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Abstract: This paper investigates the equilibrium stabilization problem for a class of un-
deractuated mechanical systems which do not possess potential energy. The dynamics of the
system is established under the framework of Rimannian geometry, and differential geometric
methods are employed in the design of stabilization controller. The main novelty of this paper
is that we stabilize the equilibrium by constructing an artificial potential for the closed-loop
system, which is related to the designed configuration feedback. Once the artificial potential
satisfy certain requirements with respect to the equilibrium, the stability of the system can be
guaranteed. Furthermore, by incorporating dissipative feedback into the control strategy, we
successfully obtain the exponential stability of the equilibrium.
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1. INTRODUCTION

Mechanical control systems have attracted much attention
due to their extensive application in autonomous vehicles,
aircrafts and so on. Generally, the stabilization of an equi-
librium for mechanical systems is one of the most chal-
lenging and interesting problems. A wide range of control
techniques have been employed to tackle the stabilization
problem. For example, backstepping (Dixon et al. (2000);
Farrell et al. (2009); Mazenc et al. (2019)), feedback
linearization (Banaszuk and Hauser (1996); Wang et al.
(2007); Reis et al. (2018)), and transverse function (Morin
and Samso (2001, 2003); Pazderski (2017)) have been used
in the stabilization for nonlinear systems.

A number of works solve the stabilization problem from
the perspective of energy shaping. Takegaki and Arimoto
(1981) was a pioneering work presenting a linear state
feedback to shape the potential of the system. Afterwards,
van der Schaft (1986) developed this method and originally
used it into the stabilization for underactuated Hamilto-
nian systems. Stability of underwater vehicles was studied
in Leonard (1997), which employed symmetry breaking
potentials to shape the energy of closed-loop system. The
controlled Lagrangians (CL) approach for stabilization
was presented in Bloch et al. (2001), which augmented
relevant constructions to include symmetry-breaking mod-
ifications to the potential energy of mechanical systems. A
recent application of CL method for wheeled mobile robots
was shown in Tayefi and Geng (2018). In addition, the
passivity-based control (PBC) (Ortega et al. (2001)) could
also be used in the stabilization of underactuated me-
⋆ This work was supported by the National Natural Science Foun-
dation of China under Grant 61773024.

chanical systems. Ortega et al. (2002) and Gómez-Estern
et al. (2001) presented a new PBC design methodology
known as interconnection and damping assignment (IDA),
which made the closed-loop energy related to the choice of
desired subsystems interconnections and damping.

Apart from equilibrium, a variety of researches also pay
attention to the stabilization of relative equilibrium (Jal-
napurkar and Marsden (2000)). Aiming at underactuated
systems on Riemannian manifolds, Bullo (2000) presented
a control law to stabilize their relative equilibria. Justh
and Krishnaprasad (2004) investigates all possible rela-
tive equilibria for planar vehicles under arbitrary group
invariant curvature controls. A control strategy of task-
induced symmetry and reduction for systems on Lie group
is proposed in Kallem et al. (2010), which can be applied
to relative equilibrium stabilization. Other examples can
be found in Wu and Geng (2010); Niu and Geng (2019).

Aforementioned literatures are all excellent works in non-
linear system stabilization, but most of them focus on
either fully actuated systems or relative equilibrium sta-
bility. Actually, how to stabilize an equilibrium of under-
actuated systems is a more challenging problem. On one
hand, compared to fully actuated systems, the number
of independent control inputs for underactuated systems
is less than their degrees of freedom. In other words,
for certain directions lacking input channels, we cannot
straightly stabilize them only by simple feedback like fully
actuated systems. Thus, novel methods should be brought
up for underactuated systems stabilization. On the other
hand, the stabilization of relative equilibrium is relatively
convenient to deal with in the sense that the states need
to be stabilized is fairly less. By definition, when system
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converges to a relative equilibrium, it is only required that
the velocity reaches a constant. In contrast, for equilibrium
stabilization, the configuration variables should converge
to constants, and meantime the velocity should become
zero. Thus, it is tougher to make the equilibrium stable.

In this paper, we consider the stabilization problem for un-
deractuated mechanical systems. The dynamics of systems
is established under the framework of Rimannian manifold,
so that differential geometric methods are employed in
the design of stabilization controller. Basically, due to the
existence of orientation, the actual configuration space of
a mechanical control system is not a linear space but
a nonlinear manifold, loosely speaking, a curved space.
Only in exceptional circumstances can the configuration
be described by vectors in the Euclidean space (Bullo
and Lewis (2005)). The most significant advantage of the
manifold description for mechanical systems is globalness
and uniqueness. That is to say, it does not rely on local
coordinates. Of course, although with such great advan-
tages, the control design and analysis on a manifold is
much more sophisticated and evolving than that in the
Euclidean space. This is because linear operations are not
be applicable on manifolds anymore, which brings more
challenges to our design.

The control strategy we proposed here is targeted for
a particular type of underactuated mechanical systems
which do not possess potential energy. In fact, such a
kind of system is quite common. For example, the vehicle
or vessel moving in a plane does not have gravitational
potential energy. In addition, regarding submarine whose
center of buoyancy coincides with center of mass, it is
not endowed with potential energy, either. The main
idea of stabilizing the equilibrium is to construct an
artificial potential by configuration feedback, which is also
known as potential shaping in several literatures. If the
artificial potential satisfies certain conditions with respect
to the equilibrium, then the stability of the system can be
guaranteed.

The contributions of this paper lie on the following three
aspects. Firstly, motivated by Bullo (2000), we design a
configuration feedback control for the none-potential open
loop system, such that the closed-loop system becomes
endowed with an artificial potential related to the given
feedback. Secondly, based on the designed potential, we
propose the condition about how to make the equilibrium
of the underactuated system Lyapunov stable. Finally,
under the assumption of linear controllability, we obtain
the exponential stability of the equilibrium by introducing
a dissipative feedback into the control strategy. It should
be emphasized that the designed controller can stabilize all
of the variables of interest, that is, all of the configuration
variables and velocity variables. Therefore, the results
in this paper focus on full-state stabilization instead of
output stabilization.

The organization of this paper is outlined as follows. In
Section 2, we introduce the preliminaries of differential
manifolds and mechanical control systems. Main results
relevant to artificial potential, Lyapunov stability and ex-
ponential stability are presented in Section 3. We conclude
this paper and provide discussion about future work in
Section 4.

2. PRELIMINARIES

Preliminaries about Riemannian manifold and mechanical
control system are provided before the main results. We
assume that the audience of this paper has general knowl-
edge about differential manifolds. For more information of
geometric control on Riemannian manifolds, please refer
to Bullo and Lewis (2005).

2.1 Notions and definitions on manifolds

Let Q denote a smooth manifold and TQ is the tangent
bundle of Q. Let q be a point on Q, and vq be a point
on TqQ, which is the tangent space at q. We use I ⊂ R
to represent a real interval, and γ : I → Q is a curve on
Q. On the manifold, f(Q) ∈ R and Xq ∈ TqQ represent
the smooth functions and vector fields respectively, and
more general (r, s) tensor fields are defined as real-valued
multi-linear maps on (TqQ

∗)r× (TqQ)s, where TqQ
∗ is the

cotangent space at q. We employ C(Q) and X(Q) to denote
the set of functions and vector fields on Q. Lie derivatives
of a function f and Lie bracket between two vector fields
X and Y are denoted by LXf and LXY , where f ∈ C(Q)
and X,Y ∈ X(Q).

A Riemannian metric on the manifold Q is a (0, 2) sym-
metric and positive-definite tensor field Gq, which is a real
valued map associating to each q ∈ Q an inner product
⟨·, ·⟩q on TqQ. A manifold endowed with a Riemannian
metric is named a Riemannian manifold. An affine con-
nection on Q is a smooth map which assigns to a pair of
vector fields X,Y a new vector field ∇XY such that

∇fX+Y Z = f∇XZ +∇Y Z,

∇X(fY + Z) = (LXf)Y + f∇XY = ∇XZ,

where f ∈ C(Q) and X,Y, Z ∈ X(Q). We also call ∇XY
the covariant derivative of Y with respect to X. For a
Riemannian metric Gq on Q, there exists a unique affine
connection named Levi-Civita connection, such that for all
X,Y, Z ∈ X(Q) there holds

LXY = ∇XY −∇YX,

LX⟨Y, Z⟩q = ⟨∇XY, Z⟩q + ⟨Y,∇XZ⟩q.

In the following, we introduce the covariant derivative
along a curve. Consider a smooth curve γ(t) ∈ Q, and
a vector field v(t) ∈ Tγ(t)Q which is defined along γ. Let
a vector field X ∈ X(Q) satisfy X(γ(t)) = v(t), then the
covariant derivative of v along γ is defined as

∇γ̇(t)v(t) = ∇γ̇(t)X(q)|q=γ(t).

In the subsequent sections, for the sake of convenience, we

use the notation D
dt

to represent the covariant derivative

along a curve ∇γ̇(t).

We conclude this section with the first and second varia-
tion of a function. Give a function f ∈ C(Q), its gradient
gradf is a vector field implicitly defined as

LXf = ⟨gradf,X⟩q. (1)

According to this definition, gradient gradf can be explic-
itly expressed as gradf = G♯

q(df), where G♯
q is the sharp

map, and df is the differential of f . The Hessian of f
denoted by Hessf is a (0, 2) symmetric tensor field, which
is defined as

Hessf(X,Y ) = (LY LX − L∇Y X)f, (2)
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for allX,Y ∈ X(Q). In local coordinates, when gradf(q) =
0, the Hessian of f can be written as

Hessf

(
Xi ∂

∂qi
, Y j ∂

∂qj

)
(q) =

∂2

∂qi∂qj
XiY j(q). (3)

Note that Hessf maps TqQ × TqQ to real space R. We
usually investigate whether Hessf is positive definite over
certain sub-bundles of TQ.

2.2 Mechanical control systems

In this section, we introduce mechanical control systems
based on aforementioned concepts on manifolds. Generally,
a mechanical control system (Q,Gq, Y,F ) is defined by the
following objects:

• a manifold Q in n dimensions, describing the config-
uration space,

• a Riemannian metric Gq for kinetic energy, usually
denoted by ⟨·, ·⟩q,

• a function V on Q representing the potential energy,
• a codistribution F = span{F 1, · · · , Fm} inm dimen-
sions defining the input forces.

It should be emphasized that we assume the dimension
of codistribution F is less than that of configuration
manifold Q, i.e., m < n. Thus, such a mechanical control
system is underactuated.

Let q ∈ Q denote the configuration of the system and vq its
velocity. Using the sharp map, we define the input vector
fields Yi = G♯

q(F
i) where i = 1, · · · ,m, so that the input

distribution can be denoted by Y = span{Y1, · · · , Ym}.
The total energy of the system, or the Hamiltonian H :
TQ→ R is

H =
1

2
⟨vq, vq⟩q + V (q). (4)

The dynamic equation of the system can be written as

Dvq
dt

= −gradV + Yiu
i, (5)

where ui is the control input function, and Einstein sum-
mation convention is employed herein. Equation (5) is
called Euler-Poincaré equation, which is in a coordinate
independent form. For a number of mechanical control
systems moving in a plane, such as nonholonomic ve-
hicles and underactuated ships, there are generally no
conservative forces exerted on them. In other words, these
systems are without potential energy and only described
by (Q,Gq,F ). In this case, the dynamic equation (5) can
be simplified as

Dvq
dt

= Yiu
i. (6)

In this paper, what we investigate is the stabilization
for underactuated mechanical control systems without
potential energy.

3. MAIN RESULTS

In this Section, we propose the control strategy that
stabilize the equilibrium of an underactuated mechanical
control system. The main idea is designing an artificial
potential for the closed-loop system to make the equi-
librium stable. Moreover, the ultimate goal is to achieve
exponential convergence for all of variables of the system.

3.1 Artificial Potential

Proportional feedback with respect to configuration has
been studied in a large number of researches. From the
perspective of the energy, such a control law can shape the
potential energy of the system. Similarly, employing this
approach, we are able to construct the artificial potential
for the closed-loop system, which is illustrated in the
following lemma.

Lemma 1. Consider an underactuated mechanical control
system (Q,Gq,F ) without potential energy. Assume there
exists a function ψ : Q→ R, such that

gradψ = ci(q)Yi, i = 1, · · · ,m, (7)

in which ci : Q→ R is a continuous function. If the control
input is designed as

ui = −ci(q)ψ, (8)

then the closed-loop system is a mechanical system
(Q,Gq, Va), where Va is the artificial potential formulated
as Va = 1

2ψ
2.

Proof. Substituting (8) into (6), it can be easily obtained
that

Dvq
dt

= Yi(−ci(q)ψ).

Due to the fact that ci(q) is a real-valued function, we can
regard ci(q) as a scalar. Thus, there holds

Dvq
dt

= −ci(q)Yiψ.

According to (7), ci(q)Yi is the gradient of ψ. Therefore,
we have

Dvq
dt

= −ψgradψ = −grad(
1

2
ψ2).

Define Va = 1
2ψ

2, then there holds

Dvq
dt

= −gradVa,

which describes a mechanical system with potential Va.

Remark 2. According to Lemma 1, we construct the po-
tential by configuration feedback, which makes the original
potential-free system transformed into the closed-loop sys-
tem with artificial potential Va. Therefore, motivated by
Lemma 1, we will look for the function ψ : Q → R, such
that

gradψ ∈ Y = span{Y1, · · · , Ym}.
Once obtaining ψ, we can use feedback to construct closed-
loop system and design the artificial potential Va. With
respect to a point q0 ∈ Q, if Va satisfies

dVa(q0) = 0, (9)

HessVa(X,X)(q0) > 0, (10)

for allX ∈ TQ, then it can be proved that q0 is a Lyapunov
stable equilibrium of the closed-loop system.

Remark 3. Actually, property (7) is the key point to deal
with the underactuation of the system. This requires
gradψ should lie in the distribution spanned by input vec-
tor fields Yi. Otherwise, we cannot use feedback (8) to con-
struct artificial potential Va for the closed-loop system. For
fully-actuated system, (7) is no longer necessary because
in such a case the input vector fields can always span the
whole tangent bundle. This also implies the fully-actuated
systems are easier to handle compared with underactuated
systems.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

5937



Now, our mission becomes to find function ψ for artificial
potential construction. The following Lemma illustrates
how to define such functions.

Lemma 4. Given a input distribution Y , we define its
orthogonal complement as

Y ⊥ = {X ∈ X(Q), ⟨X,Yi⟩ = 0, i = 1, · · · ,m}, (11)

where ⟨·, ·⟩ represents the inner product in Euclidean
space. Then, Y ⊥ has m integral functions ψ1, · · · , ψm

satisfying
gradψi ∈ Y i = 1, · · · ,m.

Furthermore, given any point q0 ∈ Q, these m functions
can be chosen such that ψi(q0) = 0.

Proof. For function ψ, it is required gradψ ∈ Y , so that
there holds gradψ⊥Y ⊥. In other words, for ∀X ∈ Y ⊥,
we have LXψ = 0. Thus, we can arbitrarily choose two
vector fields X1 and X2 in Y ⊥ such that LX1ψ = 0 and
LX2ψ = 0. Define the Lie bracket of X1 and X2 as X3,
i.e.,X3 = [X1, X2], and compute LX3ψ as follows

LX3ψ = L[X1,X2]ψ = LX1LX2ψ − LX2LX1ψ = 0.

This implies that gradψ⊥X3, i.e., X3 ∈ Y ⊥. Note that
X3 is the Lie bracket of vector fields in Y ⊥, so that the
distribution Y ⊥ is involutive. Furthermore, according to
Frobenius Theorem, Y ⊥ is completely integrable, which
means there exist m integral functions ψ1, · · · , ψm such
that

span{gradψ1, · · · , gradψm} = Y .

Having obtained these m functions ψ1, · · · , ψm from
Lemma 4, we can implicitly design the control input ui
by the equality

m∑
i=1

Yiu
i = −

m∑
i=1

kiψigradψi, (12)

where k1, · · · , km are positive scalars. Then, based on
Lemma 1, in this case the closed-loop system is still
mechanical system with artificial potential

Ṽa =
1

2

m∑
i=1

kiψ
2
i ,

and the Hamiltonian is

H̃ =
1

2
⟨vq, vq⟩q +

1

2

m∑
i=1

kiψ
2
i .

3.2 Lyapunov stability

We have designed the artificial potential for the closed-loop
system. Once it satisfies certain conditions, the stability of
the system can be guaranteed. In the following, we provide
the control strategy which can make an equilibrium Lya-
punov stable.

Theorem 5. Consider a mechanical control system (Q,Gq,
Y ), whose equilibrium is denoted by q0. Let ψ1, · · · , ψm

be m functions obtained from Lemma 4. With out of
generality, we can set

Yi = gradψi, i = 1, · · · ,m.
If artificial Ṽa = 1

2

∑m
i=1 kiψ

2
i satisfies

dṼa(q0) = 0, (13)

HessṼa(X,X)(q0) > 0, (14)

for ∀X ∈ TQ, then there exist such feedback control inputs

ui = −kiψi, (15)

that make the equilibrium q0 Lyapunov stable.

Proof. The Hamiltonian of closed-loop system is H̃ =
1
2 ⟨vq, vq⟩q + Ṽa(q), and we choose it as the Lyapunov
function. For the simplicity of illustration, we define a new
variable x = (q, vq) with the characteristic x0 = (q0, 0).

Then, the differential of H̃ can be computed as

dH̃ =
1

2
d⟨vq, vq⟩q + dṼa = G♭

q(vq) + dṼa(q),

where G♭
q is the flat map. Because dṼa(q0) = 0 and

G♭
q(0) = 0, we can obtain that

dH̃(x0) = 0. (16)

In addition, the Hessian of H̃ is HessH̃ = Gq +

HessṼa. Due to the fact that Gq is positive definite and

HessṼa(X,X)(q0) > 0, there holds

HessH̃(X,X)(x0) > 0, (17)

for ∀X ∈ TQ. Based on conditions (16) and (17), it
is indicated that x0 = (q0, 0) is the minimum of the

Lyapunov function H̃. Therefore, the equilibrium q0 is
Lyapunov stable.

3.3 Exponential stability

In this section, the dissipative feedback is introduced to the
control law in order to achieve the exponential stability
of the equilibrium. At first, we provide the following
lemma which shows stabilization techniques for nonlinear
systems.

Lemma 6. (Lemma 2.1, Bullo (2000)). Let Q be a smooth
manifold, and consider the affine control system

ẋ = f(x) +

m∑
i=1

gi(x)ui, (18)

where f, gi are smooth vector fields and ui is bounded
measurable function. Let x0 be an equilibrium of the
system, and let W : Q → R be the Lyapunov function.
For x ∈ B(x0), where B(x0) is a neighborhood of x0, the
following stability results hold.

(i) If the time derivative of W along f is 0, and ui is
dissipative input, in other words, if

LfW = 0, (19)

ui = −LgiW, (20)

then the point x0 is Lyapunov stable in the sense that
W (x(t)) ≤ W (x(0)). If the system satisfies the linear
controllability rank condition for ∀x ∈ B(x0), that is, if

rank{gi, adfgi, · · · , adnf gi}(x) = n, i = 1, · · · ,m (21)

then the point x0 is asymptotically stable in the sense that
limt→∞ x(t) = x0.

(ii) In addition, if the second variation of W at x0 is
positive definite, i.e., if

δ2W (x0) =
∂2W

∂xi∂xj

∣∣∣∣
x=x0

δxiδxj > 0, (22)

then, the point x0 is exponentially stable in the sense that
W (x(t)) ≤ cW (x(0))e−λt, for some positive scalars c and
λ.
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Proof. (i) The time derivative of Lyapunov function W
is

Ẇ =
∂W

∂x
ẋ =

∂W

∂x
f +

m∑
i=1

∂W

∂x
giui

= LfW +

m∑
i=1

(LgiW )ui. (23)

Substituting (19) and (20) into (23), we can obtain

Ẇ = −
m∑
i=1

∥LgiW∥2,

where ∥ · ∥ is the l2-norm. Furthermore, if the system
satisfies the linear controllability rank condition (21), then
there holds

m∑
i=1

∥LgiW∥2 > 0.

If
∑m

i=1 ∥LgiW∥2 = 0 holds as well, there will be a
contradiction to the premise, which is deduced in the
following. From LgiW = 0 and LfW = 0, we have

f, gi ∈ Ker

(
∂W

∂x

)
,

where Ker(·) means the kernel space. For the Lie bracket
adfgi = [f, gi], there holds

∂W

∂x
[f, gi] = L[f,gi]W = LfLgiW − LgiLfW = 0,

which implies

adfgi ∈ Ker

(
∂W

∂x

)
.

Similarly, we can prove

adsfgi ∈ Ker

(
∂W

∂x

)
, s = 2, · · · ,m.

Thus, it can be obtained

rank{gi, adfgi, · · · , adnf gi}(x) = dim

(
Ker

(
∂W

∂x

))
= n− 1,

which is contradictory to the linear controllability rank
condition (21). Therefore, when condition (21) holds, there
has

∑m
i=1 ∥LgiW∥2 > 0, and we can further obtain

Ẇ = −
m∑
i=1

∥LgiW∥2 < 0,

which guarantees the asymptotical stability of the equilib-
rium.

(ii) Exponential stability can be proven by noting two
facts (Bullo (2000)): firstly, the results in (i) can be
applied to the linearized closed-loop system with δ2W (x0)
as a Lyapunov function, and secondly, the asymptotical
stability of the linearized system indicates the exponential
stability of the nonlinear system. Please refer to Corollary
5.30 in Sepulchre et al. (1997) for a similar discussion.

Eventually, we state the exponential stability results in the
following theorem.

Theorem 7. Consider a mechanical control system (Q,Gq,
Y ), whose equilibrium is denoted by q0. Let ψ1, · · · , ψm

be m functions obtained from Lemma 4. With out of
generality, we can set

Yi = gradψi, i = 1, · · · ,m.

If the following two requirements hold, that is, if

(i) for q ∈ B(q0), system satisfies the linear controllability
rank condition (21);

(ii) artificial Ṽa = 1
2

∑m
i=1 kiψ

2
i satisfies

dṼa(q0) = 0,

HessṼa(X,X)(q0) > 0,

for ∀X ∈ TQ, then there exist such feedback control inputs

ui = −kiψi − dψ̇i, (24)

that make the equilibrium q0 exponentially stable.

Proof. Let ui consist of two components, i.e.,

ui = uis + uid,

where uis is potential shaping control and uid is dissipative
control. We set uis = −kiψi and substitute it into (5).
Then, the dynamics of the closed-loop system isq̇ = vq

Dvq
dt

= −gradṼa + Yiu
i

(25)

where Ṽa = 1
2

∑m
i=1 kiψ

2
i . Define the following variable and

vector fields

x =

[
q
vq

]
, f =

[
vq

−gradṼa

]
, gi =

[
0
Yi

]
,

then the dynamic equation (25) can be expressed in the
affine form of (18). The Hamiltonian of closed-loop system

is H̃ = 1
2 ⟨vq, vq⟩+ Ṽa(q), and we choose it as the Lyapunov

function. Next, we compute the Lie derivative of H̃ along
f and gi respectively, i.e.,

Lf H̃ = ⟨gradH̃, f⟩q =

〈[
gradṼa
vq

]
,

[
vq

−gradṼa

]〉
q

= 0,

LgiH̃ = ⟨gradH̃, gi⟩q =

〈[
gradṼa
vq

]
,

[
0
Yi

]〉
q

= ⟨vq, Yi⟩q.

Define the dissipative control

uid = −diLgiH̃ = −di⟨vq, Yi⟩q,
where di is a positive scalar. Due to Yi = gradψi, we can
further obtain

uid = −di⟨vq, gradψi⟩q = −diLvqψi = −diψ̇i.

According to the premise, system satisfies the linear con-
trollability rank condition, and in addition, it has been
proven in Theorem 5 that the Hamiltonian H̃ has positive
definite second variation. Therefore, based on Lemma 6,
the equilibrium q0 is exponentially stable.

Remark 8. In the design of stabilization controller, we do
not linearize the mechanical system, but still keep its
essential nonlinearity on manifolds. Of course, we could
obtain the linearization system at the equilibrium and
design the controller for the derived linear system, which
is much simpler than the proposed controller in this pa-
per. However, such a controller from linearization is only
effective in a small neighborhood of the equilibrium, while
the description on differential manifolds is global. More-
over, for several underactuated systems, their linearized
systems at certain equilibrium are not controllable any-
more. In Theorem 7, although the linear controllability
rank condition (21) is introduced, it has no relationship
with the linearization. This is an assumption for the drift
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and control vector fields of the mechanical system. These
vector fields lie in the tangent space, which is a linear
space, so that (21) looks like the following controllability
rank condition for linear system

rank{B,AB, · · · , An−1B} = n, (26)

where A and B are system matrix and input matrix of
a linear system respectively. Actually, condition (26) is a
particular form of the linear controllability rank condition
(21). In other words, (21) will degenerate to (26) for linear
systems.

4. CONCLUSION

In this paper, we study the equilibrium stabilization prob-
lem for underactuated mechanical systems without poten-
tial energy. The system is established on the Rimannian
manifold, and differential geometric methods are employed
in the design of stabilization controller. The novelty lies
in constructing an artificial potential for the closed-loop
system by configuration feedback control. The stability
of the system can be realized once the artificial potential
certain requirements with respect to the equilibrium, Fur-
thermore, by incorporating dissipative feedback into the
control strategy, we successfully obtain the exponential
stability of the equilibrium.

Of course, there still exist challenges for future research.
The crucial point in the proposed approach is to find a
series of functions, which in fact are integral functions
for an involutive distribution. Whether such functions can
be obtained is significant to the construction of artificial
potential. Unfortunately, computing integral functions for
involutive distribution of arbitrary dimension and codi-
mension is generally as difficult a providing explicit so-
lutions to a set of ordinary differential equations (Bullo
(2000)). Furthermore, these functions not only can be
obtained but also should be proper, in the sense that they
are supposed to satisfy certain requirements guaranteeing
the stability of the equilibrium. Thus, the existence of such
functions is an open problem worth studying.
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