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Abstract: We consider the task of motion control for non-prehensile manipulation using parallel
kinematics mechatronic setup, in particular, stabilization of a ball on a plate under unmeasured
external harmonic disturbances. System parameters are assumed to be unknown, and only
a ball position is measurable with a resistive touch sensor. To solve the task we propose a
novel passivity-based output control algorithm that can be implemented for unstable linearized
systems of an arbitrary relative degree. In contrast to previous works, we describe a new
way to parametrize harmonic signal generators and an estimation algorithm with finite-time
convergence. This scheme enables fast disturbance cancellation under control signal magnitude
constraints.
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1. INTRODUCTION

The development of control algorithms for robot manipu-
lators with a parallel kinematic scheme is an pressing chal-
lenge in the tasks of dynamic manipulation. Such systems
have several advantages compared to manipulators with a
serial scheme: kinematic chains are closed, which leads to
robustness, as well as high accuracy of the positioning of
the mechanism as a whole. Movable parallel parts reduce
the load on the drive, which improves the dynamics and
accuracy of the system Lynch and Mason (1999). Similar
systems are used in flight simulators, in simulators for
car drivers, in the production process. Parallel kinematics
robots are also widely used in biomechatronics and reha-
bilitation of the neck, knee joints and foot joints.

This research is devoted to the output-feedback control
of linear parametrically uncertain plants under unmea-
sured matching input harmonic disturbances. The paper
presents a novel switching control algorithm that combines
a passivity-based output controller with a finite-time har-
monic disturbance parameters estimation algorithm that
guarantees convergence of the disturbance parameters.
Thus, the overall closed-loop system performance can be
improved.

It is assumed that the frequency of the harmonic signal is
unknown. In the majority of works devoted to the synthesis
of frequency identification algorithms Landau et al. (2005);
Marino and Tomei (2003); Amara et al. (1999); Bodson
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and Dopuglas (1997); Francis and Wonham (1976) the
possibility of increasing the rate of convergence is not dis-
cussed, which can also be attributed to the open problems
of control theory.

In the present work, the method of a ’consecutive com-
pensator’ Pyrkin et al. (2011) is used as a basic control
approach. This method had been proven efficient in a num-
ber of parametrically uncertain robotic and mechatronic
systems control applications, see e.g. Dobriborsci et al.
(2018b,a,c). Moreover, the approach guarantees global
convergence, can be applied to systems with an arbitrary
relative degree, has a simple structure and is easy to
configure. We implement this output-feedback controller
to stabilize an unstable parametrically uncertain plant and
further use its output for the input disturbance model
identification.

The problem of cancelling external harmonic disturbances
acting on unstable parametrically and structurally un-
certain plants by identifying disturbance’s internal model
parameters as well as ways of increasing the rate of para-
metric convergence were studied in the authors’ previously
published works, e.g. Pyrkin et al. (2015a,b); Bobtsov et al.
(2011).

A number of papers are devoted to finite-time estimators.
In Ortega et al. (2019), Gerasimov et al. (2018) an es-
timator design which provides finite-time convergence is
proposed. In Wang et al. (2019) an adaptive estimator of
constant parameters without the hypothesis that regressor
is Persistently Excited (PE) is proposed.
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However, finite-time estimation algorithms and controllers
based on ’consecutive compensator’ approach were never
combined before to solve the output control problem under
parametrical and signal disturbances. Such a fusion is
quite promising, it provides convergence of the disturbance
estimates with a finite amount of time.

The approach described in this paper is close to the
monitoring function method presented in Roux Oliveira
et al. (2017) for the problem of the output adaptive
tracking control. The difference is that we use output
adaptive robust controller with high-gain observer, which
is different from sliding mode control.

The paper is structured as follows. After a short intro-
duction, the problem statement together with important
assumptions are given. Section 3 describes the output
stabilizing controller based on ’consecutive compensator’
method. In Section 4 we present the finite-time distur-
bance frequency estimation algorithm for input harmonic
disturbance parameters, then in Section 5 a switching
scheme that enables using these estimates for feedback
controller adjustments. Finally, Section 6 is devoted to
the case study of Ball-and-Plate robotic platform control
using the presented technique. As an example we consider
the problem of ball stabilization on a square platform.
The task is complicated by the presence of harmonic
disturbances in the system. Obtained results illustrate the
overall improved performance of the system.

2. PROBLEM STATEMENT

Consider the linear SISO plant

a(p)y(t) = b(p)[u(t) + δ(t)], (1)

where p = d
dt is the differentiation operator, u(t) and

y(t) are input and output signals respectively, coefficients
of the polynomials a(p) = pn + an−1p

n−1 + ... + a0 and
b(p) = bmp

m + bm−1p
m−1 + ...+ b0 are unknown, and

δ(t) = Ā sin(ωt+ φ̄) (2)

is the input harmonic disturbance with the unknown
amplitude Ā, phase shift φ̄, and frequency

0 < ωmin < ω < ωmax <∞.

The control goal is to guarantee

lim
t→∞

y(t) = 0 (3)

under the following assumptions:

(1) b(p) is a Hurwitz polynomial;
(2) only the relative degree of the system ρ = n −m is

known, while degrees of the polynomials a(p) and b(p)
are unknown.

(3) The lower bound ωmin of frequency ω is known.

3. OUTPUT CONTROLLER DESIGN

Let us consider the output adaptive controller with mod-
ification for the input harmonic disturbance rejection in-
troduced in Bobtsov et al. (2012)

u(t) = −kα(p)(p+ 1)2

(p2 + ω2)
ξ1(t), (4)

ξ̇1 = σξ2,

ξ̇2 = σξ3,
. . .

ξ̇ρm−1 = σ (−k1ξ1 − . . .− kρ−1ξρ−1 + k1y) ,

(5)

where α(p) is a Hurwitz polynomial of (ρ − 1) degree,
constant coefficient k > 0 is chosen such way that transfer
function

H(p) =
α(p)b(p)(p+ 1)2

a(p)(p2 + ω2) + kα(p)b(p)(p+ 1)2

is SPR, while σ > k and parameters ki are calculated for
the system (5) to be asymptotically stable for y(t) = 0.

Proposition 1. The output feedback controller (4), (5)
applied to the plant (1) guarantees achievement of the
control goal (3) for the output variable y(t).

The detailed proof of the Proposition 1 is given in Bobtsov
et al. (2012).

4. FINITE-TIME DISTURBANCE FREQUENCY
ESTIMATION

Here we introduce the algorithm for finite-time input
harmonic disturbance parameters estimation.

At first, we parametrize the disturbance model.

Since the considered closed-loop system is linear and
stable, the output variable y(t) (when the transient time
has elapsed) is tracking the external disturbance, i.e.
y(t) = A sin(ωt+ φ).

Consider two auxiliary signals

y1(t) = y(t− τ), (6)

y2(t) = y(t− 2τ), (7)
where τ ∈ R+ are chosen values of the delay duration.

Rewrite (6) and (7)

y1(t) = A sin(ωt+ φ) cosωτ −A cos(ωt+ φ) sinωτ, (8)

y2(t) = A sin(ωt+ φ) cos 2ωτ −A cos(ωt+ φ) sin 2ωτ.
(9)

Multiplying y1(t) by sin 2ωτ and y2(t) by sinωτ and
applying double angle formulas, we get

y1(t) sin 2ωτ − y2(t) sinωτ = A sin(ωt+ φ) cosωτ sin 2ωτ

−A cos(ωt+ φ) sinωτ sin 2ωτ

−A sin(ωt+ φ) cos 2ωτ sinωτ

+A cos(ωt+ φ) sin 2ωτ sinωτ =

= 2A sin(ωt+ φ) cos2 ωτ sinωτ

−A sin(ωt+ φ)(2 cos2 ωτ − 1) sinωτ =

= A sin(ωt+ φ) sinωτ = y(t) sinωτ (10)

Dividing (10) by sinωτ , we get

2y1(t) cosωτ = y(t) + y2(t). (11)

Now, we can derive the exact model (without assumption
on exponential decaying terms due to unknown initial
conditions) of the harmonic signal generator in the linear
regression form

z(t) = ϕ(t)θ, (12)
where z(t) = 1

2 (y(t) + y2(t)), ϕ(t) = y1(t), and θ = cosωτ .
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Since the signals y(t), y1(t), y2(t) are measurable, we
can estimate disturbance frequency from the following
algorithm

˙̂
θ(t) = Kϕ(t)(z(t)− ϕ(t)θ̂(t)), (13)

θ̂F (t) =
1

1− w(t)

[
θ̂(t)− w(t)θ̂0

]
, (14)

ẇ(t) = −Kϕ2(t)w(t), (15)

where K > 0, w(0) = 1, and θ̂0 is an initial guess on the
disturbance parameters values.

It can be shown that θ̂F (t) converges to the real value of
θ for finite time, which can be reduced by adjusting the
gain K. The only issue with selecting very high values for
K is that the presented scheme becomes very sensitive to
measurements noise. But in any case we need to wait some
small amount of time before w(t) < 1 such that (14) does
not give division by zero. Detailed description and proof
for (14)–(15) can be found in Ortega et al. (2019).

5. SWITCHING SCHEME

The last step in the proposed scheme is to set up a
criterion, which would implement disturbance parame-
ters’ estimates substitution to the nominal controller (4)
ω(ti) = ω̄(ti).

As it was outlined above, in contrast to Dobriborsci et al.
(2019) we perform a single switching, i.e. the substitution
of the disturbance frequency estimates will be performed
at the moment of time when its already converged. The
switching scheme can be analytically described by the
relations below and applied by using a trigger scheme:ω̄(t) = ωmin, where t < T ,

ω̄(t) =
arccos θ̂F (T )

τ
, where t ≥ T ,

(16)

where θ̂F (T ) is obtained from (13)–(15).

A method reported above is quite similar to widely-used
dwell-time switching logic and allows to avoid undesired
jumps and oscillation in transients that can lead to loosing
closed-loop system stability.

6. CASE-STUDY RESULTS

In this chapter we analyse how the proposed output
controller and disturbance frequency estimation algorithm
working in a loop can be applied for the mechatronic setup.

Here we consider a parallel kinematics Ball-and-Plate
robotic platform as a plant (see Fig. 1). The goal is to
stabilize a steel ball in user-defined coordinates on the
square plate under input harmonic disturbances by apply-
ing voltages to the servo drives controlling the inclination
of a plate, while kinematic and dynamic parameters of the
system are unknown.

The ball and plate system can well be approximated by two
linear decoupled systems. Therefore, this system with two
inputs and two outputs can be treated as two decoupled
SISO systems, therefore the proposed control approach can
be implemented.

Fig. 1. Ball-and-plate lab setup
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Fig. 2. Sketch of a ball on a plate pictured in OXZ plane

6.1 Mathematical model

Lets consider ball motion in OXZ plane (see Fig. 2). Here
we derive the equations of motion for experimental setup
under the following assumptions:

• There is no slipping for ball.
• The ball is completely symmetric and homogeneous.
• Friction forces are neglected.
• The ball and plate are in contact all time.

By assuming the generalized coordinates of system to be
xb and yb for position of the ball in each direction and α
and β the inclinations of the plate, i.e. q = [xb yb αβ]T .

In accordance to previous works we obtain equation of mo-
tion Dobriborsci et al. (2018c,b); Dobriborsci and Kolyu-
bin (2017)(
mb +

Ib
r2b

)
ẍb −m

(
xbα̇

2 + ybα̇β̇

)
+mbgsinα = 0 (17a)(

mb +
Ib
r2b

)
ÿb −m

(
ybβ̇

2 + xbα̇β̇

)
+mbgsinβ = 0 (17b)

The ball coordinates x and y are considered as the output.

Taking into account servo drive dynamics, which is as-
sumed to be captured by the 1st order aperiodic link
transfer function, we can derive the following relations
for the numerator and denominator of the system transfer
functions for x and y control channels

b(p) = 2mbgdr
2
bKm, (18a)

a(p) = L(mbr
2
bTmp

3 + Ibp
2), (18b)

where Km and Tm are servo drives gain and time constant
respectively.

Parameters of the system are presented in the Table below.
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(a) Standard gradient descent method and
finite-time modification, for ω = 1.2 rad
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(b) Standard gradient descent method and
finite-time modification, ω = 4 rad
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(c) Standard gradient descent method and
finite-time modification, where ω = 4 rad
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K = 1.8

Fig. 3. Transients for disturbance parameter estimation

Table Parameters of the Ball-and-Plate system
mb 0.05 kg L 0.11 m

g 9.81 m/s2 Km 0.25

d 0.02 m Tm 0.018 s

rb 0.0125 m Ib 3.13 ·10−5kg ·m2

6.2 Simulation results

We will verify the proposed approach for two cases. At
first, consider system performance assuming that the dis-
turbance signal is directly measurable. We demonstrate
results for two harmonic disturbance signals with different
parameters

δ1(t) = 3sin(1.2t+
π

2
), (19)

and

δ2(t) = 3sin(4t+
π

2
). (20)

Transients for the signals of the closed-loop system are
presented in Fig.3, which illustrate the convergence of
the input harmonic disturbance parameter to the real
value in case we use finite-time algorithm modification
and its comparison to standard gradient-descent method.
The increase of the gain coefficient parameter K leads
to the more accurate convergence of the estimates. The
gradient-descent method provides the convergence of the
parameters in more than 30 seconds with frequency ω =
1.2, K = 0.5, τ = 0.1 without modification and in about
8 seconds with K = 3.8 and with finite-time modification,
whereas with frequency ω = 4, K = 0.9, τ = 0.1 in
6 seconds without modification and in 3 seconds with
K = 1.8 with finite-time modification.

Now, consider the more realistic case, when external dis-
turbance is not directly measurable, and we estimate its
parameters by measuring system output only, while plant
parameters are a priori unknown.

For the dynamical model of the ball-and-plate setup that
we use (relative degree ρ = 3), the proposed output
controller with tuned parameters can be described as

u(t) = −κα(p)(p+ 1)2

p(p2 + ω̄)
ξ1, (21)


ξ̇1(t) = σξ2(t),

ξ̇2(t) = σ(−k1ξ1(t)− k2ξ2(t) + k1y(t)),
(22)

where κ = 1.2, σ = 35, k1 = 2, k2 = 5, α(p) = p2 + 3p+ 1.

Again, we demonstrate results for two harmonic distur-
bance signals with different parameters (19) and (20).

The simulation results of the disturbed plant behavior are
presented in Fig.4 - 5, where identification of the frequency
can be observed. The finite-time algorithm modification
proves its efficiency and provides faster convergence than
gradient-descent method. The transient time constitutes 8
seconds with frequency ω = 1.2, K = 7.1, τ = 0.1 and 5
seconds with ω = 4, K = 2.8, τ = 0.1.

7. CONCLUSION

This work presented a modification of the output adaptive
control algorithm based on the ”consecutive compensator”
method, where the unknown input harmonic disturbance
rejection is organized via the finite-time disturbance pa-
rameters estimation algorithm.

The proposed controller remains a simple structure, but
guarantees better closed-loop system performance because
of the finite-time convergence of the disturbance’s param-
eters estimates. At the same time, this approach simplifies
the switching rule used for parameters’ estimates substi-
tution to the feedback controller.

Possible directions for future work include extension of the
obtained results for the case when an input disturbance
is approximated by the Fourier series, i.e. dealing with
multi-harmonic signals, solving trajectory tracking tasks,
including MIMO cases, and modifications of the finite-time
algorithms for better robustness to measurement noise.
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