouts of the Zooid and also to
provide start and stop commands for the Zooids. We have also
achieved peer to peer communication (Broadcast mechanism-
UDP).

The Zooid software consists of a RF message transmission
framework, that converts the message to be sent as 32 byte
data with message type and Zooid ID. The maximum payload
is 30 bytes. Every message sent is less than 30 bytes so it is
composed in a single data packet. Zooids can transmit at a
rate of 50 Hz (with acknowledgement), without affecting other
functionalities, provided that the microprocessor used is single
threaded. This has given the flexibility to provide a continuous
feedback to the debug channel. We propose to transmit Zooid
location and source field data that is read by the Zooid’s sensors,
from the projection system, as primary components of the
feedback message. The rest of the bits could be used to debug
other internal variables such as PID gains in order to tune the
controller, etc. We have used the RF communication protocol
with 2.4 GHz, data-rate of 2 Mbps and with address width of 3
bits.

Peer-to-Peer Communication The need for peer-to-peer com-
munication arises when there is a requirement that every Zooid

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

9871

must know the whereabouts of the other Zooids. The implemen-
tation procedure is similar to that of the one used in Paulsen
(2018). The Zooid software can use the source data received
from the projector, then it has to be transmitted along with the
location information to the other agents, only the position data
is transmitted and the source data is given by an internal lookup
functions (2) and (3). This leaves us with 7 bits less than the
other version and is used in the experiments. We have used the
UDP protocol to transmit these messages, where there is no
acknowledgement for the received data. We used this method
since the packet loss is acceptable given the time taken for
TCP/IP protocol is higher than the UDP as stated in Paulsen
(2018).

Consequences of Mesh Communication The success rate
of this broadcast mechanism comes with few constraints that
increase the possibility of packet loss with a direct impact.
Packet loss is a serious problem in systems with no special
estimation technique to interpolate the lost packet. The factors
that cause this effect are data rate (the rate at which the message
is broadcasted), size of data packets, number of Zooids and,
interference in the bandwidth. From Le Goc et al. (2016) we
have to sacrifice the data rate if we have to send dense data
packets or have more Zooids in the swarm.

2.6 Zooid Motion Control

The Zooid motion control consists of two coupled controllers,
the angle and position controller PIDs. The target is provided
to the control algorithms as pixel locations, both controllers
are used to reach the target. Once the target is set, the angle
controller aligns the Zooid angle to the target’s angle, then
proceeds forward with the position controller, while keeping
alignment to target angle.

2.7 Experimental Platform Setup

The Zooid test bench platform consists of Zooid Hardware,
DLP-LightCrafter by TI, Basler Camera, TV Screen, Physical
stand, Debug Channel. The Basler camera is mounted perpen-
dicular to the screen to optically track the Zooids location to
validate motion control of the Zooids. The TV screen is used
for visualising the source field as an image, since the projected
bit-frame data of the source field is not visible to human eye due
to the high projection frequency. All these devices are held in
position by the physical stand. This portable physical stand has
a compartment to hold a PC underneath, and also has border
linings to prevent the Zooids from accidentally falling off the
apparatus. The debug channel was implemented to read the
RF messages and debug the internal variables of the algorithm
since the Zooid hardware does not provide any other means of
debug portal.

Fig. 5. Zooids used in experiments

Fig. 6. Test Bench Front View

3. SOURCE-SEEKING

In this section we compare different source seeking strategies,
and illustrate that Levenberg Marquardt achieves better con-
vergence than Steepest Descent and Gauss Newton algorithms.
The formulas used for computing these algorithms can be found
in algorithm 1.

3.1 Notation

Let i denote the number of an agent, pi the 2x1 position vector
consisting of x and y components (x,y) and let (xc,yc) be the
source field origin, ψ(pi) be the source field (scalar) corre-
sponding to the position pi, let η be zero mean, uncorrelated,
white noise. Ni denotes the set of neighbours of agent i, g and
H are the gradient and Hessian to be estimated using Eberly
(1999). For a convex source field, α , β and ρ are positive
constants, µ is a small positive number (e.g :µ = 0.01).

3.2 Algorithm

The general procedure to compute the next reference point
r = pk+1 is summarised in Algorithm 1. The procedure to
determine β is referred from Lourakis (2005), applicable only
for Levenberg Marquardts algorithm. For Steepest Descent and
Gauss Newton, β is used as a tuning knob. The computation
of algorithm runs at maximum of 20 Hz, where the commu-
nication is capable to be implemented in 50 Hz. The received
data are stored in a ring buffer used as a dictionary to store
past values up to ten values pi, including own data pk. The
dictionary data used to estimate the gradient and hessian using
procedures in Eberly (1999) and new target is fed back to the
reference tracking controller. For Gradient Descent we could
also compute g with local measurement data pk, by fitting a

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

9872

plane, where it is also possible to calculate the same with neigh-
bouring agent data pi and own data pk, by fitting a paraboloid.

Algorithm 1 Runs on each agent i at 20 Hz
Measure:

i Measure pi
ii Measure ψ(pi) = ψ(pi)+η

Communicate:
i Broadcast (pi, ψ(pi))

ii Receive (p j, ψ(p j)) ∀ j ∈Ni
Estimate:

i Update dictionary:
∀ j ∈Ni and j = i, if ||p j− p̂ j||> d, then:
add (p j, ψ(p j)) to dictionary
p̂ j = p j
if||Algorithm = SteepestDescent|| then:
Estimate [ii] gradient g only else:
Estimate both [ii] gradient g and [iii] Hessian H

ii Estimate the gradient g by fitting a plane with local mea-
surements

iii Estimate the Hessian H by fitting a paraboloid to the
dictionary data.

Compute: Choose one of the three options below based on the
experiment. Use β as tuning knob.

i Steepest Descent:pk+1 = pk +βg
ii Gauss Newton:pk+1 = pk +βH−1g

iii Levenberg Marquardt:pk+1 = pk +βg+(1−β)H−1g)
if||Algorithm = LevenbergMarquadts|| then:

Procedure to choose β :itemize
• Initially fix β = 1
• Compute pk+1
• if pk+1 ≥ pk, then: β = ρ ·µ , else: β = ρ

µ

Pass: pk+1 to the target tracking controller
Repeat: Until source centre is reached

4. EXPERIMENTAL RESULTS

The experiments reported here use two Zooids in two different
scenarios:

(1) The underlying source field is scalar, quadratic, elliptical
(K1 6=K2, eq. 2) and corrupted with noise by 5%

(2) The underlying source field is scalar, exponential, ellipti-
cal (Q2 6=Q3, eq. 3) and not corrupted by noise.

Each scenario uses two different deployment positions [Type
1 :(x1,y1) = (750,50); (x2,y2) = (60,60), Type 2: (x1,y1) =
(60,45); (x2,y2) = (100,40)]. These positions are represented
in pixels. The workspace pixel range is (900x500). We used
fixed starting positions for all the experiments. The Zooids
send the status update over the debug channel, which gives the
locations of each Zooid. The Zooid also receive the location of
the nearby agents via the RF message and estimate Hessians
and Gradients. The estimation of Hessians at times leads to
nearly singular matrix, which is quite challenging in the Zooid
environment to solve. This is due to the variation in the data set.
Hence a reduction factor is multiplied to the data set, loosing the
accuracy in data but ensuring the solution.

Quadratic Source Field
ψ(pi) = K1(x− xc)

2 +K2(y− yc)
2 (2)

Exponential Source Field
ψ(pi) = Q1 exp(Q2(x− xc)

2 +Q3(y− yc)
2) (3)

Error Plot To investigate convergence to the source, the error
to the centre of each Zooid is calculated as:

ν =
n

∑
i=1

√
(xi− xc)

2 +(yi− yc)
2 (4)

Where, K1, K2, Q1, Q2 and Q3 are the parameters used to alter
the source field dimensions and strength.

Error Plot Analysis : One can observe that close-by starting
positions lead to longer convergence time for Hessian and Lev-
enberg Marquardt methods. Whereas in a quadratic field cor-
rupted with 5% uncorrelated, Gaussian, zero mean white noise
one can see that Levenberg Marquadts provides better perfor-
mance as the Gauss Newton in Fig. 8 and Steepest Descent.
Looking into Fig. 10 one can see that Levenberg Marquardt
provides a better performance than the other two algorithms
in an exponential field, but when the agents are placed near
each other, the estimation is poor.When the agents are placed
far from each other and in opposite axis to the source field, a
complete image (rich data set) of the source field is obtained.

0 100 200 300 400 500 600 700 800

X Coord (px)

0

50

100

150

200

250

300
Y

 C
o

o
rd

 (
p

x
)

a)

0 100 200 300 400 500 600 700 800

X Coord (px)

0

50

100

150

200

250

300

Y
 C

o
o

rd
 (

p
x
)

b)

0 100 200 300 400 500 600 700 800

X Coord (px)

0

50

100

150

200

250

300

Y
 C

o
o

rd
 (

p
x
)

c)

Fig. 7. Scenario 1: Elliptical noisy source field for both starting
positions with a) Steepest Descent, b) Gauss Newton and
c) Levenberg Marquadt

5. CONCLUSION AND OUTLOOK

An experimental platform for cooperative control scenarios
for multi-agent systems has been established successfully, and
has been tested with Zooids for source seeking applications
under hardware limitations like limited computational power.
A novel data projection scheme was implemented and turned
out to improve performance. Source seeking experiments were

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

9873

0 5 10 15 20 25

t(s)

0

50

100

150

200

250

300

350

400

450

Hessian-Type1

Steepest Descent-Type1

LevenBergMarquads-Type1

Hessian-Type2

Steepest Descent-Type2

LevenBergMarquads-Type2

Fig. 8. Scenario 1: Error plot of all algorithms over time

0 100 200 300 400 500 600 700 800

X Coord (px)

0

50

100

150

200

250

300

Y
 C

o
o
rd

 (
p
x
)

a)

0 100 200 300 400 500 600 700 800

X Coord (px)

0

50

100

150

200

250

300

Y
 C

o
o
rd

 (
p
x
)

b)

0 100 200 300 400 500 600 700 800

X Coord (px)

0

50

100

150

200

250

300

Y
 C

o
o

rd
 (

p
x
)

c)

Fig. 9. Scenario 2: Exponential noiseless source field for both
starting positions with a) Steepest Descent, b) Gauss New-
ton and c) Levenberg Marquadt

conducted as a first step towards implementing more complex
and challenging multi-agent algorithms, and the results were
discussed.

The Zooids hardware is a single threaded micro processor, with
limited computational power, hence it restricts the implemen-
tation of complex algorithms. This provides the motivation to
develop the next version of the hardware to have multiple core.
With a powerful processor one can extend the source code
with multiple algorithms to run efficiently on a board. More
Zooids with updated hardware are currently being developed
to test the algorithms with more agents in the swarm. Further
developments are in progress to extend the area that is covered

0 5 10 15 20 25

t(s)

0

50

100

150

200

250

300

350

Hessian-Type1

Steepest Descent-Type1

LevenBergMarquads-Type1

Hessian-Type2

Steepest Descent-Type2

LevenBergMarquads-Type2

Fig. 10. Scenario 2: Error plot of all algorithms over time

by the projected positioning system. It is also planned to publish
the code of this project as open source in future.

REFERENCES

Datar, A., Paulsen, H.P., and Werner, H. (2020). Flocking
towards the source: Indoor experiments with quadrotors. In
European Control Conference.

Eberly, D. (1999). Least squares fitting of data by linear or
quadratic structures. Geometric Tools.

Kocev, K. (2018). Development of a Mobile Platform for
Swarm Robotics Experiments. Ph.D. thesis, Technical Uni-
versity Hamburg.

Le Goc, M., Kim, L.H., Parsaei, A., Fekete, J.D., Dragicevic,
P., and Follmer, S. (2016). Zooids: Building blocks for
swarm user interfaces. In Proceedings of the 29th Annual
Symposium on User Interface Software and Technology, 97–
109. ACM.

Lee, J.C., Hudson, S.E., Summet, J.W., and Dietz, P.H. (2005).
Moveable interactive projected displays using projector
based tracking. In Proceedings of the 18th Annual ACM
Symposium on User Interface Software and Technology, 63–
72. ACM.

Lourakis, M. (2005). A brief description of the levenberg-
marquardt algorithm implemened by levmar. A Brief
Description of the Levenberg-Marquardt Algorithm Imple-
mented by Levmar, 4.

McLurkin, J., Lynch, A.J., Rixner, S., Barr, T.W., Chou, A.,
Foster, K., and Bilstein, S. (2013). A low-cost multi-robot
system for research, teaching, and outreach. In Distributed
Autonomous Robotic Systems, 597–609. Springer.

Paulsen, H.P. (2018). Development of a software framework
for implementation of Co-operative control algorithms on a
swarm of small quadrotors. Ph.D. thesis, Technical Univer-
sity Hamburg.

Pickem, D., Lee, M., and Egerstedt, M. (2015). The gritsbot in
its natural habitat - a multi-robot testbed. In 2015 IEEE In-
ternational Conference on Robotics and Automation (ICRA),
4062–4067. doi:10.1109/ICRA.2015.7139767.

Rezeck, P.A., Azpurua, H., and Chaimowicz, L. (2017). Hero:
An open platform for robotics research and education. In
2017 Latin American Robotics Symposium (LARS) and 2017
Brazilian Symposium on Robotics (SBR), 1–6. IEEE.

Rubenstein, M., Ahler, C., and Nagpal, R. (2012). Kilobot:
A low cost scalable robot system for collective behaviors.
In 2012 IEEE International Conference on Robotics and
Automation, 3293–3298. doi:10.1109/ICRA.2012.6224638.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

9874

